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Abstract. In a nuclear power plant, periodic sensor calibration is necessary to ensure the correctness of

measurements. Those sensors which have gone out of calibration can lead to malfunction of the plant, possibly

causing a loss in revenue or damage to equipment. Continuous sensor status monitoring is desirable to assure

smooth running of the plant and reduce maintenance costs associated with unnecessary manual sensor cali-

brations. In this paper, a method is proposed to detect and identify any degradation of sensor performance. The

validation process consists of two steps: (i) residual generation and (ii) fault detection by residual evaluation.

Singular value decomposition (SVD) and Euclidean distance (ED) methods are used to generate the residual and

evaluate the fault on the residual space, respectively. This paper claims that SVD-based fault detection method is

better than the well-known principal component analysis-based method. The method is validated using data from

fast breeder test reactor.
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1. Introduction

A nuclear power plant (NPP) has a large number of sensors

to monitor different parameters such as temperature, pres-

sure and flow rate of the process fluid. As the operational

decisions depend on sensor signals, it is necessary that the

signal produced by the sensor must be faithful. Sensors will

undergo physical degradation due to ageing, which results

in their readings deviating from the actual value or the

calibration curve. Some early indications of sensor fault can

take the form of a lagging response caused by the increase

of the sensor time constant. Other early signs of a sensor

fault may consist of occasional inconsistent output due to

loose sensor component contacts. A conventional method

of maintenance for the sensors showing signals out of the

allowable range consists of off-line integrity evaluation and

recalibration or replacement. This approach does not result

in timely detection of sensor degradation because inspec-

tion has to wait for their scheduled process to shutdowns.

The objective of online sensor monitoring is to detect early

indications of a sensor fault, thus enabling predictive

maintenance.

1.1 Related work

Several techniques have been suggested for sensor fault

detection and diagnosis (FDD) in the literature. These

methods can be broadly classified into two categories:

model-based and data-driven methods. In model-based

methods, faults are detected and isolated by residual

generation and evaluation. The model describes the

mathematical and systematic characteristics of the pro-

cess. In these methods, fault is detected by comparing

the actual output with information obtained from the

model. Kalman filter (KF) model-based method was used

for fault detection and isolation (FDI) in a dynamic

system [1]. It has a systematic design, noise disposal and

enhances sensitivity to produce the effective results.

Zarei and Poshtan [2] proposed a sensor FDI

scheme based on the Luenberger Observer method.

Gertler [3] established a dynamic parity relation to detect

and isolate the system faults systematically and inte-

grally. Bayesian Belief Network (BBN) and multi-stage

BBN models were developed for fault detection and

diagnosis (FDD) in a transient or steady-state system [4].

The success of the aforementioned methods depends on

the fidelity of the system or the component model

expressed in a mathematical form. However, for some

complex processes, it is very difficult to obtain a highly

accurate mathematical model.
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On the other hand, the data-driven methods are devel-

oped using historical data. Well-known data-driven meth-

ods for sensor malfunction detection are principal

component analysis (PCA) and its extensions. Wang and

Cui [5] have developed a method for sensor FDD using

PCA. They utilised Q-statistic and Q-contribution plot to

detect the fault. A non-linear approach of PCA was pro-

posed by Huang et al [6] for sensor and actuator fault in

non-linear systems. Wang and Xiao [7] have invented a

technique for air handling unit (AHU) system sensor data

validation using PCA, where Q-statistic or squared pre-

diction error was used to set the threshold and the fault is

fixed by Q-contribution plot. However, PCA is not aware of

the pattern. It finds the relation between the variables, and

that may produce false alarms. Several ANN approaches

were developed to design sensor FDD in different industrial

control systems. The ANN was used to predict the corre-

lated variable in NPPs for sensor fault detection and plant

monitoring [8]. Auto-associative neural network (AANN)

was proposed for engine control system’s sensor fault

diagnosis and reconstruction [9]. NN-based classification

scheme was used to recognise the sensor drift in Gas Tur-

bine systems [10]. A dual NN strategy was designed in

AHUs for sensor fault detection and its efficiency analysis

[11]. Cascade NN (CNN) was used for sensor fault detec-

tion and identification [12]. The NN and KF schemes for

sensor validation were proposed for flight control systems

[13]. The FDI technique was developed by integrating two

successful data-driven methods, PCA and NN by Zhou et al

[14]. The combination of wavelet and fractal analysis with

NN scheme was designed by Zhu et al [15] in the AHU

system sensor FDD. A hybrid of data-driven soft mea-

surement and modeling method was proposed for power

plant sensor condition monitoring [16]. This method

includes generalised regression neural network (GRNN),

mean impact value (MIV), partial least squares regression

(PLSR) and B-Spline transformation techniques. Hou et al

[17] designed a method utilising data mining principle for

sensor validation in air-conditioner systems using rough set

(RS) and ANN. Training the network using the neural

network and its combination method was time-consuming.

1.2 Motivation and contribution of this paper

In data-driven methods, sensor fault detection is based on

calculating metrics that are used to detect the fault.

Numerous metrics are used to identify the fault along

with the PCA method that includes the Hotelling T2-

statistic [18] and the Q-statistic [19]. The T2-statistic is

used to estimate the maximum variation captured by the

principal components, whereas the Q-statistic is used to

calculate the deviation of the residual that are not cap-

tured by the principal components. Wang and Chen [20]

noticed that the T2-statistic value exceeds the threshold

in nominal process condition and produces false alarms.

As pointed out by Romagnoli and Palazoglu [19], the T2-

statistic will not detect the actual fault because the

compact space is sometimes unable to capture small

variation in the data. The Q-statistic will detect the fault

by computing the square of the error between the actual

data and its redundancy [21]. So it is more sensitive than

T2-statistic. Again, the performance of Q-statistic

depends on the redundancy of the data. The data

redundancy or reconstruction is based on the choice of

the number of principal components. If the principal

components are under- or over-estimated, the Q-statistic

creates false alarms. The Q-statistic is seriously affected

if the eigenvalues of the covariance matrix are roughly

equal. It produces an effective result if the first eigen-

value is large and the remaining are very small when the

eigenvalues are sorted in decreasing order. Thus, the

Q-statistic will not always produce good results.

Recently, Jha and Yadav [22] reported that the SVD is

more effective than the PCA for denoising the signals. In

this work, the SVD method is used to overcome the PCA

reconstruction problem. The SVD reconstruction is not

affected by the type of eigenvalues, because in the SVD,

the first singular value is always very large (for sensor data)

and others are very small. The fault detection metric is

applied to the difference between the training and the

testing residual, but not directly to the residual. The fault is

detected if the distance between the mean of the training

and the testing residual crosses the threshold value. The

Euclidean distance and the Mahalanobis distance are

applied to estimate the distance between two vectors or

matrices. If the variable variation is taken into account, the

Mahalanobis distance is better than the Euclidean distance.

Each sensor variation is approximately same in the fast

breeder test reactor (FBTR). So, the Euclidean distance is

proposed as a fault detection metric.

This paper is organised into five sections including the

present one. The next section presents the proposed SVD-

based method for sensor fault detection. The brief

description about the FBTR is given in section 3. Section 4

explains the PCA-based fault detection method using

Hotelling T2-statistic and Q-statistic. Results obtained with

the proposed method are compared with the existing PCA-

based method and elaborated in section 5. The final con-

clusion of the paper and recommendations for future

research work are given in section 6.

2. Proposed method

The SVD is an important tool in signal processing and

statistical analysis. An important feature of SVD is its

feature extraction capability. In this paper, extraction

property of SVD is applied to detect a sensor fault in NPP.

The proposed method consists of two steps: (i) residual

generation and (ii) residual evaluation. Residual is gener-

ated using the SVD tool by projecting the original data into
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a new base set. The deviation of approximate of data from

the original is the residual. The fault is detected by com-

puting the distance between training and test residual. The

Euclidean distance is imposed to calculate the distance

between two matrices. The block diagram of the proposed

method is given in figure 1.

2.1 Residual generation by SVD

SVD is an effective tool for feature extraction and com-

pression. It factorises the given matrix into a singular value

and singular vector matrices. Any matrix, X 2 Rm�n, where

m[ n, can be decomposed as

X ¼ URVT ð1Þ

where U is an m 9 m left singular vector, V is an n 9 n

right singular vector and R is an m 9 n diagonal matrix

with singular values in descending order i.e. k11 -
[ k22[ ���[ knn. The left and right singular vectors are

the eigenvectors of XXT and XTX, respectively. The sin-

gular vectors are orthogonal. If the R is written as

R ¼
k11 � � � 0

..

. . .
. ..

.

0 0 knn

2
64

3
75

¼
k11 � � � 0

..

. . .
. ..

.

0 � � � 0

2
64

3
75þ � � � þ

0 � � � 0

..

. . .
. ..

.

0 � � � knn

2
4

3
5 ð2Þ

then Eq. (1) can be re-written as

X ¼
Xn
i¼1

umikiiv
T
ni: ð3Þ

The SVD approach operates by projecting the original data

onto a new basis, which captures the original features. By

Eq. (3), the data can be reconstructed by selecting important

singular values. The goodness of the SVD-based fault

detection depends on an accurate selection of principal sin-

gular values. Over- and underestimation of the number of

singular values can initiate noise that disguises the important

features and omits important variations in the data, which

degrades the reconstruction by SVD. So, it is important to

choose appropriate principal singular values. Like PCA,

important singular values can be selected by the cumulative

percent variance [23], parallel analysis, sequential tests [24],

etc. In this paper, principal singular values are selected by

the cumulative percent variance that captured over 90% of

the cumulative sum of the eigenvalues.

If the number of principal singular value k is determined,

the dimension of the singular vectors and singular value

matrices are truncated into k dimension as Um�k 2
Rm�k;Vn�k 2 Rn�k and Rk�k 2 Rk�k.

The data can be reconstructed by multiplication of the

truncated matrices:

�Xm�n ¼ Um�k � Rk�k � VT
n�k: ð4Þ

Residual or error is generated by the difference of the

original data X and reconstructed data �X, as

E ¼ X � �Xj j: ð5Þ

2.2 Residual evaluations

The main objective of data reconstruction is to remove

noise or outlier and approximate to a normal data. A fault-

free data set is used to train the model, therefore, the ele-

ments of the training error matrix are very small (near to

zero). If the test data matrix has any anomaly (anomalies),

then there is a deviation between actual and reconstructed

data, and the elements of the test residual matrix are high

compared to the training residual matrix. The faults or

anomalies are detected by calculating element-wise dis-

tance between the test residual and the mean of the training

residual. If the distance exceeds the threshold value, then

there exists a fault. Statistical techniques are applied to

calculate the element-wise distance between two matrices.

The Euclidean distance [25] between the points

x = (x1, …, xp)
T and y = (y1, …, yp)

T in the p-dimensional

space is defined as

dED x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � y1ð Þ2þ � � � þ xp � yp

� �2q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞT x� yð Þ

q
ð6Þ

The Mahalanobis distance [25] between two points

x = (x1, …, xp)
T and y = (y1, …, yp)

T in the p-dimensional

space is defined as

dMD x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞTS�1 x� yð Þ

q
ð7Þ

where S is the covariance matrix of X.

Both the methods are efficient for calculating the dis-

tance between two points, but the Mahalanobis distance

employs covariance. If the covariance is one, then both are

identical, and if the covariance or variance varies from

variable to variable, then the Mahalanobis distance will be

effective. In FBTR, each sensor variation is approximately

the same, and hence the Euclidean distance is applied to

compute the distance between the test error matrix and the

mean of the training error matrix.Figure 1. SVD model for sensor fault detection.
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3. Fast breeder test reactor

The FBTR uses plutonium-uranium mixed carbide as fuel

and liquid sodium as a coolant. The entire system is

broadly grouped into three systems: primary sodium,

secondary sodium, and steam and water circuit. The

important components of the primary sodium system are

reactor assembly, two intermediate heat exchangers

(IHX), two sodium pumps and interconnecting piping.

The secondary system includes sodium pumps, re-hea-

ters, surge tanks, steam generator and connecting piping.

Heat generated in the fuel sub-assemblies is removed by

circulating liquid sodium through the reactor core. Two

centrifugal pumps are used to pump sodium through the

fuel sub-assemblies in the reactor core. Three thermo-

couples are used to measure the sodium temperature at

the inlet of the reactor core. The central fuel sub-

assembly contains four thermocouples (Tna000X,

Tna000Y, Tna000Z and Tna000W) at the outlet and the

rest of each 84 fuel sub-assemblies contain two ther-

mocouples (Tna00nX, Tna00nY, for n = 1 to 84) at the

outlet. Cromel-Alumel-type thermocouples are used to

measure the temperature of sodium at the inlet of the

reactor core and at the outlet of the fuel sub-assemblies.

Eddy current flow meters are used to measure the pri-

mary sodium flow. The schematic description of fast

breeder reactor is given in figure 2.

4. Fault detection using PCA-based method

The PCA is a widely used statistical tool for fault

detection [19, 20]. In PCA method, the fault is detected

by selecting the principal components that capture

maximum variations of data or by computing the inten-

sity of the error between data and its approximation. Let

X be a data set matrix with dimension m 9 n, where m is

the number of observation and n is the number of

variables. The PCA transforms the data matrix X into

optimal vector space that captures the maximum varia-

tion of the data as follows:

S ¼ XV̂ ð8Þ

where S ¼ s1; s2; . . .; sl½ � 2 Rm�l is called the score vector

or principal component vector and V̂ ¼ v1; v2; . . .; vl½ � 2
Rn�l are the eigenvectors (called the loading vectors) cor-

responding to l largest eigenvalues computed by singular

value decomposition from the covariance matrix

C ¼ URVT , of the data matrix after scaling to zero mean

and unit variance. Here U and V are the ortho-normal and R

is the diagonal matrix of eigenvalues in decreasing order

i.e. k11[ k22[ ���[ knn.
The data X can be expressed by the PCA approximation

method as

X ¼ �X þ E ¼ SV̂
T þ X I � V̂V̂

T
� �

ð9Þ

where �X is the approximation of X and E is the error. The

elements of the residual matrix of the fault-free data are

very small, but in the case of faulty data it is significantly

larger. An important task in PCA method is to select

l largest eigenvalues where the respective eigenvectors or

loading vectors find the significant direction of the variation

of the variables.

4.1 Fault detection metrics

In PCA-based fault detection method, Hotelling T2 statistic

and Q-statistic are applied as fault detection metrics. The

PCA model is trained by fault-free data and the fault

detection metric (threshold) is estimated. A brief descrip-

tion of Hotelling T2-statistics and Q-statistics are given

below.

4.1a Hotelling’s T2 statistics: The T2-statistic measures the

variations in the principal components of different obser-

vations in the time space as

T2 ¼ xTVR̂
�1
VTx ð10Þ

where R̂ is the diagonal matrix with eigenvalues. For each

new test data, the T2-statistic is calculated and a threshold,

Ta is calculated as

Ta ¼
l M � 1ð Þ
M � l

F l;M � l; að Þ; ð11Þ

where F(l, M - l, a) is the F-distribution with

(l, M - l) degrees of freedom with significance level a,
M is the number of observations of the training data and

l is the number of selected principal components. If the

T2-statistic exceeds Ta, then the fault is considered as

detected.
Figure 2. Schematic flow diagram of the main heat transport

system in FBTR.
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4.1b Q-statistics: The Q-statistic measures the square of

error not captured by principal components in approxima-

tion. It is defined as

Q ¼ Ek k2¼ x I � V̂V̂T
� ��� ���� ��2 ð12Þ

Whenever a new test data is available, the Q-statistic value

is estimated and it is compared to a threshold Qa defined as

Qa ¼ h1
cah0

ffiffiffiffiffiffiffi
2h2

p

h1
þ 1þ h2h0 h0 � 1ð Þ

h21

" # 1
h0

ð13Þ

where ca is the standard normal distribution with a signif-

icance level, hi and h0 are defined as follows:

hi ¼
XN
j¼lþ1

kij; h0 ¼ 1� 2h1h3
3h22

where N is the number of variables. If the Q-statistic

exceeds Qa, the fault is detected.

5. Result and discussion

This section presents the results for sensor fault detection in

the primary sodium circuit system of the nuclear reactor

using the proposed SVD method and the existing PCA

method. In the primary sodium system, 181 sensors are

used and the details are given in table 1. Chromel-Alumel

Thermocouples are used for measurement of inlet and

outlet sodium temperature and Eddy flow meter is used for

measurement of primary sodium flow into the reactor.

There are three inlet thermocouples that are located in east,

west and middle. The outlet centre fuel sub-assembly has

four thermocouples and the remaining 84 sub-assemblies

each have two thermocouples.

The results of the proposed method are compared with

those of the existing PCA method using the FBTR data

samples given in table 2. The sample data have only 14

rows and 5 columns. The actual data may be having 929

rows and 181 columns.

The SVD data approximation is closer to the original

than the PCA, because in the PCA, the selected principal

components, i.e. the principal eigenvectors, are unable to

capture all the important features of the data matrix. The

eigenvector corresponding to the smaller eigenvalues car-

ries some important features of the data. The approximation

is good if the first eigenvalue is large and the remaining are

very small when the eigenvalues are sorted in decreasing

order. The approximation is not closer to the original if the

eigenvalues are roughly equal. The eigenvalues of the pri-

mary sodium circuit’s sensor data are of the same order of

magnitude, as shown in figure 3. For the SVD method, the

first singular value is always very large for the sensor data,

and the remaining are negligible. So, the first singular

vector captured all the important features of the data

matrix. The SVD singular values of the primary sodium

circuit’s sensor data are shown in figure 4. The recon-

struction and residues generated by the SVD and the PCA

are shown in figures 5–8.

The Euclidean distance metric is effective for primary

sodium circuit sensor fault detection, because the operator

has the freedom to set the threshold value by the charac-

teristic of the sensors. In Q-statistic, the fault propagates

through the model error, the threshold value Qa is

Table 1. Different sensors in primary sodium circuit.

Sensor application

region Sensor name

No. of

sensors

Inlet sodium

temperature

Cromel-Alumel

thermocouple

3

Outlet sodium

temperature

Cromel-Alumel

thermocouple

172

Primary sodium flow Eddy current flow meter 6

Table 2. Sample data of the primary sodium system sensors in FBTR.

Date and time TNA000W TNA000X TNA000Y TNA000Z TNA001X

05-06-2012#09:53:41 185.67 184.92 184.04 185.04 184.04

05-06-2012#09:53:43 185.78 184.66 183.91 185.03 183.91

05-06-2012#09:53:45 185.81 184.69 184.19 185.19 183.94

05-06-2012#09:53:47 185.42 184.67 184.04 185.17 183.92

05-06-2012#09:53:49 185.67 184.42 183.92 185.04 183.92

05-06-2012#09:53:51 184.92 184.79 184.04 185.04 183.92

05-06-2012#09:53:53 185.79 184.17 184.04 185.17 183.92

05-06-2012#09:53:55 185.66 184.66 184.16 184.91 183.78

05-06-2012#09:53:57 185.79 184.79 184.04 185.17 183.92

05-06-2012#09:53:59 185.78 184.53 183.78 185.16 183.91

05-06-2012#09:54:01 185.53 184.66 184.03 185.16 183.91

05-06-2012#09:54:03 185.54 184.67 184.04 185.04 183.79

05-06-2012#09:54:05 185.79 184.67 183.42 185.17 183.92

05-06-2012#09:54:07 185.28 184.78 183.91 184.91 183.78
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dependent on the number of principal eigenvalues and

hence the operator has no freedom to set the threshold

value. The variation of T-statistic (Hotelling T2-statistic),

Q-statistic and the SVD-based Euclidean distance for the

same data are shown in figures 9–11. The T2-statistic is

unable to detect the actual fault, but raises some false

alarms. This is indicated by the red colour star symbol in
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Figure 3. Eigenvalues of the primary sodium circuit sensor data.
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Figure 10. Fault detection using the PCA and Q-statistic.

Figure 9. Fault detection using the PCA and T2-statistic.

Figure 11. Fault detection using the SVD and Euclidean

distance.
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figure 9. The Q-statistic is able to detect the actual fault

along with some false alarms as shown by the red star

symbol in figure 10. The SVD method along with the

Euclidean distance detects the actual fault without false

alarm.

6. Conclusion and future work

Online monitoring of the sensor’s physical condition can

avoid many problems associated with manual calibration of

sensors. The SVD model is developed for the detection of

sensor faults in nuclear power plants. SVD is a simple

linear algebraic factorisation method. SVD is used to gen-

erate the residual matrix by selecting few largest singular

values. The reconstruction matrix is closer to the original

data. The Euclidean distance is employed in residual dif-

ference space to detect the error length. If the error length

exceeds the threshold value, then a fault is detected. In a

dynamic process, it is very flexible to change the threshold

value. The proposed method will detect and identify the

faulty sensor sooner. The accuracy of the fault detection is

higher than all the other existing methods and will not

produce any false/spurious alarm.

There are some limitations in the reconstruction of the

data using the PCA and the SVD methods, and fault

detection using these methods. The following are recom-

mended for future work:

• The type of data for which the PCA eigenvalues are

roughly equal and the type of the data for which the

first eigenvalue is large and remaining are small should

be obtained.

• A method to set the threshold value for fault detection

from several variables with different variances using

the Mahalanobis distance needs to evolve.
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