

Chapter 6

Investigation Study of Bus Body Structure Analysis

T. Vinod Kumar^a, R. Muraliraja^a, S. Arunkumar^b, S. Ajith Arul Daniel ^c

^aAssociate Professor, Department of Mechanical Engineering, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai 600117, India

^bAssistant Professor, Department of Mechanical Engineering, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai 600117, India

* Corresponding Author: vinod.se@velsuniv.ac.in

Abstract

Buses are the foremost mode of road transportation. The design of the bus body depends mainly leading the performance constraint under various types of loading and operating circumstances besides those of the road conditions. The model analysis, linear static analysis and impact analysis of an articulated urban bus body, carried out with the Finite Elements Method. The purpose of this work is to simulate and forecast the structural response of the bus body in terms of stress, strain and displacement, under several loading and constraining conditions. Sensitivity analyses about FEM parameters have been run, in order to achieve an adequate trade-off between computational time and results accuracy. This work deals with the GFEM modeling, analyzing of important section of the bus body for the standing gravity load, acceleration, breaking load and for the impact case. Structural modeling is completed with the help of CATIA V5, single component is created in part workbench in CATIA V5, and this part is then converted to IGS file. Finite element modelling is completed in ANSYS 14.0. WORKBENCH using the IGS file as geometry, the element type used for meshing was 2D shell elements with QUAD4.

Keywords: CATIA, FEM, ANSYS, road transportation, chassis.

ISBN 978-819620988-9

9 788196 209889
www.srrbooks.in

1. Introduction

The bus body structure must be balanced in order to obtain the safety when the bus is running body must be sufficiently strong both the situation of supporting normal loads and accident loads. The bus body can be divided into three parts; the chassis and engine, structural body, interior and exterior parts. The chassis and engine are quite important. They must pass the standard test by domestic and international organization. The chassis consists of frame, which is a box type section and varies longitudinally as per the load and strength required for Body [1]. Numerous Stiffeners are also added at the locations where the effect of Bending is Maximum. The body comprises of six main components; the left frame side, the right frame side, the front frame side, the back frame side, the top frame side and the bottom frame side. The top frame side is sometime called “the roof frame side”. The bottom frame side is also called “the floor frame side”. The left and the right side are similar but the left side is normally composed of passenger door(s). On the other hand, the right side has two doors; the driver door and the emergency door. The sides are concerned to be critical parts and they must be strong. The static load response of simple structures, such as uniform beams, plates and cylindrical shells, may be obtained by solving their equations of motion. Practical structures consist of an assemblage of components of different types, namely beams, plates, shells and solids. In these situations it is impossible to obtain analytical solutions to the equations of motion. This difficulty is overcome by seeking some form of numerical solutions and finite element methods. The bus body manufacturing composes of several operation processes.

The parts need to be analytical tests by at least simulation or physical test. Torsion and bending tests are widely simulated by FE analysis. However, the strength of this design is affected by the manufacturing. For example the

ISBN 978-819620988-9

9 788196 209889
www.srrbooks.in

special type of welding such as MIG, TIG, and spot welding arc much better than the normal arc welding process. However, such manufacturing process is not concerned in this study [2-3]. The third part, the top frame or the roof frame is considered as the critical part that is needed to be a strength part in order to be ensured safety for the passengers. This part must be sufficiently strong. It must be supported by the total weight from different loads such as interior components, air conditioners passenger carrying loads even the aero dynamic load. Then, the back frame and the front frame are mostly supported and joined with the left and right sides as well as the roof frame and the floor frame. These two parts need to be both strong and beauty style [4].

2. Materials Used

2.1 *Structural Steel*

The main factors of selecting material especially for body is wide variety of characteristics such as thermal, chemical or mechanical resistance, ease of manufacture and durability. The material with these characteristics, Steel is the first choice [5]. The prime reason for using steel in the body structure is its inherent capability to absorb impact energy in a crash situation. The prime reason for using steel in the body structure is its inherent capability to absorb impact energy in a crash situation.

2.2 *Carbon fiber*

Carbon fibers or carbon fibers (alternatively CF, graphite fiber or graphite fiber) are fibers about 5 to 10 micrometers (0.00020–0.00039 in) in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages including high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion [6]. These properties have made carbon fiber very popular in aerospace, civil engineering, military, and motorsports, along with other competition sports.

ISBN 978-819620988-9

9 788196 209889
www.srrbooks.in

However, they are relatively expensive when compared with similar fibers, such as glass fibers or plastic fibers.

2.3 *Kevlar*

Kevlar is simply a super-strong plastic. The sounds unimpressive, remember that there are plastics-and there are plastics. There are literally hundreds of synthetic plastics made by polymerization (joining together long chain molecules) and they have widely different properties [7-8]. Kevlar's amazing properties are partly due to its internal structure (how its molecules are naturally arranged in regular, parallel lines) and partly due to the way it's made into fibers that are knitted tightly together.

3. Design of Bus Body Structure

There are some good reasons for using a CAD system to support the mechanical design function:

- To increase in the productivity.
- To get better the quality of the mechanical design.
- To uniform design standards. To create a manufacturing data base.
- To remove inaccuracies due to hand-copying of drawings and irregularity between drawings.

It is a document that includes the specifications for a part's production. Generally the part drawings are drawn to have a clear idea of the model to be produced. The part drawing of the entire frame is drawn with all the views in CATIA V5 R20. The components that are generated in part module are imported to assembly module and by using 'insert components' command and all these components are mated together to form the required assembly. The different views of assembly and the drawing generated in CATIA V5 R20 are as shown below.

ISBN 978-819620988-9

9 788196 209889
www.srrbooks.in

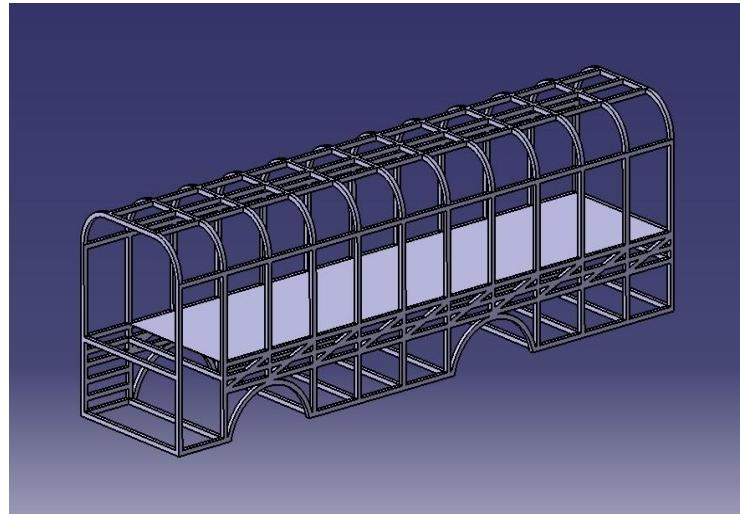


Figure. 1: Assembled view

4. Analysis of Bus Body Structure

In this work the static structural and modal analysis has been done on the bus body structure. The boundary condition for the static structural analysis is loads are applied at the tip of the tooth and all DOF condition at the top.

4.1 Loading calculation

Loading calculation for acceleration,

$1 \text{ km/hr} = 277.77 \text{ m/s}^2$

For $60 \text{ km/hr} = 60 \times 277.77 = 16666.7 \text{ mm/s}^2$

Remote displacement as 60 mm in Z-axis

ISBN 978-819620988-9

9 788196 209889
www.srrbooks.in

4.2 Analysis of Bus Body Structure

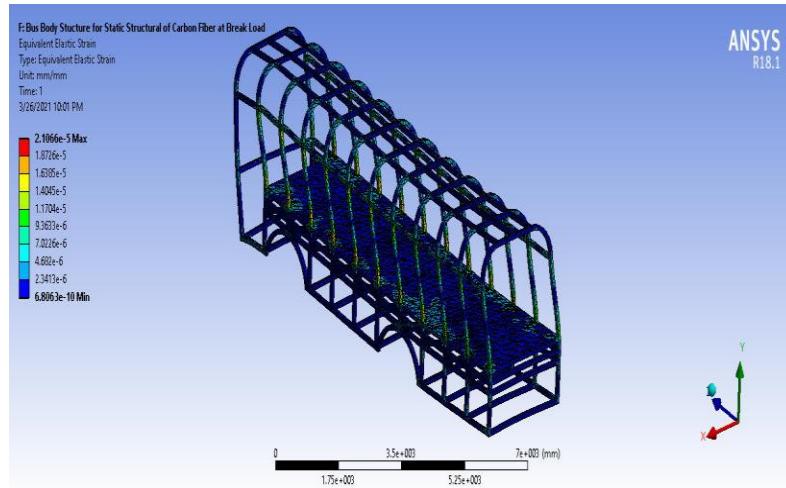


Figure. 2: Equivalent Stress at break Load

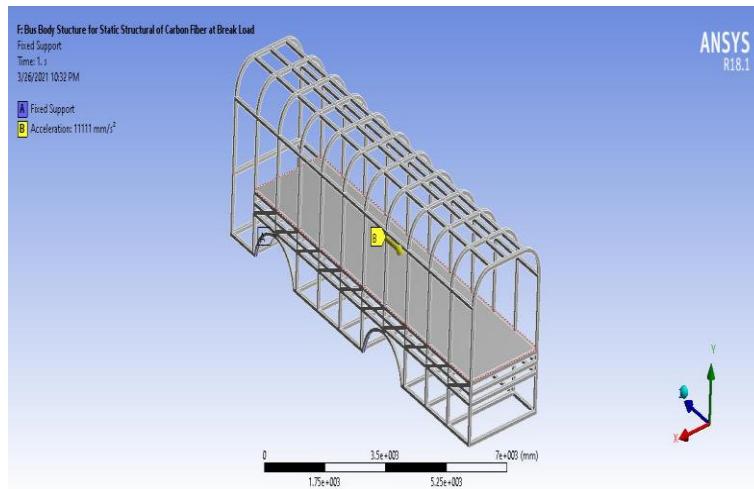


Figure. 3: Total Deformation at break Load

5. Conclusion

The design and analysis of the bus body structure presented in this project has demonstrated significant advancements in ensuring both functionality and safety. The meticulously planned design not only met the project's specific requirements but also incorporated innovative features that enhance passenger comfort and overall performance. The structural analysis results

ISBN 978-819620988-9

9 788196 209889
www.srrbooks.in

highlighted the structure's robustness, with even stress distribution and adequate load-bearing capacity, ensuring passenger safety and structural integrity. Complying with rigorous safety standards and regulations has been a cornerstone of this project, guaranteeing that the bus body structure not only meets but exceeds industry safety requirements. This research sets the stage for the development of safer, more efficient, and environmentally friendly bus body structures that can potentially revolutionize the public transportation sector.

References

- [1] Magnus G.H. Cruz, Alexandre Viecelli, "A methodology for replacement of convent Elsevier, pp.539-545, 2008.
- [2] J. Karliński, M. Ptak, P. Działak, E. Rusiński, "Strength analysis of bus superstructure according to Regulation No. 66 of UN/ECE", Archives of civil and Mechanical Engineering 14, Elsevier, pp.342- 353, 2014.
- [3] A. Gauchía, E. Olmeda, M. J. L. Boada, B. L. Boada and V. Díaz, "Methodology for bus structure torsion stiffness and natural vibration frequency prediction based on a dimensional analysis approach", International Journal of Automotive Technology, Vol. 15, No.3, pp. 451-461, 2014.
- [4] G. Zhang, X. Zhang, and B. Liu, "The Study of Bus Superstructure Strength Based on Rollover Test Using Body Sections", Advances in MSEC Vol. 2, AISC 129, Springer, pp.315-322, 2011.
- [5] H. S. Kim, Y. S. Hwang, H. S. Yoon, "Dynamic Stress Analysis of a Bus Systems", Annual Hyundai Motor Company Conference, Korea, 2009.
- [6] Sachin Thorat, G. Amba Prasad Rao, "Computational analysis of intercity bus with improved aesthetics and aerodynamic performance on Indian roads", International Journal of Advanced Engineering Technology, E-ISSN, pp.0976-3945, 2011.
- [7] S. Butdee, F. Vignat, "TRIZ method for light weight bus body structure design", Achievements in Material and Manufacturing Engineering, Vol 31, Issue 2, 2008.
- [8] Prasannapriya. Chinta, Dr. L. V. Venugopal Rao, "A New Design and Analysis of Bus Body Structure", IOSR Journal of Mechanical and Civil Engineering, e-ISSN: 2278-1684, P-ISSN: 2320-334X, Volume 11, Issue 5 Vol I, pp.39-47, 2014.

ISBN 978-819620988-9

9 788196 209889
www.srrbooks.in

EMERGING TECHNOLOGIES IN AUTOMOTIVE AND MECHANICAL SCIENCES

Volume III, 2023

Dr.S. MANIJAJ is working as an Associate Professor in the Department of Mechanical Engineering at Paavai Engineering College (Autonomous), Namakkal. He did his Doctor of Philosophy in Mechanical Engineering in the year 2021 from Anna University, Chennai, holds a Master's degree in CAD/CAM from Anna University, Chennai, since 2013, and a Bachelor's degree in Mechanical Engineering from Anna University, Chennai, in 2009. He is guiding four research scholars for the Ph.D. programme. He published more than 20 research articles in peer-reviewed journals. He attended 17 workshops and presented papers at 20 national and international conferences. He published one Indian design patent. He acts as a potential reviewer in many Scopus/WOS-indexed journals. Areas of interest are composite materials, advanced manufacturing processes, and optimisation.

Paavai Engineering College (Autonomous), Mechanical engineering department is steered by **Dr.A.P.SIVASUBRAMANIAM**. He has completed his graduation in Mechanical Engineering in 1990 from the Institution of Engineers, Kolkata. In 2004, he obtained his post-graduation degree at Annamalai University with the specialization of 'Thermal Power Engineering'. He has completed his Ph.D degree in the area of Heat Exchangers. He has been in the teaching fraternity for the past 18 years and has guided many innovative projects in the UG and PG streams. As the head of the largest department in the institution, he has contributed to the creation of new facilities for research and projects. He has always motivated students to achieve university ranks and get placed in reputed industries with continuous monitoring and counselling.

Dr.V. SAMPATHKUMAR did B.E. (Civil Engineering) in 1998 and M.E. (Urban Engineering) in the College of Engineering, Anna University, Guindy, Chennai, in 2001. He completed his doctoral degree from Sathyabama University, Chennai, in 2012. He has been working as a professor in the Department of Civil Engineering at Sathyabama Institute of Science and Technology since July 2004. He has more than thirteen years of teaching experience and thirteen years of industrial experience. He has guided many undergraduate and postgraduate student projects. Currently, he is guiding eight research scholars in the field of transportation, and he has produced one doctorate. He has published more than 35 research papers in reputed journals. He has presented more than 20 papers at national and international conferences. He serves as a reviewer in many listed journals. He has ten professional memberships and has received many performance awards.

Mr.P.PADMALOSAN has held the position of Assistant Professor at the Sathyabama Institute of Technology since the year 2018. The individual possesses a teaching background exceeding a duration of five years, during which he has provided guidance to numerous undergraduate students. He has authored over ten scholarly articles that have undergone rigorous evaluation by experts in the field and have been published in reputable academic journals.


SCIENTIFIC RESEARCH REPORTS

(A Book Publisher, approved by Govt. of India)

I Floor, S S Nagar, Chennai - 600 087,
Tamil Nadu, India.

editors@srrbooks.in, contact@srrbooks.in
www.srrbooks.in

ISBN 978-819620988-9

