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Abstract— The rise of cyber-physical systems and IoT 

centers have heightened the need to have intrusion detection 

systems (IDS) based on scalability, privacy-preservation, and 

explainability. Although models like CNNs and BiLSTMs work 

effectively as deep learning models, they can be difficult to 

interpret and can experience limitations associated with 

centralized data. In order to overcome these challenges, this 

work proposes FL-TSA-TabNet, a new federated intrusion 

detection model that incorporates Temporal Self-Attention into 

the interpretable TabNet architecture. The model uses a Dual-

Stage Hybrid Selector (DSHS) with a correlation-aware reliefF 

and SHAP-based ranking as the core feature of optimal feature 

relevance and non-redundancy. With federated learning, the 

model also allows decentralized training among the distributed 

nodes and data privacy. On the CSE-CIC-IDS2018 dataset, 

FL-TSA-TabNet performed with an accuracy of 97.83%, 

better than the traditional (Random Forest, XGBoost) and the 

hybrid deep models (CNN-GRU, ResNet-BiLSTM). It also 

exhibited excellent adversarial robustness, quick inference 

speed, and low model complexity, which makes it incredibly 

appropriate in edge deployment. This work sets a new 

benchmark in intrusion detection by fusing explainable 

learning, temporal modeling, and privacy-aware federated 

training, paving the way for next-generation IDS in smart 

networks and critical infrastructure environments.  

Keywords— Intrusion Detection, Federated Learning, 

TabNet, Temporal Self-Attention, Network Security, Feature 

Selection, Adversarial Robustness, Cybersecurity  

 

I. INTRODUCTION 

The rapid digitalization of the industries, cities, and 

critical infrastructure resulted in generating a large number 

of cyber-physical systems (CPS) and Internet of Things 

(IoT) devices. Along with the improvement in automation 

and intelligence, they increase the attack surface therefore 

making such interconnected networks very vulnerable to a 

variety of complex cyber threats [1]. Intrusion Detection 

Systems (IDS) are vital security tools that help prevent or 

identify unauthorized access to a system network, data 

breaches, and unusual activities before they can affect the 

integrity of the network. Conventional IDS schemes are 

inherently severely limiting in scalability, interpretability, 

and capability to work within data privacy requirements 

notably in distributed, heterogenous environments such as 

smart grids, healthcare, and industrial IoT systems [2].  

 

IDS tools can identify threats like malware, brute force 

attacks, or unauthorized access attempts by continuously 

analyzing incoming data and comparing it against known  

 

 

 

attack signatures or behavioral patterns [3] [4] [5]. An IDS 

system operates as either Network-based IDS (NIDS) or 

Host-based IDS (HIDS). With full network segment 

observation NIDS detects warning signals which may 

indicate threats coming through the network. Deploying an 

IDS represents a necessary practice in maintaining digital 

system integrity since the number of complex cyber threats 

continues to grow [6] [7].  
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Fig 1. Benefits of Intrusion Detection System (IDS) 

 

Being the first layer of defense in the contemporary 

cybersecurity systems, the Intrusion Detection Systems 

(IDS) allows all-important insight into the current 

functioning of the network allowing to accurately predict 

unauthorized access, infiltration of malware, and protocol 

abuse. Figure 1 demonstrates the various advantages of IDS, 

covering early warning on threats, compliance adaptation, 

incidents that take less time to respond to, and automatic 

enhancement of systems. Those capabilities become 

particularly crucial to cyber-physical and IoT-enabled 

environments where the ability to detect in real-time and 

ideally with low false alarms is critical. Nevertheless, in 

order to achieve greater potential benefits, the IDS needs to 

shift towards models that are accurate not just but also 

interpretable, scalable, and privacy-preserving, which is the 

challenge that traditional IDS frameworks cannot achieve. 

This architecture of FL-TSA-TabNet shall further facilitate 

all these fundamental advantages by combining temporal 

reasoning, distributed privacy-aware training, and 

explainable efficiency to the next generation of IDS models. 

 

J.Archana, 

Research Scholar, 

Department of Computer science,  

Vels Institute of Science Technologies and 

Advanced Studies (VISTAS), 

Pallavaram, Chennai, India. 

archanaartistryacademy@gmail.com 

 

Dr.S. Kamalakkannan, 

Professor, 

Department of Computer Applications, 

School of Computing Sciences, 

 Vels Institute of Science, Technology & 

Advanced Studies (VISTAS), 

Pallavaram, Chennai, India. 

 kannan.scs@vistas.ac.in 

Proceedings of the 4th International Conference on Innovative Mechanisms for Industry Applications (ICIMIA-2025)
DVD Part Number:CFP25K58-DVD; ISBN: 979-8-3315-5385-2

979-8-3315-5386-9/25/$31.00 ©2025 IEEE 1159



IDSs function as passive monitoring tools since they do 

not execute protective measures to stop attack incidents. 

These devices have limited capability to stop intruders 

independently therefore their effectiveness in threat 

mitigation is restricted to situations where they operate with 

firewall or Intrusion Prevention Systems but they can notify 

administrators [8] [9]. The use of signature-based IDS 

systems depends on recognized attack patterns that results in 

their inability to find newly developed or unidentified 

security threats (zero-day attacks). Although anomaly-based 

IDSs help address this issue they need time to learn and can 

produce inaccurate results during operation [10] [11].  

 

The traditional deep learning models, Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), and Long Short-Term Memory (LSTM) 

computational models have demonstrated effectiveness in 

detecting complicated intrusion patterns [12] [13]. However, 

they are fundamentally black boxed, interpretable, and 

generally depend on data aggregation in centralized data 

centers and would put a requirement on the systems privacy 

and compliance. In addition, they have difficulties in 

capturing both temporal dynamics in network traffic and 

context-aware feature selection at the same time, thus have 

limited flexibility in real-time settings and malicious 

environments. Deep learning models integrated with IDS 

has boosted IDS systems' effectiveness at uncovering 

sophisticated and constantly changing computer threats. The 

deep learning technology enables IDS to process extensive 

network traffic and system behavior dataset through which it 

discovers complex anomalies which rule-based systems 

would identify poorly [14]. Convolutional Neural Networks 

(CNN) combined with Recurrent Neural Networks (RNN) 

and Long Short-Term Memory (LSTM) networks excel at 

identifying complex attack patterns while recognizing zero-

day attacks [15]. 

 

To overcome such important gaps, the study offers FL-

TSA-TabNet or a Federated Temporal Self-Attentive 

Tabular Network that represents an authentic and 

transparent IDS framework. This research has four main 

contributions, including: 

 

• Model Innovation: FL-TSA-TabNet incorporates 

Temporal Self-Attention (TSA) into the architecture of 

TabNet, and allows to thoroughly model both tabular 

and temporal dependencies in network traffic data, 

which are critical to detection stealthy, time-varying 

cyber-attacks. 

 

• Explainable Feature Selection: A new Dual-Stage 

Hybrid Selector (DSHS) is proposed that integrates 

Correlation- Aware ReliefF and SHAP-based 

interpretability in order to select the most discriminative 

and not-redundant features, leading to improved model 

explainability and model overfitting. 

 

• Federated Learning Integration: As the framework 

derives the benefit of Federated Learning (FL), this 

strategy is used to provide decentralized training over 

distributed clients without connecting raw data to ensure 

user privacy and regulatory compliance with sensitive 

areas. 

 

• Performance and Robustness: The model is 

comprehensibly tested against the CSE-CIC-IDS2018 

dataset, yielding a classification accuracy of 97.83%-

beating the conventional ML and hybrid DL baselines-as 

well as showing added advantages in terms of 

adversarial resistance, reduced inference latency, and 

scalability to real-world use. 

 

In summary, the study introduces a first-of-a-kind IDS 

framework, FL-TSA-TabNet, which interconnects the 

communication gap among explainability, time series 

modeling, privacy protection, and real-time intrusion 

detection. The suggested solution can be considered 

especially applicable to the context of ensuring the security 

of critical infrastructure, as the degrees of interpretability, 

distributed learning, and security assurance are its primary 

concerns. 

 

II. RELATED WORKS 

Internet intrusions have grown more frequent thereby 

making privacy breaches worse with increased financial 

losses and unauthorized information transfers. Attackers use 

computer systems to infiltrate resources and sensitive 

information with the intention of acquiring business secrets 

as well as personal data to generate illegal profits. Current 

detection systems produce false alarms at the same time they 

operate slowly enough to allow system breaches to occur. 

This research develops a machine learning intrusion 

detection framework based on pre-processed CSE-CIC-IDS 

2018 and UNSW-NB15 datasets with ASmoT class 

balancing, M-Svd feature extraction and ONgO-optimized 

M-MultiSVM classifiers which reach 99.89% accuracy. 

 

Internet of Things (IoT) applications experience 

accelerated growth of security vulnerabilities that create 

severe risks for enterprise and industrial systems. The 

Industrial Internet of Things (IIoT) has many high-risk 

operational situations so secure sustainable system 

development becomes essential for preventing major 

disasters. The IIoT faces a significant threat to its security 

system because of complicated botnet attacks that can remain 

active for extended periods. The research develops 

AttackNet as a deep learning framework which employs an 

adaptive CNN-GRU architecture for detecting and 

classifying botnet attacks. AttackNet successfully detects 

botnet attacks with 99.75% accuracy while showing minimal 

loss of 0.0063 and proving its superior performance over 

existing methods by 3.2% on N_BaIoT dataset. 

 

Digital platforms experience system breakdowns and user 

data breaches because of the rising threats of network 

intrusion attacks which violate data confidentiality. Detection 

of accurate threats has become increasingly difficult because 

of the rising number of cases involving tampering and 

credential theft and unauthorized access. The detection 

system described in this research uses deep learning 

principles combined with chaotic optimization for its 

implementation. The system implements M-squared 
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normalization and Extended Synthetic Sampling technique 

for handling class imbalance followed by KPCA for feature 

extraction as well as Chaotic Honey Badger Optimization for 

feature selection. The system utilizes Dugat-LSTM to reach 

98.76% accuracy on TON-IoT and 99.65% accuracy on 

NSL-KDD. 

 

IoT devices experience rising security vulnerabilities 

which makes them vulnerable targets for cyber-attack 

attempts. Real-time detection through machine learning-

based intrusion detection systems utilizes feature reduction 

through selection and extraction to achieve improved 

performance. The research implements a TON-IoT dataset to 

assess both methods when classifying binary and multiclass 

attacks. Feature extraction increases monitoring systems' 

accuracy rates while making them more stable yet selection 

methods lead to increased efficiency in training operations 

and inference processes. An IDS system optimized by these 

methods achieves excellent results through high accuracy 

rates combined with F1-score metrics. 

 

The wireless technology powered by Wi-Fi connects 

diverse devices through Wireless Sensor Networks (WSNs) 

to enable scalable affordable monitoring capabilities within 

modern digital networks. The dependence on wireless 

systems continues to rise at the same rate as their 

susceptibility to cyber threats including unauthorized access, 

flooding, injection and impersonation attacks. This research 

develops a contemporary Network Intrusion Detection 

System (NIDS) specifically designed to work with wireless 

sensor networks for addressing these security threats. The 

system performs feature selection to reduce 154 original 

features into 13 while using a multiclass CNN classifier 

which results in 97% accuracy and nearly zero false alarm 

detections. 

 

Despite the substantial progress in IDS research, current 

solutions continue to suffer from critical limitations. 

Majority of deep learning models are accurate but 

uninterpretable and not transparent and these two attributes 

are key in regulated and mission-critical settings. Time-based 

dynamics, which are a hallmark of real world network traffic, 

are little exploited in models where data are viewed as fixed 

table-like inputs. In addition, issues on privacy limit the use 

of centralized IDS systems in distributed environments like 

the edge and IoT networks. Privacy-preserving federated IDS 

solutions as currently used do not pay much attention to 

strong feature selection and explainability issues, which 

leads to weak performance and low reliability. Such 

consistent gaps confirm the need to have a unified approach 

that provides time sensitivity, explainability, data privacy, 

and computational efficiency. Our proposed FL-TSA- 

TabNet framework fulfills this, with Temporal Self- 

Attention incorporated in an interpretable TabNet backbone, 

optimized with the Dual-Stage Hybrid Selector (DSHS) to 

provide the most relevant feature and developed under a 

federated learning paradigm. This holistic strategy presents a 

new and expandable route to intrusion detection in current 

cyber-physical frameworks, thus making the study more 

defensible of the current trend in the implementation of 

cyber-physical systems to enhance smart and secure network 

defense systems. 

 

III. PROPOSED METHODOLOGY 

Dataset Acquisition  

 

The CSE-CIC-IDS2018 dataset serves as a detailed real-

world intrusion detection dataset that both CIC and CSE 

created [21]. Realistic enterprise infrastructure gets 

represented by a network environment which generates 

scenarios of benign and malicious traffic under controlled 

conditions. The research period spans multiple days to 

collect different attack vectors from various system 

configurations with numerous user behavior patterns. The 

labeled traffic flows contain more than 80 features 

encompassing basic TCP/IP properties as well as content-

based features, time-based features and statistical flow 

characteristics which make them appropriate for developing 

advanced network intrusion detection system (NIDS) 

research. The CSE-CIC-IDS2018 dataset provides the basis 

for extraction of Brute Force attacks and Web attacks for 

use in the current study. Security hackers use exhausting 

password guessing methods as part of Brute Force attacks to 

penetrate SSH and FTP protocols. The attacks show their 

distinct features through multiple login efforts together with 

elevated number of connections while carrying very little 

data. Web attacks refer to malicious activities that target 

web applications whereby attackers use SQL injection and 

Cross-site Scripting (XSS) and URL directory traversal 

techniques to exploit web server vulnerabilities while 

attacking data integrity. Two threat perspectives cover 

application-layer attacks which serve as vital elements for 

developing evaluation methods for machine learning 

intrusion detection systems that focus on authentication 

processes together with web-based exploit routes.  

 

Data Preprocessing 

 

A systematic pipeline operates on acquired data to 

enhance its quality while ensuring compatibility for the 

learning model. The main difficulty in working with the 

CSE-CIC-IDS2018 dataset stems from the missing or 

damaged data points that affect features based on session-

level aggregation computations. Through the Iterative 

Imputer module available in the scikit-learn library we 

handle missing data resolution. The imputation model 

constructs relationships between each feature which 

contains missing values and multiple other components 

before using multivariate regression to automatically fill in 

statistically appropriate values. 

 

The continuous features of the dataset which consist of 

flow duration and packet sizes and inter-arrival times 

receive Z-score normalization after completing the 

imputation step. The standardization method ensures every 

numerical input features maintain mean value at zero and 

variance at one which prevents model training from being 

controlled by features with wide numerical ranges. All 

categorical features (including the protocol type such as 

TCP or UDP or ICMP) receive numerical encoding based 

on label encoding standards. Label encoding uses integer 

values for categories and maintains ordinal value 

connections that will be applied in later TabNet embedding. 
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In order to remedy the class imbalance problem of 

benign traffic abundance over attack types this work uses 

Adaptive Synthetic (ADASYN) sampling. ADASYN 

generates new minority class samples through interpolation 

between actual examples and their close neighbors by 

creating more synthetic instances for complex to learn 

minority groups. ADASYN surpasses standard 

oversampling techniques by targeting specific areas of 

feature space where data insufficiency occurs which results 

in better attack-type classifications.  

 

 
 

Fig 2. System Structure 
 

The architecture of the proposed model FL-TSA-TabNet 

is based on a well-defined system pipeline and integrates 

pre-processing, smart feature extraction, time-series 

analysis, and federated learning. Figure 2 shows the high 

level system structure where raw data are acquired in the 

distributed environments, and through a series of iterative 

imputation, normalization, encoding, and class balancing 

with ADASYN. The Dual-Stage Hybrid Selector (DSHS) 

component will then further filter the input space by using 

CARF and SHAP ranking systems to select relevant and 

non-redundant features. Such filtered features are fed into a 

Temporal Self-Attention (TSA) block that captures time 

dependency and then into the TabNet backbone that uses 

sparse and interpretable decision-making. Federated 

Learning coordinates decentralized training amongst the 

edge nodes which gives it the property of privacy, as raw 

data is never communicated, and where secure model 

aggregation strategies are employed. It is a modular design 

that guarantees that it is robust, explainable and scalable, 

which are important features that are required in modern 

IDS applications that are deployed in real-time. 

 

Feature Selection – Dual-Stage Hybrid Selector (DSHS) 

 

High-dimensional data demands efficient feature 

selection because it enables better model interpretation 

while decreasing overfitting and minimizing training time 

requirements. The Dual-Stage Hybrid Selector (DSHS) 

starts its operation with the filter-wrapper hybrid method 

Correlation-Aware ReliefF (CARF). The ReliefF algorithm 

initiates the stage by assessing how well each feature 

separates instances belonging to different classes while 

evaluating feature relevance. ReliefF applies K=10 for its K-

nearest neighbors to find features which perform well at 

distinguishing between classes within each local 

neighborhood space. 

 

ReliefF effectively discards redundant features but its 

discrimination power does not guarantee it removes features 

that are not truly important. Spearman rank correlation 

functions as an added filtering tool in CARF to resolve this 

problem. The Spearman correlation coefficient exceeding 

0.85 determines that features are highly redundant so those 

features get removed to control multicollinearity and 

promote learning stability. The combination of these two 

filtering steps achieves maximum relevance and non-

redundancy from the features. 

 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2 

𝑛(𝑛2 − 1)
                        (1) 

 

Where 𝑑𝑖 is the difference in ranks of feature pair 𝑖, and 

𝑛 is the number of observations. The second stage of DSHS 

uses SHAP-based rating to optimize the chosen feature 

subset. A LightGBM model trains on the CARF-reduced 

features followed by SHAP (SHapley Additive 

exPlanations) value estimation for every feature. Through 

SHAP values we obtain one standardized metric which 

evaluates marginal feature impact on model predictions 

within every data instance. The feature rankings occur 

through calculating average absolute SHAP values after 

which the model maintains the prominent features which 

represent 90% of total importance mass. The selection 

process incorporates statistical and model-derived insights 

to pick the most influential features which optimize the 

feature set for upcoming learning architecture development. 

 

Model Architecture – TSA-TabNet 

 

The proposed intrusion detection system employs TSA-

TabNet architecture which builds upon TabNet model by 

including TSA technology into the framework. TabNet 

functions excellently for intrusion detection systems that 

work with tabular data because it can execute sequential 
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attention-based feature selection processing. The system 

structure operates through a series of decision steps which 

utilize sparse feature masks produced by its attentive 

transformer component. During each step of decision-

making processes the developed masks select significant 

features which leads to both easier interpretation and 

decreased complexity levels. 

 

𝑀[𝑙] = 𝑆𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥(𝑃[𝑙] ⋅ 𝑎[𝑙])                         (2) 

 

Where 𝑀[𝑙] is the feature mask at decision step 𝑙, 𝑃[𝑙] is 

the prior importance of features, 𝑎[𝑙] is the attention vector, 

and 𝑆𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥  projects values into a sparse probability 

simplex. A Temporal Self-Attention block has been 

included before the TabNet input to detect temporal 

dependencies and sequential patterns in network sessions or 

flows. Standard Transformer encoder execution performs 

feature embedding processing with self-attention operations 

through which the model determines the significance of 

network sequence context values. Temporal encoding starts 

with sinusoidal positional embedding that derive from flow 

start times before feeding the information to the attention 

module. Track-oriented temporal self-attention blocks boost 

model performance by allowing it to identify attack 

development patterns across time and successive network 

relationships making it effective in detecting insidious 

threats moving slowly in contemporary networks. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉                 (3) 

 

Where 𝑄, 𝐾, 𝑉 are query, key and value matrices, and 𝑑𝑘 

is the dimension of the key. The TSA module delivers its 

output to the main TabNet architecture so feature selection 

together with decision processing becomes possible. The 

final outcome consists of aggregation between the series of 

classification predictions originating from each decision 

step. Stable gradient flow and regularization happen through 

dropout alongside batch normalization between layers. 

Multi-class probabilities which reflect different attack types 

are produced through the activation mechanism named 

softmax on the final layer. 

 

Model Optimization 

 

A reliable training strategy was developed to enhance 

TSA-TabNet model execution and its convergence 

capabilities. The AdamW optimizer serves as the training 

mechanism because it merges adaptive learning rate 

functionality from Adam with weight decay regularization 

that operates independently. The chosen method stops 

overfitting and boosts test data generalization capabilities in 

environments with high-dimensional features. 

 

The Cyclical Learning Rate scheduler aids both 

convergence speed and stops training from getting stuck by 

dynamically varying learning rate between boundaries 

across iterations. Through CLR both learning rate 

boundaries cycle across different training intervals the 

model can detect optimal learning areas while escaping local 

minima contingencies. The decision process of TabNet 

incorporates DropBlock regularization as one of its 

components. The mechanism of DropBlock differs from 

regular dropout by erasing adjacent parts of network maps 

which leads to both spatially sparse patterns and greater 

resistance to errors in feature input. The combined 

optimization techniques lead to efficient and stable robust 

training of TSA-TabNet architecture. 

 

Federated Learning Integration 

 

The proposed TSA-TabNet system extends its operation 

with Federated Learning (FL) since centralized intrusion 

detection challenges are most apparent when handling 

sensitive data from healthcare fields and IoT environments 

and critical infrastructure. FL provides decentralized 

training capabilities because it enables different edge 

devices or clients to conduct TSA-TabNet model training 

locally on their separate data partitions without requiring 

raw data transfers. The study utilizes CSE-CIC-IDS2018 

distributional simulation which partitions device types and 

attack scenarios to mimic actual distributed client 

performance. 

 

𝑤𝑡 = ∑
𝑛𝑘

𝑛
𝑤𝑡

𝑘

𝐾

𝑘=1

                             (4) 

 

Where 𝑤𝑡  is the global model weight at round 𝑡, 𝑤𝑡
𝑘  is 

the model weight from client 𝑘, 𝑛𝑘  is the sample size of 

client (1)𝑘, and 𝑛 = ∑ 𝑛𝑘
𝐾
𝑘=1  is the total sample size. The 

edge clients manage local training before forwarding 

encrypted versions of weight updates to their central 

aggregator system. FedAvg operates at the server to 

combine weighted local models from clients then transmit 

updated global information back to clients. The training 

procedure continues across multiple communication 

sessions until the models reach convergence. The model 

updates get differential privacy treatments by data 

protection regulations to ensure security standards. Each 

client adds random noise to their gradient data before 

sending information to conceal their specific patterns 

although the algorithm maintains accurate model training 

capacity. 

 

𝑔̃ = 𝑔𝑖 + 𝑁(0, 𝜎2)                             (5) 

 

Where 𝑔̃  is the noised gradient from client 𝑖, 𝑔𝑖  is the 

true gradient, and 𝑁(0, 𝜎2) is Gaussian noise with variance 

𝜎2. Federated learning integration enables TSA-TabNet to 

scale and protect privacy which makes it suitable for 

deployment in edge-based cyber-physical systems. FL when 

combined with TabNet’s sparse and interpretable learning 

architecture maintains distributed system efficiency and 

explainability alongside its operational capabilities. 

 

Algorithm: Federated TSA-TabNet Intrusion Detection 

Framework 

Input: CSE-CIC-IDS2018 dataset 𝐷 = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑛  clients 𝐾,  

    communication rounds 𝑅 
Output: Global trained model 𝑤∗ 

Step 1: Dataset Preparation 
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 Merge CSV logs 𝐷𝑑 → 𝐷 

 𝐷 = ⋃ 𝐷𝑘
𝐾
𝑘=1   // Clean and anonymize sessions 

Step 2: Preprocessing 

 For each client 𝑘 = 1 to 𝐾 

  Apply Iterative Imputation to 𝐷𝑘 

   𝑥̂𝑖
(𝑡)

= 𝐸[𝑥𝑖|𝑥−𝑖] 

  𝑍𝑖 =
𝑋𝑖−𝜇

𝜎
   // Z-score normalization 

  Label encoding for protocol fields 

  Apply ADASYN to balance classes in 𝐷𝑘 

   𝑥𝑠𝑦𝑛 = 𝑥𝑖 + 𝜆(𝑥𝑁𝑁 − 𝑥𝑖) 

 End For 

Step 3: Feature Selection (DSHS) 

 Stage 1: CARF Filtering 

  For each feature 𝐴 ∈ 𝐷 

   𝑊[𝐴] ← 𝑊[𝐴] + Δ𝑊(𝐴)   // Compute ReliefF weight 

  End For 

  𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
  // Spearman correlation 

 Stage 2: SHAP Ranking 

  𝜙𝑗 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
[𝑓(𝑆⋃{𝑗}) − 𝑓(𝑆)]𝑆⊆𝐹{𝑗}  

Step 4: TSA-TabNet Model Setup 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 

           // temporal self-attention 

 𝑀[𝑙} = 𝑆𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥(𝑃[𝑙] ⋅ 𝑎[𝑙]) // Sparsemax in TabNet 

 𝑦̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(𝑥))  // Final output 

Step 5: Federated Learning 

 For each round 𝑟 = 1 to 𝑅 

  For each client 𝑘 = 1 to 𝐾 (in parallel) 

   Receive 𝑤𝑟 from server 

   Train TSA-TabNet on 𝐷𝑘 for local epochs 𝐸: 

    𝐿𝑘 = − ∑ 𝑦𝑖 log(𝑦̂𝑖)
𝐶
𝑖=1  // Cross-entropy loss 

   Apply DropBlock for regularization 

    𝑔̃𝑘 = 𝑔𝑘 = 𝑁(0, 𝜎2) // Gaussian noise 

   Send 𝑤̃𝑘 to server 

  End For 

  𝑤𝑟+1 = ∑
𝑛𝑘

𝑛
⋅ 𝑤̃𝑘

𝐾
𝑘=`  

 End For 

Step 6: Evaluation & Interpretation 

 Computes metrics 

 Generate SHAP plots and TabNet masks 

 Evaluate under adversarial perturbation: 

  𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖 ⋅ 𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝑥, 𝑦)) 

Return: Final federated TSA-TabNet model 𝑤∗ 

End Algorithm 

 

IV. RESULTS AND DISCUSSION 

A high-performance computing system with Ubuntu 

22.04 OS executed the FL-TSA-TabNet model which was 

built using Python 3.10. The developers wrote the model 

architecture in PyTorch and PyTorch TabNet yet used 

Flower framework to simulate federated learning operations. 

The preprocessing activities along with feature selection 

routines used pandas, NumPy and the scikit-learn, 

LightGBM and SHAP libraries. The evaluation and 

visualization outputs were created through the combination 

of Matplotlib and Seaborn libraries. An NVIDIA RTX 3090 

GPU running at 24 GB memory enabled the acceleration of 

training operations. Various stages of training and validation 

along with federated aggregation received modular 

treatment to support scalability when running parallel 

operations across multiple nodes. The CSE-CIC-IDS2018 

dataset displays its traffic distribution through Figure 3 

which includes Bruteforce attack and Web attack.  

 

 
Fig 3. Traffic Distribution in CSE-CIC-IDS2018 Dataset 

 

The FL-TSA-TabNet approach implements a 

combination of temporal attention mechanisms with 

federated learning to achieve efficient intrusion detection at 

both an interpretable level and with privacy protection. 

Before the CSE-CIC-IDS2018 dataset receives 

preprocessing through the Dual-Stage Hybrid Selector 

(DSHS) optimization process the network traffic data retains 

the essential non-redundant features. The processed data 

passes into a Temporal Self-Attention (TSA) module that 

analyzes sequence patterns before it gets evaluated through 

the TabNet architecture that chooses important features for 

each decision step. The model benefits from this 

arrangement by monitoring time-conscious network-based 

attack indicators. The model relies on Federated Learning 

training because it protects data privacy between 

autonomous devices by letting clients work independently 

on local models then sharing encrypted parameters for 

unified aggregation. The unified strategy enables both 

excellent detection precision alongside secure protection of 

data information and system expansion capabilities. 

TABLE I.  COMPARATIVE PERFORMANCE EVALUATION 

Model Name 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

AUC-

ROC 

(%) 

Logistic 
Regression 

86.78 84.72 83.81 84.2 88.09 

Decision Tree 89.53 86.11 85.47 85.78 89.41 

Random Forest 91.67 88.94 89.21 89.06 92.17 

XGBoost 92.34 89.75 89.62 89.68 93.24 

TabTransformer 94.86 91.23 90.88 91 94.62 

BiLSTM 93.21 90.62 91.13 90.87 94.11 

CNN-LSTM 95.02 91.87 92.45 92.15 95.38 
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Hybrid CNN-
GRU 

96.38 93.46 93.87 93.62 96.12 

ResNet-

BiLSTM 
96.71 94.38 94.91 94.64 96.69 

FL-TSA-
TabNet 

(Proposed) 

97.83 95.62 96.17 95.9 98.01 

 

The performance comparison of the FL-TSA-TabNet 

method for intrusion detection exists in Table 1 and Figure 4 

against nine prevalent machine learning and deep learning 

frameworks. The proposed FL-TSA-TabNet model 

surpasses every existing intrusion detection method by 

reaching 97.83% accuracy together with 95.62% precision 

and 96.17% recall and 95.90% F1-score along with a 

distinguished AUC-ROC value of 98.01%.  

 

 
Fig 4. Comparative Performance of Intrusion Detection Models 

 

The accuracy rate of Traditional models including 

Decision Tree and Logistic Regression reaches 86.78% and 

89.53% respectively but the deep models ResNet-BiLSTM 

and Hybrid CNN-GRU achieve higher rates of 96.71% and 

96.38%. These results in Table 1 highlight FL-TSA-

TabNet's superior detection capability and robustness in 

real-time threat identification. 

TABLE II.  INFERENCE TIME COMPARISON 

Model Name Inference Time (ms) 

Logistic Regression 0.82 

Decision Tree 0.96 

Random Forest 1.38 

XGBoost 1.72 

TabTransformer 3.24 

BiLSTM 2.85 

CNN-LSTM 3.46 

ResNet-BiLSTM 3.87 

Hybrid CNN-GRU 3.56 

FL-TSA-TabNet (Proposed) 2.18 

 

The evaluation of inference time per sample through 

Table 2 and Figure 5 shows the computational speed 

necessary for real-time intrusion detection models. FL-TSA-

TabNet achieves 2.18 milliseconds in inference time 

maintaining excellent performance quality through its 

superior speed compared to CNN-LSTM (3.46 ms), ResNet-

BiLSTM (3.87 ms), and Hybrid CNN-GRU (3.56 ms). 

Logistic Regression achieves 0.82 ms inference time yet its 

performance falls below the accuracy range of Decision 

Trees at 0.96 ms. FL-TSA-TabNet creates an effective 

performance-to-latency balance which accommodates real-

time deployment needs in cybersecurity systems according 

to the findings in Table 2.  

 

 
Fig 5. Inference Time Comparison of Models 

 

FL-TSA-TabNet delivers superior performance in every 

evaluation criterion due to its dual operational advantage 

which combines both explainable feature detection with 

time-sensitive modeling techniques. TSA-TabNet introduces 

temporal self-attention processing before the TabNet 

structure to track time-based patterns while standard deep 

learning methods such as CNNs and BiLSTMs work with 

spatial or sequential features separately.  

TABLE III.  TRAINING TIME PER EPOCH (SECONDS) 

Model Name Training Time (s/epoch) 

Logistic Regression 1.5 

Decision Tree 2.1 

Random Forest 4.3 

XGBoost 5.8 

TabTransformer 18.2 

BiLSTM 22.4 

CNN-LSTM 24.1 

Hybrid CNN-GRU 23.7 

ResNet-BiLSTM 26.9 

FL-TSA-TabNet (Proposed) 19.3 

 

Model training time per epoch for each model appears in 

Table 3 and Figure 6 for evaluating computational 

requirements throughout the learning phase. Logistic 

Regression and Decision Tree models complete training in 

under 1.5 seconds and 2.1 seconds due to their fast 

execution times but Random Forest along with XGBoost 

needs more time to complete training processes. Deep 

learning-based approaches like BiLSTM (22.4 s), CNN-

LSTM (24.1 s), and ResNet-BiLSTM (26.9 s) demand 

significantly higher computation.  
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Fig 6. Training Time Per Epoch Comparison 

 

FL-TSA-TabNet runs each epoch in just 19.3 seconds 

despite performing as well as its counterpart hybrid deep 

models while being notably more efficient. FL-TSA-TabNet 

demonstrates practical deployment potential in real-world 

network environments because its training efficiency 

maintains a suitable match with its detection accuracy levels 

as presented in Table 3.  

 

 
Fig 7. Feature Correlation Matrix 

 

Figure 7 demonstrates simultaneous correlations that 

exist between important features of the CSE-CIC-IDS2018 

dataset. The strength of linear relationships between 

variables increases as correlation values approach 1 and this 

information helps in eliminating redundant features before 

preprocessing. Time-sensitive information about attack 

behavior evolution becomes accessible through this 

approach because attackers may employ stealthy multi-stage 

approaches. The TabNet framework uses sequential decision 

steps along with sparse feature masking so it selects 

appropriate features at each decision node which helps both 

accuracy and decision-making interpretability. DropBlock 

regularization, cyclical learning rates and Lookahead 

optimizer work together to improve training stability which 

produces reliable generalizations across different attack 

types while counteracting overfitting effects. 

TABLE IV.  MODEL COMPLEXITY COMPARISON 

Model Name 
Parameters 

(Millions) 

FLOPs 

(Giga) 

Logistic Regression 0.01 0.002 

Decision Tree 0.03 0.004 

Random Forest 0.8 0.05 

XGBoost 1.2 0.09 

TabTransformer 8.6 2.5 

BiLSTM 6.7 3.1 

CNN-LSTM 8.3 4.2 

Hybrid CNN-GRU 7.9 3.8 

ResNet-BiLSTM 10.5 5.4 

FL-TSA-TabNet (Proposed) 6.1 2.7 

 

Table 4 and Figure 8 presents comprehensive model 

complexity details through the evaluation of parameters (in 

millions) and floating point operations per second (FLOPs, 

in giga) metrics that determine computational requirements. 

The accuracy level of traditional models including Logistic 

Regression and Decision Tree stays low while their 

complexity remains minimal. CNN-LSTM and ResNet-

BiLSTM achieve the highest complexity numbers because 

of their multiple layers and sequence modelling restrictions.  

 

 
Fig 8. Model Complexity Comparison 

 

FL-TSA-TabNet represents a scalable solution because 

its framework has 6.1 million parameters and 2.7 GFLOPs 

despite high detection efficiency. Table 4 illustrates how 

FL-TSA-TabNet maintains high effectiveness while being 

more efficient than other deep models which enhances its 

capability to run on edge devices and resource-limited 

platforms.  

TABLE V.  DVERSARIAL ROBUSTNESS AGAINST FGSM & PGD 

ATTACKS 

Model Name 

Accuracy 

Drop (%) 

FGSM 

Accuracy 

Drop (%) 

PGD 

Logistic Regression 13.8 18.5 

Decision Tree 11.4 17.2 

Random Forest 10.2 15.7 

XGBoost 9.6 14.3 

TabTransformer 7.2 10.6 

BiLSTM 6.9 10.2 

CNN-LSTM 6.1 9.7 

Hybrid CNN-GRU 5.8 9.1 

ResNet-BiLSTM 5.4 8.6 

FL-TSA-TabNet (Proposed) 3.9 6.2 

 

Various intrusion detection models perform under Fast 

Gradient Sign Method (FGSM) and Projected Gradient 

Descent (PGD) attacks as examined in Table 5 and Figure 9. 
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Logistic Regression and Decision Tree exhibit maximum 

sensitivity to adversarial perturbations since they face 

accuracy decreases of 13.8% under FGSM and 18.5% under 

PGD while Decision Tree experiences 11.4% under FGSM 

and 17.2% under PGD. The Random Forest along with 

XGBoost and BiLSTM belong to the group of ensemble and 

deep learning models which demonstrate moderate attack 

resistance. Among all evaluated deep hybrid models 

ResNet-BiLSTM demonstrated better attack resilience by 

remaining more resistant to FGSM (5.4%) and PGD (8.6%) 

attacks while Hybrid CNN-GRU demonstrated similar 

results (5.8% FGSM and 9.1% PGD). The proposed FL-

TSA-TabNet achieves the greatest level of robustness 

against adversarial attacks through a 3.9% FGSM 

vulnerability and 6.2% PGD vulnerability. Table 5 

demonstrates how the resistance improvements of this 

model demonstrate its ability to generalize under attack 

conditions which results in dependable performance for 

adversarial cybersecurity environments.  

 

 
Fig 9. Adversarial Robustness Against FGSM and PGD Attacks 

 

Federated learning creates decentralized model training 

operations that protect privacy while improving detection 

capabilities across varied IoT and distributed cyber-physical 

system networks. A Dual-Stage Hybrid Selector (DSHS) 

finds the optimal input variables by blending statistical and 

model-devised importance metrics so it retains significant 

and unique features alone. Thankfully the model maintains 

strong detection performance while using fewer 

computational resources through this approach that shortens 

runtime execution times. These architectural decisions 

enable the model to achieve remarkable performance 

measurements which include 97.83% classification 

precision and 95.90% F1-score with 98.01% AUC-ROC 

value. This model demonstrates robustness against 

intentional attacks alongside minimal wrong detections 

which establishes real-time operational trustworthiness for 

contemporary security systems. The classification 

performance evaluation matrix presents outcomes for 

various attack categories simultaneously shown in Figure 

10. The developed model achieves great precision and recall 

levels across all categories while misidentifying a small 

number of difficult to detect classes primarily Infiltration 

and Botnet. 

 

 
Fig 10. Confusion Matrix for FL-TSA-TabNet 

TABLE VI.  COMPARATIVE ANALYSIS OF FL-TSA-TABNET WITH 

EXISTING IDS METHODOLOGIES 

Model / 

Approach 

Temporal 

Modeling 

Feature 

Selection 

Strategy 

Privacy 

Preservation 

Accuracy 

(%) 

CNN-
LSTM [12] 

LSTM 
Manual or 

None 
No 95.02 

Dugat-

LSTM [18] 
LSTM 

KPCA + 
CHA-

HBO 

No 96.76 

M-

MultiSVM 
[16] 

No 
ASmoT + 

M-Svd 
No 97.89 

FL-based 
IDS [8] 

No None Yes 95.64 

CNN-GRU 

[2] 
GRU 

Basic 

Filtering 
No 96.38 

ResNet-

BiLSTM 

[3] 

BiLSTM None No 96.71 

FL-TSA-

TabNet 

(Proposed) 

TSA 

Module 

Dual-Stage 
Hybrid 

Selector 

(DSHS) 

Federated 

Learning 
97.83 

 

Table 6 and Figure 11 shows a comparative report of 

FL-TSA-TabNet with the existing intrusion detection 

methodologies with respect to their temporal modeling, 

feature selection, privacy preservation, and classification 

accuracy. Such traditional models as CNN-LSTM and 

ResNet-BiLSTM utilize temporal features but have neither 

strong feature selection nor privacy-sensitive training. The 

cross-breed models, like Dugat-LSTM and M-MultiSVM, 

uses feature selection methods like KPCA and ASmoT with 

the advantage of being centralized.  
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Fig 11. Comparative Accuracy of IDS Models 

 

Although FL-based IDS is privacy preserving, it does 

not provide any temporal modeling or interpretability. FL-

TSA-TabNet integrates Temporal Self-Attention (TSA), a 

Dual-Stage Hybrid Selector (DSHS), and federated learning 

to an otherwise unseen extent, thus reaching an impressive 

97.83% accuracy mark and surpassing or at least equalling 

all the baselines in point of crucial criteria. 

 

V. CONCLUSION AND FUTURE SCOPE 

The presented framework FL-TSA-TabNet solves 

traditional detection system problems through its novel 

approach which incorporates TabNet architecture together 

with Temporal Self-Attention. The upgrade of TabNet with 

Temporal Self-Attention in its core identifies crucial 

features and discovers temporal connections inside network 

traffic data. The Dual-Stage Hybrid Selector (DSHS) 

implements ReliefF and SHAP analysis to create a new 

feature selection method which reduces redundancy and 

selects high-importance attributes for improved 

functionality. A decentralized model training 

implementation within federated learning protocols protects 

user data privacy and delivers strong global detection 

solutions. The proposed model performed excellently 

against state-of-the-art models in CSE-CIC-IDS2018 dataset 

evaluations demonstrating a classification accuracy at 

97.83% surpassing CNN-GRU (96.38%) and ResNet-

BiLSTM (96.71%). The operational readiness of real-time 

network systems benefits significantly from FL-TSA-

TabNet because it achieves quick inference processing 

together with better adversarial protection mechanisms and 

additional interpretability features. The model design fits 

perfectly into edge computing frameworks and cyber-

physical systems where data consolidation at a central 

location becomes impossible. Future modifications to the 

proposed framework should enable it to handle cross-dataset 

intrusion data while learning from different intrusion 

datasets including UNSW-NB15 or TON_IoT through 

transfer learning techniques or domain adaptation methods. 

There are promising advancements including blockchain-

based secure aggregation techniques and reinforcement 

learning agents which operate through adaptive threat 

mitigations. FL-TSA-TabNet represents a vital foundational 

element which combines explainable capabilities with data 

protection along with advanced prediction abilities for the 

development of advanced future-generation cybersecurity 

technologies. 
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