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ABSTRACT

The rapid expansion of internet-connected devices and the surge in digital data generation have
significantly increased the risk and complexity of Distributed Denial of Service (DDoS) attacks, posing
critical cybersecurity challenges. Traditional detection systems struggle to effectively analyze large-
scale, high-dimensional network data while maintaining accuracy and robustness. This research
addresses this gap by proposing a novel hybrid machine learning model tailored for DDoS attack
detection under the big data paradigm. The primary objective is to enhance detection accuracy,
scalability, and robustness against outliers through an improved feature engineering and classification
approach. The methodology incorporates a robust normalization process combining Median Absolute
Deviation (MAD) and quantile-based Tanh estimation to ensure data consistency and resilience to
anomalies. To manage large-scale data efficiently, the system leverages the MapReduce framework for
parallel processing, enabling scalable feature extraction that includes improved entropy-based metrics
and statistical descriptors. A hybrid classification model is developed by integrating an Improved
Support Vector Machine (ISVM) with Neural Networks, utilizing a novel Weighted Exponential Inverse
Laplacian kernel to capture complex nonlinear interactions. The proposed ISVM+NN hybrid model
achieves the highest detection accuracy of 0.927, significantly outperforming traditional methods such
as SVM (0.877), NN (0.858), and others in effectively identifying DDoS attacks.
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1. Introduction dynamic and varied nature of modern DDoS

The extensive use of internet-connected devices
and the rapid increase in digital data have dri-
ven substantial progress in worldwide commu-
nication and business. Alongside these benefits,
the digital revolution has introduced vulnerabil-
ities, prominently DDoS attacks (Afolabi &
Aburas, 2022; Ali et al.,, 2022). These attacks
inundate target systems with malicious data,
resulting in downtime that leads to financial
losses, reputational harm, and operational dis-
ruptions for affected organizations. With the
evolution of cyber adversaries, the urgency for
robust and adaptive detection mechanisms
becomes more pronounced. Detecting and miti-
gating DDoS attacks (Awan et al, 2021;
Khempetch & Wuttidittachotti, 2021) is challen-
ging due to the sheer volume and complexity of
real-time network data. Traditional methods like
rule-based and signature-based detection, effec-
tive in certain scenarios, struggle with the

attacks (Elsaeidy et al., 2021) - volumetric
attacks overwhelm the network bandwidth, pro-
tocol attacks exploit vulnerabilities, and applica-
tion layer attacks mimic legitimate user
behavior, evading conventional detection meth-
ods (Yu et al., 2021).

The advent of big data (Azmi et al., 2021;
Singhal et al., 2020) technologies has revolutio-
nized cybersecurity analytics, offering unparal-
leled opportunities to analyze massive datasets
in near real-time. In DDoS attack detection,
technologies like distributed storage systems
and parallel processing frameworks (e.g.,
MapReduce) play a pivotal role (Gumaste
et al., 2020). These tools enable efficient collec-
tion, storage, and analysis of large volumes of
data, thereby facilitating timely detection and
response to evolving threats (Chen et al., 2020;
Cheng et al., 2020). By leveraging scalable
infrastructure  and  advanced  analytics
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techniques, organizations can enhance their
ability to proactively detect and mitigate
DDoS attacks.

Traditional approaches to DDoS attack detec-
tion (Tan et al., 2020) primarily revolve around
ML (Seifousadati et al., 2021; Tuan et al., 2020)
and DL algorithms. ML algorithms (Shendi et al.,
2020), such as decision trees, k-nearest neigh-
bors, are valued for their ability to classify histor-
ical data. SVMs, for instance, excel in high-
dimensional space but may struggle with large-
scale datasets and non-linear relationships (Patil
et al., 2020; Sahoo et al, 2020). Existing
approaches on DDoS detection have limitations
like restricted scalability and worst robustness to
noise and outliers, specifically focused on large-
scale, heterogeneous network traffic (Adedeji
et al.,, 2023). Many conventional ML models
focused more on static and simplistic feature
sets which decline its function to represent the
modern attack’s dynamic behavior. Moreover,
traditional normalization approaches like min-
max or z-score were subtle to anomalies, which
leads to poor performance during pre-processing
(Mutholib et al., 2025). Classifiers such as exist-
ing SVMs and decision trees frequently face dif-
ficulties with random, high-dimensional patterns
in big data. These challenges motivate the need
for a hybrid model for efficient DDoS attack
detection. This research overcomes these draw-
backs by proposing a robust normalization
approach, scalable feature extraction by
MapReduce and a new hybrid classification
model (ISVM+NN) by WEIL kernel. This com-
prehensive system is developed to enhance
strength, detection accuracy and applicability to
big data environments. This paper introduces
a novel approach for DDoS attack detection
from a big data perspective, with the major con-
tributions given below:

e Proposing an improved normalization technique
that combines Tanh estimation and MAD to
improve resilience to outliers by transforming
the network traffic information into common
plane.

e Proposes an improved entropy-based feature,
in which the innovation lies in the computa-

tion of weight factors to enhance the discrimi-
native power of entropy features, thereby
improving feature relevance and detection
accuracy in DDoS attack detection.

e Introduces a Weighted Expo Inverse Laplacian
Kernel for SVM, termed here as ISVM, which
has an enhanced ability to capture complex
and non-linear feature relationships. The
ISVM is then combined with Neural
Networks (NN) to form a robust hybrid
model that significantly improves the accuracy
and reliability of DDoS attack detection. This
enhancement leads to more accurate identifi-
cation and classification of diverse DDoS
attack patterns.

The remainder of this paper is structured to
address the research objectives comprehensively.
Section 2 reviews existing literature and methodol-
ogies pertinent to DDoS attack detection. Section 3
outlines the methodology, encompassing data
acquisition, preprocessing techniques, advanced
feature extraction methods, and the hybrid SVM-
NN model architecture. Section 4 presents empiri-
cal results and discussions, evaluating the model’s
performance through rigorous experimentation
and comparison with benchmark datasets and
existing methods. Finally, Section 5 concludes
with insights derived from the proposed model.

2. Literature review

Saravanan and Balasubramanian (2024) has intro-
duced UASDAC, a scalable data pipeline designed
to detect DDoS traffic in real-time from IoT
devices amidst concept drift. The system included
an online network stream collector for data aggre-
gation, an analyzer with an unsupervised drift
detector, and a repository for subsequent analysis.
Utilizing big data technologies, UASDAC adapted
to concept drift using an efficient retraining tech-
nique. Evaluation with NSL-KDD and IoT23 data-
sets demonstrated UASDAC’s high accuracy in
identifying DDoS traffic, achieving 99.7% to
99.9% accuracy.

Alslman et al. (2024) have employed a DDoS
attack detection model using Apache Spark with
the CIC-DDOS2019 dataset. They employed RF



and XGBoost as foundational algorithms, inte-
grating them into a stacked ensemble model to
enhance detection accuracy. By leveraging
Apache Spark’s parallel processing capabilities,
the study significantly reduced training time
while achieving high accuracy (99.94%).
However, this approach necessitated increased
RAM usage, prompting recommendations for
hardware enhancements to optimize perfor-
mance. Comparative analyses have shown that
the model excels in both accuracy and efficiency
for detecting DDoS attacks compared to other
methods.

Alhasawi and Alghamdi (2024) has focused on
decentralized DDoS attack detection in IoT net-
works, a Federated Learning-based approach
named FL-DAD was introduced. FL-DAD utilized
CNN to analyze data locally, ensuring data privacy
without requiring central data collection. This
decentralized method aimed to address the chal-
lenges of traditional centralized detection
approaches in diverse IoT environments.
Evaluation using the CICIDS2017 dataset demon-
strated that FL-DAD surpassed traditional meth-
ods, showcasing federated learning’s potential to
enhance intrusion detection systems in large-scale
IoT networks by optimizing security and detection
efficiency.

Oyucu et al. (2023) have focused on DDoS
detection in SDN-based SCADA systems, and an
Ensemble Learning framework was proposed. This
framework utilized Decision Tree-based models to
accurately differentiate between normal network
traffic and DDoS attacks. It aimed to address cyber-
security concerns arising from the integration of
SDN technology with traditional SCADA systems
handling renewable energy sources. The research
involved creating and testing ensemble models
using data from a simulated experimental network
setup. By optimizing performance over feature
selection as well as tuning hyperparameters, the
study demonstrated improved accuracy and effec-
tiveness in DDoS$ attacks detection within SDN-
based SCADA structures.

Balasubramaniam et al. (2023) has proposed
DDoS attack detection in cloud computing, an
optimized approach was developed using the
GHLBO algorithm. This algorithm efficiently
trained a DSA to detect attacks. The method
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involved feature fusion using a DMN with an over-
lap coefficient as well as data augmentation
through oversampling. GHLBO was created by
integrating gradient descent and HLBO.
Evaluation using performance metrics such as
TNR (0.909), TPR (0.909) and testing accuracy
yielded values (0.917), representative of the effec-
tiveness of the suggested method in DDoS$ attack
detection in cloud environments.

Kumar et al. (2022) has proposed a distributed
Intrusion Detection System (IDS) using fog com-
puting to detect DDoS attacks in blockchain-
enabled IoT networks. This approach aimed to
mitigate challenges such as privacy, safety, and
single points of failure inherent in centralized IoT
architectures. Integrating blockchain technology
addressed these issues while enhancing the relia-
bility of IoT applications. ML methods, specifically
RF and optimized gradient tree boosting with
XGBoost, underwent training and evaluation on
distributed fog nodes utilizing the BoT-IoT dataset.
The evaluation output highlighted that XGBoost
showed strong performance in detecting binary
attacks, whereas RF performed better in scenarios
involving multiple types of attacks. Notably, RF
demonstrated quicker training as well as testing
times on spread fog nodes compared with
XGBoost, emphasizing its efficiency for IoT
deployments in real-world applications.

Akgun et al. (2022) has focused on cybersecurity,
a new intrusion detection model for DDoS attacks
based on deep learning was proposed. The model
incorporated preprocessing steps and utilized
DNN, CNN and LSTM for detection. The evalua-
tion process included testing multiple models on
the CIC-DDo0S2019 dataset, utilizing methods like
feature elimination, random subset selection, and
normalization. The CNN-based inception model
stood out with exceptional performance, achieving
99.99% accuracy for binary detection and 99.30%
for multiclass detection. Additionally, it demon-
strated efficient inference times across different
test data sizes compared to baseline models, under-
scoring its effectiveness in real-time applications.
Overall, the IDS system coupled with preproces-
sing methods outperformed existing studies in
intrusion detection effectiveness.

Najatimehr et al. (2022) have proposed a hybrid
machine learning approach for detecting



4 R.P AND S. KAMALAKKANNAN

unprecedented DDoS attacks. This method inte-
grated both supervised and unsupervised algo-
rithms to enhance detection capabilities beyond
recognized attack patterns. Initially, a clustering
algorithm segregated abnormal traffic from normal
data using flow-based characteristics.
Subsequently, a classification algorithm utilized
statistical measures to label these clusters. The
approach was evaluated using the CICIDS2017
dataset for training and testing on the newer
CICDDo0S2019 dataset. Findings indicated that
the Positive Likelihood Ratio (LR+) of the pro-
posed method was about 198% higher than that
of traditional machine learning classification algo-
rithms, demonstrating its effectiveness in detecting
previously unidentified malicious traffic.

Dasari and Devarakonda (2022) has focused
on detecting DDoS attacks using machine
learning classification algorithms. It utilized
the CIC-DDo0S2019 dataset, which encompasses
11 types of DDoS attacks across 87 features
each. Algorithms such as Logistic Regression,
DT, RF, AdaBoost, GB, KNN, and Naive Bayes
were employed to classify these attacks.
Assessment metrics were used to evaluate the
performance of each classifier. Findings
revealed that AdaBoost and Gradient Boost
achieved the highest classification accuracy,
followed by Logistic Regression, KNN, and
Naive Bayes. In contrast, DT and RF exhibited

lower classification effectiveness in this
context.
Chaudhari et al. (2024) has introduced

a DDoS attack detection model utilizing
swarm optimization-based feature selection
and the Random Forest classifier. By integrat-
ing a modified GWO algorithm with SGD for
feature selection, the model achieves high
accuracy in identifying attacks. Tested on the
CICIDS2017 dataset, the approach outperforms
existing methods, achieving up to 99.8% accu-
racy with a reduced feature set. This estab-
lished the efficiency of swarm optimization
techniques in improving the efficiency and
accuracy of DDoS detection systems.

Wang et al. (2024) have deployed, a unique
network architecture dubbed DDoS-MSCT is
proposed, which combines a transformer with
a multiscale convolutional neural network.

A local feature extraction module (LFEM) and
a global feature extraction module (GFEM)
make up the DDoS-MSCT block, which is
introduced by the DDoS-MSCT architecture.
In order to improve the receptive field and
simultaneously capture multiscale characteris-
tics, the LFEM wuses convolutional kernels of
various sizes in conjunction with dilated con-
volutions. However, in order to address global
features, the GFEM is used to capture long-
range dependencies.

Ullah et al. (2024) have suggested an intru-
sion detection system for imbalanced network
traffic (IDS-INT) that uses transformer-based
transfer learning. Initially, comprehensive
details about every kind of attack are obtained
via descriptions of network interactions, which
comprise host information, reference, attack
type, network nodes, etc. Second, using their
semantic anchors, the transformer-based trans-
fer learning approach is designed to learn pre-
cise feature representation. Third, to detect
minority attacks and balance anomalous traffic,
the  Synthetic = Minority = Oversampling
Technique (SMOTE) is used. Fourth, deep fea-
tures are extracted from balanced network traf-
fic using the Convolution Neural Network
(CNN) model. Lastly, the CNN-Long Short-
Term Memory (CNN-LSTM) model hybrid
technique is created to identify various attack
types from the deep characteristics. A thorough
review of current literature on DDoS attack
detection has identified various critical chal-
lenges and opportunities, as outlined in
Table 1.

2.1. Problem statement

Existing methodologies, including conventional
techniques such as statistical methods, ML
algorithms like RF (Dasari & Devarakonda,
2022; Kumar et al,, 2022), and big data frame-
works, exhibit strengths in achieving high
detection accuracy using advanced ML and
big data techniques such as ensemble learning,
federated learning (Alhasawi & Alghamdi,
2024), and DNNs (Akgun et al, 2022).
Traditional detection systems often struggle to
maintain accuracy and scalability when



Table 1. Features and challenges of existing systems.
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Performance
Author [Citation] Methodology Features Challenges Dataset used Metrics
Saravanan UASDAC Achieves high accuracy in identifying Further validation of the effectiveness Benchmark Accuracy range
and DDoS attacks under concept drift of UASDAC is necessary across dataset NSL- of 99.7% to
Balasubramanian scenarios using NSL-KDD and [0T23  a broader spectrum of diverse and KDD and the 99.9%.
(2024) datasets dynamic loT environments to latest loT
ensure its robustness. dataset
loT23
Alslman et al. (2024) RF, XGBoost To achieve strong DDoS attack Requires substantial RAM resources ~ CIC-DD0S2019  Accuracy of
detection performance, the due to Apache Spark’s intensive dataset (99.94%)
suggested ensemble model processing demands, potentially
combines the RF and XGBoost limiting scalability on resource-
algorithms, utilizing their constrained systems.
complementing advantages.
Alhasawi and CNN Protecting data privacy is achieved by May face challenges in coordinating  CICIDS2017 Accuracy rate is
Alghamdi (2024) processing information locally, and aggregating model updates dataset 96%

thereby eliminating the need for
centralised data collection.
Oyucu et al. (2023)  Decision Tree Optimises performance through
feature selection and

hyperparameter tuning

Balasubramaniam  GHLBO Enhances detection accuracy through
et al. (2023) DSA training and feature fusion
with a DMN.
Kumar et al. (2022) ML, RF and Integrates blockchain technology to
XGBoost enhance security and reliability in

loT applications

Akgun et al. (2022)  LSTM, CNN, DNN Demonstrates promising inference

times across numerous sizes of test

data related to baseline models,
indicating efficiency in real-time
detection scenarios

Najafimehr et al. ML Achieves significantly higher Positive
(2022) Likelihood Ratio (LR+) compared to
traditional ML classification
algorithms
Dasari and Logistic Provides a thorough evaluation of
Devarakonda Regression, multiple ML algorithms for DDoS
(2022) DT, RF, attack detection, offering insights
AdaBoost, GB, into performance across diverse
KNN, and attack scenarios.
Naive Bayes
Chaudhari et al. GWO Integrates SGD into the feature
(2024) selection process, improving the
model’s ability to identify critical
features for attack detection,
thereby improving overall
performance.
Wang et al. (2024)  DDoS-MSCT Achieving exceptionally high
detection accuracy
Ullah et al. (2024)  CNN-LSTM Improves detection accuracy using

transformer-based transfer learning
and SMOTE-enhanced CNN-LSTM
models.

across distributed loT devices,
potentially impacting detection
accuracy and efficiency.

Potential challenges in scaling and
adapting the ensemble learning
approach to diverse and dynamic
SCADA network environments

Potential complexity in implementing
and fine-tuning the GHLBO

Primary dataset

NSL-KDD,
UNSW-NB15

Accuracy rate of
95.2%,

99.76% accuracy
for

algorithm for optimal performance UNSWNB15,

across diverse cloud computing 98.43%

environments. accuracy for
CICIDS2017

May encounter challenges in scaling
and managing distributed fog
nodes effectively across large-scale
loT networks

Potential complexity and

BoT- dataset

CIC-DD0S2019

Accuracy is 96%

Accuracy is 98%

computational resources required dataset.
for training deep learning models
like CNN and LSTM on large-scale
datasets
May require complex parameter CICIDS2017 Accuracy is 96%
tuning and computational dataset
resources due to the hybrid nature
of the approach
Potential limitations include dataset  CICDD0S2019  Accuracy is 98%
representativeness and dataset
generalizability to real-world DDoS
attack scenarios.
May require additional computational loT DDoS Accuracy is 94%
resources and expertise for dataset

implementing and fine-tuning the
swarm optimisation algorithms
effectively.

Increased computational overhead

CIC-DD0S2019

Accuracy is 99%

and reduced efficiency in real-time dataset,
Due to complex attributes UNSW 99.21% Accuracy
and data imbalance issues. NB15, CIC-
IDS2017, and
NSL-KDD.

processing high-dimensional data and are par-
ticularly vulnerable to performance degrada-
tion due to noise, outliers, and evolving
attack patterns. Moreover, many existing
approaches cannot efficiently process and ana-

lyze massive volumes of data generated in real-
world networks, limiting their effectiveness in
big data contexts. Therefore, there is a critical
need for a robust, scalable, and intelligent
DDoS detection framework that can handle



6 R.P AND S. KAMALAKKANNAN

large-scale datasets, effectively model nonlinear
relationships, and maintain high detection
accuracy while minimizing false alarms.

3. Proposed DDoS attack detection model
under big data perspective

Proposing a DDoS attack detection model under
big data involves designing a system capable of
identifying this malicious attack in large-scale,
high-volume data environments. The proposed
work is outlined as follows:

¢ The initial step involves acquiring the neces-
sary data for developing and testing a DDoS
attack detection model.

e Subsequently, to ensure the quality and con-
sistency of the acquired data, improved nor-
malization techniques are implemented as
a part of the preprocessing phase.

e For big data handling, the MapReduce frame-

3.1.

raw attributes, advanced entropy-based mea-
sures tailored for big data environments, and
statistical descriptors aimed at capturing var-
ious aspects of network traffic dynamics.
Finally, a hybrid ML model is designed for
DDoS attack detection, which integrates the
strengths of ISVM algorithms and NN. SVMs
are chosen for their ability to classify complex
data patterns and anomalies effectively, while
NNs complement this by capturing nonlinear
relationships and dependencies within the
extracted features. By combining these
approaches, the goal is to enhance the model’s
detection accuracy, sensitivity, which proves
the robustness against evolving DDoS tactics.
Figure 1 illustrates the entire process of detect-
ing DDoS attacks.

Data acquisition

work is used, where the feature extraction pro-  In this paper, data acquisition is the initial.
cess is performed. Features extracted include According to this work, benchmark datasets D is

Data Acquisition,
D >

Preprocessing Via Improved
Normalization

~

Map Reduce Framework

| Feature extraction

Raw
Features

Improved Statistical
Entropy Features

l Extracted Features

| Attack Detection |

yai Y
>
Output

Figure 1. Overall process of this proposed model.




considered. This dataset is pivotal for training and
validating the efficacy of the detection model.

3.2. Preprocessing via improved normalization

The preprocessing phase is essential for preparing
the data effectively for DDoS attack detection. It
includes various steps focused on enhancing the
data quality before inputting it into the detection
model. This phase ensures that the input data, D is
cleaned, normalized, and formatted to facilitate
accurate detection of anomalous patterns indica-
tive of DDoS attacks. This work proposes an
improved normalization method for preprocessing
the input data.

The conventional data normalization process
often employs Min-Max normalization (Khalifa
et al., 2013), a simple yet widely used method to
scale data within a fixed range, typically [0, 1]. Eq.
(1) defines the Min-Max normalization formula.
where, Dy signifies the raw data, Max(D) and Min
(D) denotes the maximum and minimum values of
the data, D, respectively.

v Dg— Min(D)
k™ Max(D) — Min(D)

(1)

Min-Max normalization is straightforward but sen-
sitive to outliers, which can skew normalized
values. It also lacks robustness in handling varied
data distributions, potentially reducing its effec-
tiveness in accurately representing complex data-
sets. Therefore, while easy to implement, its
limitations should be considered when choosing
normalization methods for data analysis. To over-
come the drawbacks of Min-Max normalization, an
advanced approach leveraging MAD (Khalifa et al.,
2013) and adaptive scaling techniques is proposed.

MAD = median(|Dy — median|) (2)

The improved normalization (Siddiqi & Pak, 2021)
method incorporates MAD and a modified tanh
function for enhanced robustness of the model by
using Eq. (3). Further normalization to a [0, 1]
range is achieved by adjusting (D} )/ based on
quartiles as per Eq. (4). where Q;(D}') and
Qs (DQ’ /) denotes the 25" and 75" quartiles of ij'.
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By effectively scaling and adjusting data, these
techniques optimize the detection of anomalies,
ensuring that both normal and anomalous patterns
are distinguished more accurately. Finally, the pre-
processed data is signified as D”.

3.3. Feature extraction under big data perspective

In this work, Map Reduce framework is used to
handle the bigdata, which includes the process of
feature extraction from the preprocessed data, D"
under the mapper and reducer phases.

3.3.1. MapReduce framework

The MapReduce paradigm is employed to manage
the voluminous preprocessed data effectively. This
framework divides the preprocessed dataset into
discrete mapper phases. Each mapper phase under-
takes the extraction of essential features crucial for
DDoS attack detection. These features encompass
a spectrum including raw features, improved
entropy-based features, and statistical features.
The scalable and parallel processing of large-scale
network data, making the system suitable for real-
time DDoS detection under big data constraints.
Figure 2 depicts the MapReduce framework model.

3.3.1.1. Mapper phase. In the initial stage of the
MapReduce workflow, the preprocessed data D" is
distributed across multiple mapper tasks. Each
mapper is assigned a subset of the data, tasked
with extracting specific types of features like raw
features, improved entropy-based features and sta-
tistical features, which are explained as follows:

3.3.1.2. Raw features Fp. These features capture
fundamental metrics derived directly from input
data, D

3.3.1.3. Improved entropy-based features Fig.
Improved entropy calculations are applied to cap-
ture the information content and patterns within



8 R.P AND S. KAMALAKKANNAN

‘ Preprocessed Data, D?

v

v

Mapper Mapper Mapper
Raw Improved Raw Improved Raw Improved
features Entropy features Entropy features Entropy
| Statistical features | | statistial features | | statistical features
= \ o— ™=

Reducer

F

Reducer

E

Reducer

A

y A 4

Final Result (Combined Feature set), Fc

3

Figure 2. Representation of MapReduce framework.

the data subsets more accurately. This advanced
approach mitigates the limitations of conventional
entropy methods, ensuring robust feature repre-
sentation suitable for anomaly detection in com-
plex datasets.

The conventional approach to entropy calcula-
tion, represented by Deng entropy (Cui et al,
2019), is given by Eq. (5), where m denotes the
mass function defined over the frame of discern-
ment Xand A represents a focal element of m.

m(A)

A1 (5)

E(m) = — Z m(A)log,

ACX

Conventional entropy methods, while useful for
quantifying information uncertainty, face signifi-
cant limitations in anomaly detection. They typi-
cally require discretization or binary representation

of continuous variables, which can introduce inac-
curacies and bias in entropy estimation. The dis-
crete nature of entropy calculations may overlook
subtle patterns or fluctuations in data, impacting
the detection model’s sensitivity to anomalous
behaviors. Therefore, while entropy provides
insights into data complexity, its application in
anomaly detection contexts must consider these
constraints to ensure accurate and effective detec-
tion of anomalies in diverse datasets.

To overcome the drawbacks of conventional
entropy methods, an improved entropy-based fea-
ture (Ouyang et al., 2013) is proposed as per Eq.
(6). where H signifies the entropy value adjusted
using weights w; and w, to amplify the discrimi-
native power of entropy-based features. w; and w,
are the weighting factors computed based on the
entropy value. By using Eq. (7) and Eq. (8) are



used to enhance the feature relevance and discri-
minative capability. The enhanced entropy Hjis
calculated as per Eq. (9). The parameter b and
e value is taken as 2 and 10, respectively p(x;)
denote the probability that a state x;
occurs, m and denotes the mass function defined
on the frame of discernment.

(1-Hw +H-w,, H<l1 (6)

Improved Entropy = {O, H=1

T (7)
> (1 )
e IO

H; = |:Zm(A)log2 {m(*‘) +P(xi)10gbp(x,-)} _e%} )

< 22141 — 1)

The improved entropy method offers several
advantages over traditional approaches. By enhan-
cing the discriminative power through a more com-
prehensive consideration of subset relationships, it
effectively filters out the irrelevant fluctuations and
disturbances while emphasizing significant patterns
in the data. Moreover, it builds upon the founda-
tional benefits of Deng entropy while addressing
limitations associated with continuous variables,
thereby improving the accuracy and reliability of
feature extraction for anomaly detection tasks. This
advancement ensures a more robust approach to
identifying anomalies in complex datasets.

3.3.1.4. Statistical features, Fs. Additionally, statis-
tical features (Toptas & Hanbay, 2021) such as
mean, median, and standard deviation are com-
puted within the mapper phase. These metrics pro-
vide insights into the distribution and variability of
data points, thereby enriching the feature set uti-
lized in DDoS attack detection.

3.3.1.5. Mean. The mean, or average, is a measure
of central tendency that provides insight into the
typical value of a dataset. Within each mapper
phase, the mean is computed by adding all data
points x; and dividing by the total number n of data
points using Eq. (10). This calculation is performed
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independently by each mapper on its subset of the
preprocessed data. The mean helps in understand-
ing the overall trend or baseline behavior of the
network traffic characteristics.

1 n
Mean = — E X; (10)
n4
i=1

3.3.1.6. Median. The median represents the mid-
dle value of a dataset when sorted in either ascend-
ing or descending order. In the mapper phase, each
mapper sorts its portion of data and determines the
median based on its subset’s size. For an odd num-
ber of data points n, the median M is the middle
element. For an even number of data points #, the
median M indicates the average of the two middle
elements. Computing the median in this distribu-
ted manner ensures robustness against extreme
values and enhances the model’s resilience to
anomalies typical of DDoS attacks.

3.3.1.7. Standard Deviation. It quantifies the dis-
persion of data points from the mean. It quantifies
the amount of variation or spread within a dataset.
In the mapper phase, each mapper calculates the
standard deviation for its subset of data points
using Eq. (11).

1 n
Standard Deviation = \/— E (x; — Mean)®
n <
i=1

(11)

Here x; are the individual data points, Mean is the
average is calculated earlier, and » indicates the
total number of data points. This metric provides
critical insights into the data’s volatility and can
help detect unusual patterns that might signify
DDoS attacks.

Therefore, the total features extracted in the
mapper phase are represented as F = [Fy Fip Fs).

3.3.1.8. Shuffling to reducer phase. Upon comple-
tion of the mapper tasks, intermediate key-value
pairs are shuffled and transferred to the reducer
phase based on key similarity. This data shuffling
process consolidates related information across all
mappers, preparing it for further aggregation and
analysis in subsequent stages.
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3.3.1.9. Reducer phase. In the Reduce phase, the
framework aggregates and consolidates the inter-
mediate outputs from all mappers. This phase
involves: The Reducer tasks merge and organize
the extracted features from different mappers.
Features, F across various categories (raw, entropy-
based, statistical) are combined to create a unified
set of comprehensive features, Fc.

3.3.1.10. Final output. The final output of the
Reduce phase is a cohesive collection of features
derived from the preprocessed data. These features
F¢ are now prepared for subsequent stages of ana-
lysis and detection, such as classification using the
hybrid SVM and NN model.

The application of the MapReduce framework in
the feature extraction phase for DDoS attack detec-
tion ensures efficient handling and processing of
vast amounts of network traffic data. By leveraging
distributed computing capabilities and parallel
processing, MapReduce enables comprehensive
feature extraction necessary for accurate detection
of anomalous network behavior indicative of DDoS
attacks. This approach not only enhances detection
accuracy but also supports the scalability and real-
time responsiveness required in modern network
security applications.

3.3.2. The procedure of MapReduce framework with
an example

Considering the representation of input data as
“case_001,” which includes feature vectors in
a time series sequence, each of which represents
the features at a particular time step. Here, the
MapReduce framework is demonstrated with the
example that follows.

Step 1: Consider the input with three-time steps
as case_001: [0.998, 0.997], [0.625, 0.117] [0.370,
0.997].

Step 2: Apply the mapper function, then the
obtained output is (case_001, [0.998, 0.997]);
(case_001, [0.625, 0.117]); (case_001, [0.370,
0.997]).

Step 3: After the generation of key-value pairs,
the shuffle and sort function take place. Then, the
obtained output is [“case_001"— [0.998, 0.997],
[0.625, 0.117], [0.370, 0.997].

Step 4: Then the reducer phase receives a list of
feature vectors for the key “case_001” and

consolidates the data to produce the final result.
Here, the reducer phase receives input as [0.998,
0.997], [0.625, 0.117], [0.370, 0.997]. Then, the
resultant output of the reducer phase is
(“case_001,” [0.998, 0.997], [0.625, 0.117], [0.370,
0.997]).

Finally, this kind of feature sequence is given as
input to the ISVM and NN classifiers. The output
of the model is a multi-class label (0, 1, or 2), where
in Dataset 1, labels represent benign, FTP brute-
force, and SSH brute-force attacks, respectively,
and in Dataset 2, they indicate benign, LOIC-
UDP, and HOIC DDoS attacks. This integrated
approach ensures accurate, scalable, and robust
detection of diverse DDoS threats in real-time net-
work scenarios. Figure 3 illustrates the workflow of
the MapReduce framework using mathematical
examples.

3.4. Attack detection phase

The proposed hybrid detection model integrates
the ISVM with an NN. The model architecture
involves each classifier independently processing
input data F¢ and generating classification scores.
These scores are averaged to form the final decision
on the presence of a DDoS attack, aiming to miti-
gate bias and variance and thereby improve the
system’s robustness.

The hybrid model categorizes instances into
three classes based on the specific dataset used for
training and validation. For example, in Dataset 1,
Class 0 signifies benign (normal) network traffic,
Class 1 indicates FTP Brute Force attacks, and
Class 2 denotes SSH Brute Force attacks. In
Dataset 2, Class 0 represents benign traffic, Class
1 signifies DDOS attack LOIC-UDP, and Class 2
denotes DDOS attack HOIC. These class labels
provide critical insights for network administrators
and security analysts to understand detected activ-
ities and respond effectively to potential threats.
This approach enables tailored responses based
on the nature and severity of detected network
anomalies.

3.4.1. Improved SVM classifier
The input data to the improved SVM is the
extracted features Fc. SVMs (Jiang et al.,, 2007)
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are versatile in employing kernels. They operate in
a higher-dimensional feature space, aiming to
minimize structural risk by identifying
a hyperplane with the largest margin between
classes. This hyperplane is crucial for effectively
separating different classes of data, particularly in
scenarios where the feature space is non-linearly
separable. The choice of kernel function signifi-
cantly influences the SVM’s classification perfor-
mance. It enhances classification accuracy and
generalization by incorporating a custom kernel
(WEIL) that captures complex, non-linear rela-
tionships in network traffic data. The decision
function for the conventional SVM is expressed
in Eq. (12).

!
f(x) =) aiK(Xi, Fc) + b (12)
i=1

Where «; denotes the coefficients determined dur-
ing the training phase, y; represents the class labels
corresponding to the support vectors X;, K(X;, Fc)
denotes the kernel function that computes the
similarity between the support vectors X; and the
input feature F, band represents the bias term.

However, despite its strengths, the conventional
SVM has several drawbacks. Such as the traditional
SVM kernel K(X;, Fc) = (D(X;) + O(F¢)) is sym-
metric and satisfies Mercer’s condition, and treats
all input features equally. This symmetric treat-
ment may ignore sequential or contextual informa-
tion embedded in the data, which is crucial for
certain applications. Also, it may struggle to cap-
ture complex relationships between variables in
high-dimensional spaces. This limitation can affect
its ability to generalize well to unseen data and
could potentially reduce classification accuracy in
intricate data distributions.

To address these limitations, an Improved SVM
classifier is proposed in this work. The Improved
SVM incorporates a novel kernel function known
as the Weighted Expo Inverse Laplacian kernel,
designed to enhance the SVM’s performance in
capturing non-linear relationships between fea-
tures and target variables. The Weighted Expo
Inverse Laplacian kernel better focuses on the
most informative portions of the data by taking
into consideration the variable significance of

each feature, in contrast to typical kernels that
treat all features equally. Because it can improve
the precision and stability of machine learning
models in big data settings, it is suitable for large-
scale, real-time cybersecurity applications.

The proposed kernel function (Gaye et al., 2021)
K(Xi, Fc),,,, is defined as per Eq. (13) to Eq. (15),
where o represents a parameter controlling the
smoothness of the kernel, f and represents
a parameter that adjusts the contribution of each
feature, which is expressed in Eq. (16).

_ e(*l\’iﬁ:c\l) n 1

K(X;, Fc)new W (13)
e [
*I\Xchll) (*I\XchH)
e< 207 xe\ o +1
K(Xi7FC)new = (_Hxi_FCH) (14)
e o
[Ixi-Fe|(-1-20) 41
e 20
K(XiJFC)new = (_HXI'_FCH) *ﬁ (15)
e [

Where, 8 represents a feature-wise weighting para-
meter (i.e., each input feature gets its own adaptive
weight). Its main role is to modulate the kernel’s
sensitivity to variations across different features. It
allows some dimensions to contribute more to

similarity computation based on statistical
importance.
Xi X;
g | LoD X (16)
> exp(X;) |Xi| +1

The performance the kernel functions such as
Laplacian, Exponential, RBF, and the suggested
Weighted Exponential Inverse Laplacian kernel
functions under varying the input Xin the range
X — —10, 10, is visually represented in Figure 4. By
providing smoother, more dependable similarity
scores for distant data points and effectively balan-
cing decay, the proposed Weighted Exponential
Inverse Laplacian kernel function outperforms
other kernel functions in managing outliers and
detecting long-range feature dependencies in com-
plex data settings. It also helps to ensure that the
detection process stays effective even with the large
amount of input data.
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Figure 4. Comparison of kernel functions.

The Improved SVM, leveraging the Weighted
Expo Inverse Laplacian kernel, brings several
advantages over conventional SVM methods.
This kernel enhances the SVM’s ability to model
intricate non-linear relationships between fea-
tures and target variables more effectively. This
capability is crucial for improving detection accu-
racy, particularly in scenarios involving complex
data patterns. Moreover, the improved SVM ker-
nel contributes to enhanced generalization and
accuracy by effectively fitting the training data
and mapping data points into a higher-
dimensional space where they can be more dis-
tinctly separated. This improvement in general-
ization ensures robust performance when applied
to real-world datasets, providing reliable detec-
tion and classification of complex patterns with
higher accuracy. These advantages make the
improved SVM a powerful tool for tackling chal-
lenging classification tasks in diverse applications.
Here, the output score obtained in this ISVM
model is represented as Yy, Figure 5 depicts
the improved SVM classifier model (Moradibaad
& Mashhoud, 2018). The hyperparameters of
classifiers are tabulated in Table 2.

0.0 5.0 7.5 10.0
x
3.4.2. NN

In the proposed attack detection system, an NN
(Jordanov et al., 2018) classifier plays a pivotal role
as part of a hybrid machine learning model along-
side an Improved Support Vector Machine (SVM).
Unlike traditional SVMs, which excel in finding
optimal hyperplanes in high-dimensional feature
spaces, NN are designed to handle complex, non-
linear relationships within the data.

A NN classifier is conceptualized as a parallel
computing system comprising numerous intercon-
nected simple processors, often referred to as neu-
rons. This architecture allows NNs to process and
learn from large datasets, making them suitable for
tasks that involve intricate pattern recognition and
classification, such as attack detection in cyberse-
curity. It provides deep learning capabilities that
adaptively refine classification boundaries based on
feature patterns learned from ISVM outputs.

The multilayered perceptron is a prominent type
of NN used in the proposed system. It consists of
multiple layers of neurons interconnected through
weighted connections, which is shown in Figure 6.
Each neuron in one layer is connected to neurons in
the subsequent layer, allowing for the propagation of
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Improved
kernel

Input vectors

Figure 5. Improved SVM classifier.

information through the network. This architecture
is well-suited for handling nonlinear data and typi-
cally includes input, hidden, and output layers.

In attack detection, the NN classifier is trained on
a dataset that includes features extracted using meth-
ods such as Improved SVM and statistical analysis.
These features F are fed into the NN model, which

Table 2. Hyperparameters of classifiers.

Output

Bias b

learns to distinguish among different types of attacks
based on patterns and relationships in the data. The
output score of the NN classifier is signified as Y-
The NN classifier brings significant advantages to
attack detection in the proposed system. It excels in
capturing intricate nonlinear relationships within
data, enabling the detection of subtle attack patterns

Methods Hyperparameters
SYM C=1.0

kernel=rbf

degree=3

gamma="scale’

coef0=0.0

Improved SVYM

NN

shrinking=True
probability=False
cache_size=200
class_weight=None
c=1.0
kernel=improved kernel
degree=3
gamma="scale’
coef0=0.0,
shrinking=True
probability=False
cache_size=200
class_weight=None
Sequential model
Dense layer
Units-100

Loss — sparse categorical cross entropy
Optimizer -rmsprop
Metrics — accuracy
Batchsize — 1000
Epochs — 50
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Figure 6. NN classifiers.

that linear models may overlook. Operating in
higher-dimensional spaces with multiple layers,
NN effectively handle complex feature extraction
and during attack detection.
Additionally, their capability to learn from large-
scale datasets and adapt to new attack patterns
enhances the overall robustness and accuracy of
the detection system against evolving cyber threats.
Therefore, the integration of an NN classifier
alongside the Improved SVM in the proposed
attack detection system leverages the strengths of
both models. This hybrid approach aims to
enhance the overall detection capability, providing
a comprehensive solution for identifying and miti-
gating various types of cyberattacks effectively.

classification

4. Results and discussion
4.1. Simulation procedure

Python 3.7 was utilized to simulate the suggested
DDoS attack detection method from a big data
perspective. The processes were carried out on
a system that had a “Intel” Core™ i5-4210 U CPU
@ 1.70 GHz and 8.00 GB of RAM.” The Hadoop
3.4.1 MapReduce framework was used to implement

the model. The MapReduce paradigm was imple-
mented using the Python multiprocessing package,
which enables parallel processing on multicore sys-
tems. While this may not utilize distributed comput-
ing frameworks such as Hadoop or Apache Spark, it
effectively models the MapReduce design pattern on
a shared-memory architecture, suitable for medium-
to-large datasets within a single machine.
Furthermore, the analysis of DDoS attack detection
was performed using both the Dataset 1: DDoS
evaluation dataset (https://www.unb.ca/cic/data
sets/ddos-2019.html) and the Dataset 2: UNSW-
NB15 dataset (https://research.unsw.edu.au/pro
jects/unsw-nb15-dataset).

4.2. Dataset1 description

This dataset is a subset of the CICDD0S2019 data-
set, focusing on brute-force attack detection sce-
narios. It comprises a total of 100,000 samples
categorized into three labels: Benign (40,000 sam-
ples), FTP BruteForce (30,000 samples), and SSH
BruteForce (30,000 samples). The dataset features
a mix of benign network traffic and the advanced
prevalent DDoS attacks, providing a close approx-
imation of real-world PCAP data. It incorporates


https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
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a range of current reflected DDoS attack techni-
ques, including “PortMap, NetBIOS, LDAP,
MSSQL, UDP, UDP-Lag, SYN, NTP, DNS, and
SNMP.” In the training phase, 12 different DDoS
attack scenarios were implemented, including
“NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP,
SSDP, UDP, UDP-Lag, WebDDoS, SYN, and
TFTP.” The testing phase involved seven attacks,
including “PortScan, NetBIOS, LDAP, MSSQL,
UDP, UDP-Lag, and SYN.”

4.3. Dataset2 description

This dataset is a filtered subset of the UNSW-NB15
dataset, tailored to assess DDoS attack detection
capabilities. It contains 71,730 total samples, dis-
tributed across Benign traffic (40,000 samples),
DDoS HOIC attack (1,730 samples), and DDoS
LOIC-UDP attack (30,000 samples). The raw net-
work packets for this dataset were generated using
the “IXIA Perfect Storm tool in the Cyber Range
Lab at UNSW Canberra,” producing a combination
of genuine, contemporary network activities and
synthetic, current attack behaviors. The dataset
includes nine diverse attack types: “fuzzers, analy-
sis, backdoors, DoS, exploits, generic, reconnais-
sance, shell code, and worms.” Twelve algorithms
were developed, and both the Argus and Bro-IDS
tools were used to generate a total of 49 features
along with the class label. The testing and training
data of both datasets are presented in Table 3.

4.4. Performance analysis

In comparison to traditional methods, a thorough
analysis was conducted to evaluate the efficacy of
the suggested DDoS attack detection method
within a big data framework. The assessment
employed a broad range of evaluation measures,
including “Sensitivity, False Discovery Rate
(FDR), Negative Predictive Value (NPV),

Specificity, F-measure, False Negative Rate
(FNR), Precision, False Positive Rate (FPR),
Matthews Correlation Coefficient (MCC), and
Accuracy,” to offer a thorough analysis of the
ISVM+NN method’s performance. This evalua-
tion compared the ISVM+NN approach with
both state-of-the-art techniques, like AdaBoost-
Gradient Boost (Dasari & Devarakonda, 2022),
RF (Chaudhari et al., 2024), and DDoS-MSCT,
CNN-LSTM, and traditional classifiers such as
SVM, NN, NB, KNN, and DT. This comprehen-
sive analysis was carried out using two distinct
datasets: the DDoS evaluation and the UNSW-
NB15 dataset.

4.5. Evaluation of positive, negative, and other
metrics for Dataset 1

To evaluate the effectiveness of ISVM+NN for
DDoS attack detection from a big data perspective,
a comprehensive examination of positive measures
is conducted for dataset 1. Figure 7 illustrates
a comparative assessment of the ISVM+NN strat-
egy against several established techniques, includ-
ing SVM, NN, NB, KNN, DT, AdaBoost-Gradient
Boost (Dasari & Devarakonda, 2022), DDoS-
MSCT, CNN-LSTM and RF (Chaudhari et al.,
2024). This comparative analysis focuses on the
ability of these models to accomplish high positive
metric values, which are crucial for the effective
detection of DDoS attacks. A model’s performance
in DDoS attack detection is significantly reflected
through these positive metrics. Therefore, the ana-
lysis aims to demonstrate how well the ISVM+NN
performs in comparison to these traditional meth-
ods, thereby highlighting its effectiveness in mana-
ging and mitigating DDoS threats in a big data
environment. As shown in Figure 7(a), the ISVM
+NN strategy consistently achieves higher accuracy
compared to the other methods. At a 60% training
data, the ISVM+NN strategy’s accuracy of 0.837

Table 3. Samples on each class label in training and testing.

Dataset 1 Dataset 2
Training Percentage Training Data Testing Data Training Data Testing Data
60 60000 40000 43038 28692
70 70000 30000 50211 21519
80 80000 20000 57384 14346
90 90000 10000 64557 7173
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Figure 7. Positive performance metrics comparison: ISVM+NN vs. Conventional methods on Dataset1.

surpasses that of SVM (0.811), NN (0.783), NB
(0.768), KNN (0.781), DT (0.767), AdaBoost-
GradientBoost (Dasari & Devarakonda, 2022)
(0.783), and RF (Chaudhari et al., 2024) (0.781).
As the percentage of training data rises, this pattern
persists. With an accuracy of 0.867 at 70%, the
ISVM+NN approach once again outperforms all
other methods, which vary from 0.805 for NN to
0.833 for SVM. By the time 80% of the data is used
for training, the ISVM+NN strategy’s accuracy
reaches 0.898, a significant improvement over
SVM, NN, and other methods. Most notably, with
90% of training data, the ISVM+NN strategy
achieves the highest accuracy of 0.927, surpassing
SVM (0.877), NN (0.858), and all other methods,
including AdaBoost-GradientBoost (Dasari &
Devarakonda, 2022) (0.859) and RF (Chaudhari

et al., 2024) (0.856). At 90% of training data, the
ISVM+NN strategy accomplishes a specificity of
0.877, which is the highest among all the models
compared. In contrast, the specificity of other mod-
els such as SVM, NN, and KNN is lower, at 0.908,
0.893 and 0.895, respectively, indicating that the
ISVM+NN strategy is more effective in detecting
DDoS attacks.

A comprehensive assessment of negative and
other measures is shown in Figures 8 and 9 to
further confirm the efficacy of the ISVM+NN tech-
nique for DDoS attack detection. This analysis
compares the performance of the ISVM+NN strat-
egy against several established models, including
SVM, NN, NB, KNN, DT, AdaBoost-
GradientBoost (Dasari & Devarakonda, 2022),
DDoS-MSCT, and RF (Chaudhari et al., 2024).
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Figure 8. Negative performance metrics comparison: ISVM+NN vs. Conventional methods on Dataset1.
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Figure 9. Other performance metrics comparison: ISVM+NN vs. Conventional methods on Dataset1.




For effective DDoS attack detection, the ISVM+NN
model should not only achieve higher values for
these positive metrics but also demonstrate
reduced negative metric ratings. A successful
DDoS detection model needs to balance the
achievement of high other metric values with mini-
mizing negative outcomes. As shown in Figure 7,
the ISVM+NN model consistently achieves the
lowest FNR compared to conventional strategies.
For example, with 60% training data, the FNR for
the ISVM+NN approach is 0.245, which is lower
than SVM’s 0.283 and other models’ FNR ranging
from 0.326 to 0.349. As the training data increases
to 70%, 80%, and 90%, the ISVM+NN model’s
FNR decreases to 0.199, 0.153, and 0.110, respec-
tively, further outperforming the other models,
which have FNR values between 0.184 and 0.306.
This consistent reduction in FNR demonstrates
that the ISVM+NN approach is more effective in
detecting DDoS attacks and minimizing errors
across different training data scenarios, proving
its robustness in a big data context for DDoS attack
detection.

At 90% of the training data, the MCC values for
various DDoS attack detection models reveal dis-
tinct performance differences. The ISVM+NN
approach achieves the highest MCC of 0.835,
demonstrating the most effective overall classifica-
tion performance. In comparison, SVM attains an
MCC of 0.724, reflecting a strong but slightly less
balanced classification compared to the ISVM+NN
model. NN exhibit an MCC of 0.679, which is
lower than that of SVM, indicating that NN has
less effective detection of DDoS attacks. NB shows
an MCC of 0.660, while KNN achieves an MCC of
0.686, both of which are lower than the ISVM+NN
model and demonstrate less effectiveness in classi-
fying DDoS attacks. DT have an MCC of 0.662,
slightly above NB but still below the ISVM+NN
model’s performance. AdaBoost-GradientBoost
(Dasari & Devarakonda, 2022) scores an MCC of
0.684, and RF (Chaudhari et al., 2024) has an MCC
of 0.676, both of which fall short compared to the
ISVM+NN approach. Therefore, the ISVM+NN
approach substantially surpasses traditional meth-
ods in detecting DDoS attacks, showing superior
performance across positive, negative, and other
critical metrics. The ISVM+NN strategy outper-
forms traditional methods due to three key
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advancements: Improved Normalization techni-
ques, Improved Entropy-Based Features, and the
integration of a Hybrid Model. Together, these
innovations contribute to superior detection cap-
abilities and overall performance.

4.6. Evaluation of positive, negative, and other
metrics for dataset 2

The comparative evaluation of the ISVM+NN strat-
egy against SVM, NN, NB, KNN, DT, AdaBoost-
GradientBoost (Dasari & Devarakonda, 2022), DDoS-
MSCT, CNN-LSTM and RF (Chaudhari et al., 2024)
for DDoS attack detection under a big data framework
using Dataset2 is presented. This evaluation compre-
hensively analyzes the performance of these methods
for positive, negative, and other metrics, as illustrated
in Figures 10-12. The figures provide a detailed visua-
lization of the ISVM+NN strategy’s effectiveness
compared to traditional methodologies, highlighting
its superior performance across various critical
metrics essential for robust DDoS attack detection.
In terms of precision, when the training data is set at
60%, the ISVM+NN strategy achieves a precision of
0.7192, which is higher than SVM (0.672), NN
(0.622), NB (0.599), KNN (0.626), DT (0.601),
AdaBoost-GradientBoost (Dasari & Devarakonda,
2022) (0.621), DDoS-MSCT (0.529) and RF
(Chaudhari et al., 2024) (0.626). With 70% training
data, the ISVM+NN strategy’s precision improves to
0.765, and with 80% training data, it achieves an even
higher precision of 0.816, consistently outperforming
SVM (0.746), NN (0.711), NB (0.689), KNN (0.705),
DT (0.694), AdaBoost-GradientBoost (Dasari &
Devarakonda, 2022) (0.711), and RF (Chaudhari
et al,, 2024) (0.709). Finally, with 90% training data,
the ISVM+NN strategy reaches the highest precision
of 0.864, significantly higher than SVM (0.783), NN
(0.748), NB (0.727), DT (0.736), AdaBoost-
GradientBoost (Dasari & Devarakonda, 2022)
(0.749), and RF (Chaudhari et al., 2024) (0.752). As
illustrated in Figure 10(b), the ISVM+NN strategy
consistently outperforms the conventional methodol-
ogies across all training data proportions. Specifically,
the FPR for the ISVM+NN approach decreases from
0.133 at 60% training data to 0.059 at 90%, demon-
strating a significant reduction in error values as the
amount of training data increases. In contrast, the
FPR for traditional methods such as SVM, NN, NB,
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Figure 10. Positive performance metrics comparison: ISYM+NN vs. traditional strategies on Dataset2.

KNN, DT, AdaBoost-GradientBoost (Dasari &
Devarakonda, 2022), DDoS-MSCT and RF
(Chaudhari et al., 2024) either remains relatively con-
stant or shows less pronounced improvements with
increased training data.

When utilizing 90% of training data for
DDoS attack detection, the ISVM+NN accom-
plishes the maximum F-measure of 0.855, sig-
nificantly surpassing all other techniques.
Traditional methods such as SVM, NN, KNN,
AdaBoost-GradientBoost (Dasari &
Devarakonda, 2022), and RF (Chaudhari
et al., 2024) algorithms show lower F-measure
values, with SVM achieving the highest among
them at 0.775, followed by NN and KNN at
0.740, and AdaBoost-GradientBoost (Dasari &

Devarakonda, 2022) and RF (Chaudhari et al.,
2024) at 0.742 and 0.744, respectively. NB and
DT perform slightly worse, with F-measures of
0.720 and 0.729, respectively. This substantial
difference demonstrates that the ISVM+NN
method not only detects DDoS attacks more
effectively but also achieves a better balance
between precision and recall compared to tra-
ditional approaches. Therefore, the ISVM+NN
approach outperforms traditional approaches
across various metrics, achieving superior
values. These enhancements are largely due to
the Improved Normalization techniques,
Entropy-Based Features, and the Hybrid
Model utilized in the approach. By integrating
these advanced methods, the ISVM+NN strat-
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Figure 12. Other performance measures comparison: ISVM+NN vs. traditional techniques on Dataset2.
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Figure 13. Roc curve analysis on ISVM+NN and traditional methods a) Dataset1 and b) Dataset2.

egy provides a more effective and reliable solu-
tion for the detection of DDoS attack.

4.7. ROC analysis using Dataset1 and Dataset2

A ROC curve is a visual representation of a binary
classification model’s performance that plots the TPR
versus the FPR at different thresholds. The AUC
measures how well the model distinguishes between
positive and negative classes, with higher values sig-
nifying better performance. To comprehensively
assess the effectiveness of the ISVM+NN strategy for
DDoS attack detection within a big data framework,
an ROC curve analysis was conducted to compare its
performance against several conventional methodol-
ogies. This analysis is illustrated in Figures 13(a) and
13(b), which depict the ROC curves for the ISVM
+NN model alongside SVM, NN, NB, KNN, DT,
DDoS-MSCT, CNN-LSTM, AdaBoost-

GradientBoost (Dasari & Devarakonda, 2022), and RF
(Chaudhari et al., 2024) using Dataset1 and Dataset2,
respectively. While examining Datasetl, the ISVM
+NN strategy achieved a remarkable TPR of 0.962
when the FPR was set at 1.0. In contrast, the conven-
tional methods showed lower TPR values, with SVM
achieving 0.951, NN at 0.948, NB at 0.937, KNN at
0.924, DT at 0.917, AdaBoost-GradientBoost (Dasari
& Devarakonda, 2022) at 0.908, and RF (Chaudhari
etal., 2024) at 0.910. This demonstrates that the ISVM
+NN model not only outperforms these conventional
methods but also maintains the highest TPR under
the same FPR condition, highlighting its superior

capability in correctly identifying attack instances.
For Dataset2, the ISVM+NN strategy consistently
achieved the maximum TPR values, illustrating its
robust performance across different datasets.

4.8. Ablation analysis of ISVM+NN based attack
detection for Dataset1 and Dataset2

To comprehensively evaluate the effectiveness of the
ISVM+NN model for DDoS§ attack detection, an abla-
tion study was performed to analyze the contributions
of the various components and techniques employed
in the model. This study compares the performance of
full ISVM+NN model, which includes advanced fea-
ture extraction, improved normalization methods,
and enhanced entropy-based features, against alter-
native configurations to isolate and understand the
impact of each component. This evaluation involves
comparing the ISVM+NN model with a version that
lacks feature extraction, a version that uses conven-
tional normalization techniques, and a version that
relies on conventional entropy-based features. This
comprehensive comparison is essential for under-
standing the impact of each component of the ISVM
+NN approach on DDoS attack detection perfor-
mance. The results of this ablation evaluation utilizing
Datasetl and Dataset2 are summarized in Tables 4
and 5, providing a detailed comparison of how each
model variant performs under a big data perspective.
The ablation study’s sensitivity analysis, using 90% of
the training data, reveals that the ISVM+NN model
achieves a high sensitivity of 0.890, successfully
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Table 4. Ablation study of ISVM+NN, model without extraction of feature, model with traditional normalization and model with

traditional entropy-based features for Dataset1.

Proposed without Proposed without extraction

Proposed with tarditional

Proposed with traditional entropy-

Metrics preprocessing of feature normalization based features Proposed
Accuracy 83.08% 82.49% 83.16% 83.61% 92.66%
Sensitivity 74.63% 73.73% 74.73% 75.41% 88.98%
Specificity 87.31% 86.87% 87.37% 87.71% 94.49%
Precision 73.87% 72.26% 73.24% 73.90% 87.21%
F_measure 72.39% 71.52% 72.49% 73.15% 86.32%
McC 62.28% 61.63% 62.10% 63.12% 83.48%
NPV 85.57% 85.13% 85.62% 85.95% 92.60%
FPR 12.69% 13.13% 12.63% 12.29% 5.51%
FNR 25.37% 26.27% 25.27% 24.59% 11.02%

detecting DDoS attacks. In comparison, models lack-
ing feature extraction (0.184), employing conven-
tional normalization (0.214), or using standard
entropy-based features (0.227) demonstrate signifi-
cantly lower sensitivities. This underscores the effec-
tiveness of the advanced techniques incorporated in
the ISVM+NN model for DDoS attack detection. In
the ablation study using Dataset2, the FPR metric
indicates that the ISVM+NN model outperforms
other methods with a low FPR of 0.059. In compar-
ison, the model without feature extraction has an FPR
of 0.134, the model with conventional normalization
has an FPR of 0.133, and the model with traditional
entropy-based features has an FPR of 0.124. This
specifies that the ISVM+NN is the most effective at
detecting DDoS attacks, resulting in fewer errors and
a more reliable attack detection system.

4.9. Statistical evaluation of proposed and
conventional models in terms of accuracy for
Dataset1 and Dataset2

To provide a comprehensive evaluation of the ISVM
+NN strategy for DDoS attack detection, a detailed
statistical assessment was conducted. This assessment
involved comparing the ISVM+NN strategy with

several well-established models, including SVM, NN,
NB, KNN, DT, AdaBoost-GradientBoost (Dasari &
Devarakonda, 2022), DDoS-MSCT, CNN-LSTM and
RF (Chaudhari et al., 2024). The comparison utilized
two Datasets, Datasetl and Dataset2, and the out-
comes are offered in Tables 6 and 7. In the statistical
evaluation of accuracy for DDoS attack detection on
Dataset1, the ISVM+NN model outperforms all other
methods. Specifically, the ISVM+NN model achieves
an accuracy of 0.882 on the mean statistical metric,
which outperforms all other evaluated models. This
indicates that, on average, the ISVM+NN model suc-
cessfully detects the DDoS attack. In comparison, the
SVM has an accuracy of 0.844, reflecting its effective-
ness but showing that it falls short of the ISVM+NN
model’s performance. The NN follows with an accu-
racy of 0.819, which is slightly lower than SVM’s
performance. The NB model shows an accuracy of
0.809, indicating that it is less effective in detecting
DDoS attacks compared to SVM and the ISVM+NN
model. The KNN model and DT model both have
mean accuracies of 0.821 and 0.808, respectively,
representing performance levels similar to NN and
slightly below SVM. Additionally, the AdaBoost-
GradientBoost (Dasari & Devarakonda, 2022), DDoS-
MSCT, CNN-LSTM and RF (Chaudhari et al., 2024)

Table 5. Ablation study on ISVM+NN, model without feature extraction, model with traditional normalization and model with

traditional entropy-based features for Dataset2.

Proposed without Proposed without extraction

Proposed with traditional

Proposed with traditional entropy-

Metrics preprocessing of feature normalization based features Proposed
Accuracy 81.72% 82.12% 82.26% 83.46% 92.11%
Sensitivity 72.58% 73.19%% 73.39% 75.19% 88.17%
Specificity 86.29% 86.59% 86.70% 87.60% 94.09%
Precision 71.13% 71.73% 71.93% 73.69% 86.41%
F_measure 71.84% 70.99% 71.19% 72.94% 85.53%
Mcc 58.86% 59.78% 60.09% 62.79% 82.26%
NPV 84.56% 84.86% 84.96% 85.84% 92.20%
FPR 13.71% 13.41% 13.30% 12.40% 5.91%
FNR 27.42% 26.81% 26.61% 24.81% 11.83%
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Table 6. Statistical analysis of proposed and traditional approaches based on accuracy using Dataset 1.

Methods MIN MAX MEAN MEDIAN STANDARD DEVIATION
DDoS-MSCT 81.02% 88.71% 84.84% 84.82% 2.87%
CNN-LSTM 82.40% 90.19% 86.22% 86.15% 2.93%
SVM 81.13% 87.72% 84.38% 84.33% 2.43%
NN 78.28% 85.75% 81.94% 81.87% 2.81%
NB 76.80% 84.88% 80.89% 80.93% 3.01%
KNN 78.12% 86.03% 82.10% 82.12% 2.96%
DT 76.74% 84.98% 80.77% 80.68% 3.08%
AdaBoost-Gradient Boost 78.28% 85.94% 82.10% 82.10% 2.91%
RF 78.06% 85.59% 81.90% 81.98% 2.80%
ISVM+NN 83.66% 92.66% 88.21% 88.26% 3.36%

models have accuracies of 0.821 and 0.819, respec-
tively, which are comparable to the performance of
KNN and NN. Overall, the ISVM+NN model’s accu-
racy of 0.882 not only surpasses the accuracies of
traditional methods but also highlights its superior
effectiveness in detecting DDoS attacks. The lower
accuracies of the other models, which range from
0.808 to 0.844, underscore the ISVM+NN model’s
robustness and its ability to consistently perform bet-
ter in identifying DDoS attack instances. Table 6
shows that the ISVM+NN model realizes the highest
accuracy of 0.921 (maximum statistical metric) for
Dataset2 in DDoS attack detection, surpassing all
evaluated methods. In comparison, the SVM model
reaches an accuracy of 0.866, while NN and KNN
both achieve 0.842. The NB model has an accuracy
of 0.828, and the DT model scores 0.834. AdaBoost-
Gradient Boost (Dasari & Devarakonda, 2022) and RF
(Chaudhari et al., 2024) models achieve accuracies of
0.843 and 0.845, respectively, which are lower than
those of the ISVM+NN model and SVM.

4.10. Analysis on T-test for Dataset1 and Dataset2

A T-test is a statistical test employed to assess
whether there are significant differences between
the means of two groups or between a sample
mean and a known value. It evaluates if observed
differences are likely due to chance or reflect actual

differences in the population. The T-test analysis for
the ISVM+NN model, in comparison to SVM, NN,
NB, KNN, DT, DDoS-MSCT, CNN-LSTM,
AdaBoost-Gradient Boost (Dasari & Devarakonda,
2022), and RF (Chaudhari et al., 2024), for DDoS
attack detection from a big data perspective is
detailed in Table 8 for Datasetl and Dataset2,
respectively. For both Datasets, deep learning mod-
els like CNN-LSTM and DDoS-MSCT exhibit high
p-values (CNN-LSTM: 0.4701 and 0.5376; DDoS-
MSCT: 0.2354 and 0.2297), indicating no statistically
significant variation in their results and suggesting
consistent performance. In contrast, traditional
machine learning models such as Decision Tree
(DT) and Naive Bayes (NB) show very low p-values
(DT: 0.0301 and 0.0297; NB: 0.0307 and 0.0236),
implying statistically significant differences and
potentially higher sensitivity to data variations.
With p-values typically below 0.06, models like as
SVM, NN, KNN, AdaBoost-Gradient Boost, and RF
fall into a moderate range and show substantial
significance in performance differences. The
p-values for Random Forest (RF) and Neural
Networks (NN) are valuable because they are near
the 0.05 cutoff, indicating slightly significant differ-
ences. Overall, the T-test results confirm that the
ISVM+NN model achieves a statistically significant
improvement over the traditional approaches tested
for DDoS attack detection in both Datasets.

Table 7. Statistical analysis of suggested and conventional approaches based on accuracy for Dataset 2.

Methods MIN MAX MEAN MEDIAN STANDARD DEVIATION
DDoS-MSCT 79.02% 87.65% 83.38% 83.42% 3.23%
CNN-LSTM 80.64% 89.88% 85.25% 85.24% 3.47%
SVM 79.10% 86.63% 82.84% 82.82% 2.82%
NN 75.71% 84.21% 80.12% 80.29% 3.18%
NB 74.11% 82.83% 78.59% 78.70% 3.26%
KNN 75.92% 84.21% 80.08% 80.09% 3.06%
DT 74.25% 83.42% 78.92% 79.00% 3.42%
AdaBoost-Gradient Boost 75.62% 84.33% 80.11% 80.24% 3.26%
RF 75.97% 84.49% 80.16% 80.10% 3.19%
ISVM+NN 82.25% 92.11% 87.16% 87.14% 3.69%
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Table 8. Comparison of ISYM+NN and Conventional methods using both Datasets 1&2: T-Test results.

Methods T test p value For Dataset 1 T test p value for Dataset 2
DDoS-MSCT 235414 229709
CNN-LSTM 47014 53764

SVM 161112 158278

NN .048121 .046499

NB .0307 .023558

KNN .056084 .043043

DT .030128 .029675
AdaBoost-Gradient Boost .054943 047683

RF .046781 .04749

4.11. Friedman test evaluation for Dataset1 and
Dataset2

Using rank-based data, the Friedman Test is a non-
parametric statistical technique for determining
differences between several related groups. It is
commonly employed when comparing treatments
or conditions in repeated measures or matched
groups without assuming normal distribution.
Table 9 shows the results of the Friedman Test,
which was used to compare the ISVM+NN method
against traditional DDoS attack detection techni-
ques from a big data perspective using Datasets 1
and 2, respectively.

The Friedman chi-square p-values presented for
DDoS attack detection across two Datasets evaluate
the statistical significance of performance differ-
ences between the proposed ISVM+NN hybrid
model and existing classifiers. When compared to
the suggested model, the high p-values for CNN-
LSTM (0.4418 and 0.5215) and DDoS-MSCT
(0.2114 and 0.2170) indicate that there are no
appreciable performance changes, suggesting com-
paratively steady and consistent behavior. The sug-
gested approach is more effective than
conventional classifiers, as evidenced by lower
p-values for Decision Tree (DT) (0.0452 and
0.0554) and Naive Bayes (NB) (0.0629 and
0.0276), which indicate statistically significant

performance differences. In contrast, classifiers
such as DDoS-MSCT, SVM, KNN, and AdaBoost-
Gradient Boost yield higher p-values (generally
>0.15), suggesting their performance differences
relative to the proposed model are not statistically
significant. Overall, the results imply that while
some traditional classifiers show noticeable perfor-
mance gaps, the proposed ISVM+NN model
demonstrates statistically robust superiority in per-
formance across diverse classifiers, especially where
p-values fall below the common threshold of 0.05.
The extremely low p-values across all methods
confirm that the ISVM+NN model’s performance
is statistically superior to the conventional techni-
ques in the context of DDoS attack detection for
Dataset2.

4.12. Analysis on Wilcoxon test for Dataset1 and
Dataset2

As a non-parametric statistical test, the Wilcoxon
Test compares two related samples to assess
whether their population mean ranks are signifi-
cantly different. It is often applied when data do
not meet the assumptions of parametric tests like
the paired t-test, especially when the data are not
normally distributed. The Wilcoxon Test analysis
presented in Table 10 provides a detailed

Table 9. Comparison of ISVM+NN and Conventional methods using Dataset1: Friedman test results.

Proposed Vs

Friedman chisquare p value for Dataset 1

Friedman chi square p value for Dataset 2

DDoS-MSCT 211443
CNN-LSTM 441761
SVM 184626
NN 101767
NB .0629

KNN 164205
DT 045157
AdaBoost-GradientBoost 162872

RF 071558

.216979
521473
183617
148762
.027619
104209
.055406
164007
151079
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Table 10. Performance comparison of methods using the Wilcoxon test on Datasets 1 and 2.

Methods Wilcoxon p value for Dataset 1 Wilcoxon p value for Dataset 2
DDoS-MSCT 192123 20516

CNN-LSTM 452617 .501927

SVM 134144 19564

NN .090633 119238

NB 063969 .026992

KNN 121513 067457

DT .035062 .045955
AdaBoost-GradientBoost 093392 .189692

RF 071971 .138748

comparison of the ISVM+NN method against tra-
ditional DDoS attack detection techniques, includ-
ing SVM, NN, NB, KNN, DT, DDoS-MSCT, CNN-
LSTM, AdaBoost-Gradient Boost (Dasari &
Devarakonda, 2022), and RF (Chaudhari et al.,
2024), using Datasetl and Dataset2. DDoS-MSCT
exhibits comparatively strong p-values (0.1921 for
Dataset 1 and 0.2052 for Dataset 2), suggesting that
there is no discernible performance variance
among the approaches. Similarly, CNN-LSTM
shows the least statistically significant differences
and potentially stable performance across Datasets,
as evidenced by its highest p-values (0.4526 and
0.5019). The lowest p-values, on the other hand, are
displayed by conventional classifiers like Decision
Tree (DT) and Naive Bayes (NB) (DT: 0.0351 and
0.0460; NB: 0.0640 and 0.0270), suggesting statisti-
cally significant differences and possible sensitivity
to Dataset modifications. The p-values of other
models, such as SVM, NN, KNN, AdaBoost-
GradientBoost, and Random Forest (RF), are typi-
cally above 0.06 but below 0.20, indicating signifi-
cant levels of variation. The consistently lower
p-values for the ISVM+NN model across both
Datasets underscore its effectiveness in enhancing
DDoS attack detection performance, demonstrat-
ing a significant advancement over traditional
techniques in the context of big data environments.

4.13. Comparison of DDoS detection classifiers
across two Datasets using confidence intervals (Cl)
based on accuracy

The performance evaluation of various classifiers
across two Datasets demonstrates the effectiveness of
the proposed ISVM+NN hybrid model, particularly
in terms of detection accuracy is tabulated in Table 11.
For Dataset 1, the 95% confidence interval (CI) for
ISVM+NN ranges from 0.844 to 0.912, notably

outperforming traditional classifiers such as SVM
(CIL: 0.817-0.865), NN (0.788-0.845), CNN-LSTM
also performs well with a CI of 0.8357-0.8887 and
Random Forest (0.793-0.844). Similarly, in Dataset 2,
ISVM+NN maintains superior performance with
a 95% CI of 0.830 to 0.905, compared to SVM (0.797-
-0.853), NN (0.772-0.830), CNN-LSTM (0.8138--
0.8839) and AdaBoost-Gradient Boost (0.764-0.830).
Traditional classifiers such as SVM, NN, NB, and
ensemble methods like AdaBoost-GradientBoost
and Random Forest (RF) show moderate perfor-
mance, with narrower intervals, reflecting compara-
tively lower confidence in extreme cases. Overall, the
ISVM+NN model consistently outperforms others,
followed by DDoS-MSCT, emphasizing the effective-
ness of hybrid and deep learning-based approaches in
handling complex DDoS traffic patterns.

4.14. Proposed ISVM+NN model using different
kernel functions across two Datasets

Table 12 evaluates the effectiveness of the proposed
Weighted Expo Inverse Laplacian (WEIL) kernel
against traditional non-linear kernels RBF,
Exponential, and Laplacian within the ISVM+NN
hybrid model, across two benchmark Datasets. In
every performance metric, the suggested WEIL kernel
continuously beats the other kernels. It has the lowest
false positive rate (0.0551) and false negative rate
(0.1102) in Dataset 1, as well as the greatest precision
(0.9266), sensitivity (0.8898), specificity (0.9449), F1-
score (0.8632), and MCC (0.8348). The WEIL kernel
also performs best in Dataset 2, identifying true posi-
tives and true negatives with an accuracy of 0.9211,
sensitivity of 0.8817, and specificity of 0.9409. These
results empirically demonstrate that the WEIL kernel
enhances the model’s ability to capture complex non-
linear relationships more effectively than standard
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Table 11. Confidence intervals using two Datasets based on accuracy.

Classifiers Lower bound Higher Bound
Dataset 1
DDoS-MSCT 0.816472 0.874125
CNN-LSTM 0.835707 0.888742
SVM 0.816833 0.865158
NN 0.788356 0.844892
NB 0.781631 0.837057
KNN 0.794351 0.847558
DT 0.773772 0.835628
AdaBoost-GradientBoost 0.788544 0.846
RF 0.793452 0.843892
ISVM+NN 0.844227 0.912325
Dataset 2

DDoS-MSCT 0.797447 0.862184
CNN-LSTM 0.813776 0.883855
SVYM 0.797 0.853471
NN 0.772198 0.829836
NB 0.748812 0.814187
KNN 0.766463 0.827792
DT 0.750541 0.819315
AdaBoost-GradientBoost 0.764051 0.830301
RF 0.766322 0.830324
ISVM+NN 0.830469 0.904863

kernels, providing a stronger theoretical justification
for its use in DDoS detection tasks.

4.15. Computational time analysis

According to Table 13, the suggested ISVM+NN
hybrid model outperforms other conventional and
ensemble-based techniques in terms of computational
time evaluation across two Datasets. The lightweight
processing capabilities of ISVM+NN is demonstrated
by its lowest computation times, which are 83.02
seconds on Dataset 1 and 82.72 seconds on Dataset

2. On the other hand, models like Random Forest and
AdaBoost-Gradient Boost show far longer computa-
tion times more than 90 seconds on both Datasets,
which suggests higher processing overhead.
Traditional classifiers such as SVM, KNN, and DT
show moderate performance with times ranging from
85 to 88 seconds, while the DDoS-MSCT model also
exhibits relatively higher times (~90 seconds). Overall,
the ISVM+NN approach is very appropriate for real-
time identification of DDoS in big data situations
since it guarantees computational economy in addi-
tion to high detection accuracy.

Table 12. Different kernel functions across two Datasets.

Metrics Model with RBF kernel Model with exponential kernel Model with Laplacian kernel Proposed
Dataset 1
Accuracy 89.77% 87.86% 88.80% 92.66%
Sensitivity 84.65% 81.78% 83.20% 88.98%
Specificity 92.33% 90.89% 91.60% 94.49%
Precision 82.97% 80.15% 81.55% 87.21%
F_measure 83.80% 80.96% 82.37% 86.32%
MccC 76.99% 72.68% 74.81% 83.48%
NPV 90.48% 89.07% 89.77% 92.60%
FPR 7.67% 9.11% 8.40% 5.51%
FNR 15.35% 18.22% 16.80% 11.02%
Dataset 2
Accuracy 89.02% 87.75% 87.19% 92.11%
Sensitivity 83.52% 81.61% 80.78% 88.17%
Specificity 91.77% 90.81% 90.40% 94.09%
Precision 81.86% 79.99% 79.18% 86.41%
F_measure 82.68% 80.80% 79.97% 85.53%
MCC 75.29% 72.43% 71.18% 82.26%
NPV 89.92% 88.99% 88.58% 92.20%
FPR 8.23% 9.19% 9.60% 5.91%
FNR 16.48% 18.39% 19.22% 11.83%
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Table 13. Computational time analysis on Dataset 1 and Dataset 2.

Methods Computation Time(s) (Dataset 1) Computation Time (s) (Dataset 2)
DDoS-MSCT 90.8274 89.81647
CNN-LSTM 88.12849 88.12849 86.19174
SVM 86.0024 85.8748
NN 85.4422 84.98201
NB 89.6640 88.80174
KNN 87.9017 86.10127
DT 88.5152 87.2978
AdaBoost-Gradient Boost 93.3274 91.1849
RF 9291274 90.8217
ISVM+NN 83.01753 82.7216

4.16. Discussion

According to the experimental results, the suggested
Hybrid Machine Learning Model for DDoS attack
detection under a big data paradigm performs notice-
ably better than both conventional and some recent
classification techniques. This model combines an
Improved Support Vector Machine (ISVM) with
Neural Networks (NN) and uses an enhanced feature
set. The model effectively detects malicious traffic
while reducing false alarms, as evidenced by its great-
est accuracy of 92.65% and strong performance across
other crucial parameters like sensitivity (88.98%) and
specificity (94.49%). The integration of the Weighted
Exponential Inverse Laplacian (WEIL) kernel in
ISVM enhances its ability to model complex, non-
linear relationships, while the hybrid design with NN
improves generalization and decision boundaries.
The advanced normalization technique combining
MAD and Tanh estimation contributes to robustness
against outliers, and the use of the MapReduce frame-
work ensures scalability for large-scale network traffic
analysis. Compared to baseline models and conven-
tional preprocessing methods, the proposed model
shows consistent improvements, reflecting its suitabil-
ity for real-time, high-volume cybersecurity applica-
tions. However, further comparative studies with
cutting-edge deep learning methods are necessary to
fully establish its position in the current research
landscape.

5. Conclusion

In conclusion, this study developed and demon-
strated a comprehensive framework for enhancing
DDoS attack detection systems by leveraging
advanced machine learning models and refined
data preprocessing techniques. Beginning with the
selection and utilization of a benchmark Dataset

that accurately represented various DDoS attack
patterns, the research validated the efficacy of the
detection model in distinguishing normal network
behaviors from anomalous activities associated
with DDoS attacks. The preprocessing phase
played a crucial role in optimizing data quality,
where an Improved Normalization approach effec-
tively scaled and adjusted input data, enhancing the
model’s sensitivity to subtle deviations indicative of
potential attacks. Using the MapReduce framework
for feature extraction, the model extracted diverse
features and integrated advanced statistical mea-
sures, enabling nuanced pattern recognition and
accurate classification of network activities. The
hybrid machine learning model, combining ISVM
and NN classifiers, proved effective in aggregating
outputs and robustly identifying specific attack
types with higher accuracy and improved general-
ization across Datasets. This study contributes to
advancing cybersecurity by presenting a robust fra-
mework that addresses critical challenges in data
analysis and attack detection, paving the way for
enhanced defenses against sophisticated DDoS
threats in network environments.
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Abbreviations

CNN Convolutional Neural Network
DDoS Distributed Denial of Service
DL Deep Learning

DMN Deep Maxout Network

DNN Deep Neural Network

DSA Deep Stacked Autoencoder
DT Decision Tree

GB Gradient Boosting



GHLBO Gradient Hybrid Leader Optimization

GWO Grey Wolf Optimization

HLBO Hybrid Leader-Based Optimization

ISVM Improved Support Vector Machine

KNN K-Nearest Neighbour

LSTM Long Short-Term Memory

MAD Median Absolute Deviation

ML Machine Learning

NN Neural Network

NB Naive Bayes

RF Random Forest

RNN Recurrent Neural Network

SCADA Supervisory Control and Data Acquisition

SDN Software Defined Networking

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TNR True Negative Rate

TPR True Positive Rate

UASDAC  Unsupervised Adaptive Scalable DDoS Attack
Classification

XGBoost  Xtreme Gradient Boosting

References

Adedeji, K. B., Abu-Mahfouz, A. M., & Kurien, A. M. (2023).
DDoS attack and detection methods in internet-enabled
networks: Concept, research perspectives, and challenges.
Journal of Sensor and Actuator Networks, 12(4), 51. https://
doi.org/10.3390/jsan12040051

Afolabi, H. A., & Aburas, A. A. (2022). RTL-DL: A hybrid
deep learning framework for DDoS attack detection in a big
data environment. International Journal of Computer
Networks & Communications, 14(6), 51-66. https://doi.
org/10.5121/ijcnc.2022.14604

Akgun, D., Hizal, S., & Cavusoglu, U. (2022). A new DDoS
attacks intrusion detection model based on deep learning
for cybersecurity. Computers ¢ Security, 118, 102748.
https://doi.org/10.1016/j.cose.2022.102748

Alhasawi, Y., & Alghamdi, S. (2024). Federated learning for
decentralized DDoS attack detection in IoT networks. IEEE
Access, 12, 42357-42368. https://doi.org/10.1109/ACCESS.
2024.3378727

Ali, M. H,, Jaber, M. M., Abd, S. K., Rehman, A., Awan, M. J.,
Damasevicius, R., & Bahaj, S. A. (2022). Threat analysis and
distributed denial of service (DDoS) attack recognition in
the internet of things (IoT). Electronics, 11(3), 494. https://
doi.org/10.3390/electronics11030494

Alslman, Y., Khalil, A., Younisse, R., Alnagi, E., Al-Saraireh, J.,
& Ghnemat, R. (2024). DDoS attack-detection approach
based on ensemble models using Spark. Jordanian Journal
of Computers and Information Technology, 10(2), 1. https://
doi.org/10.5455/jjcit.71-1694806966

Awan, M. J., Farooq, U., Babar, H. M. A., Yasin, A.,
Nobanee, H., Hussain, M., Zain, A. M., & Zain, A. M.

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE . 29

(2021). Real-time DDoS attack detection system using big
data approach. Sustainability, 13(19), 10743. https://doi.
0rg/10.3390/su131910743

Azmi, M. A. H., Foozy, C. F. M., Sukri, K. A. M,
Abdullah, N. A., Hamid, I. R. A., & Amnur, H. (2021).
Feature selection approach to detect DDoS attack using
machine learning algorithms. JOIV: International Journal
on Informatics Visualization, 5(4), 395-401. https://doi.org/
10.30630/joiv.5.4.734

Balasubramaniam, S., Vijesh Joe, C., Sivakumar, T. A,
Prasanth, A., Satheesh Kumar, K., Kavitha, V., &
Dhanaraj, R. K. (2023). Optimization enabled deep
learning-based DDoS
computing. International Journal of Intelligent Systems,
2023(1), 2039217. https://doi.org/10.1155/2023/2039217

Chaudhari, S. S., Sparshika, T. N., Preethi, D., Muttur, C. S., &
Shadaksharaiah, A. M. (2024). Sand cat swarm intelligent
based random forest approach for DDoS attack detection in
IoT network scenario using NS3. In 2024 IEEE
International Conference on Electronics, Computing and
Communication Technologies (CONECCT) (pp. 1-6). IEEE.

Chen, J., Tang, X., Cheng, J., Wang, F., & Xu, R. (2020). DDoS
attack detection method based on network abnormal beha-
viour in big data environment. International Journal of
Computational Science & Engineering, 23(1), 22-30.
https://doi.org/10.1504/IJCSE.2020.110182

Cheng, J., Liu, Y., Tang, X., Sheng, V. S, Li, M., & Li, J. (2020).
DDosS attack detection via multi-scale convolutional neural
network. Computers, Materials and Continua, 62(3),
1317-1333. https://doi.org/10.32604/cmc.2020.06177

Cui, H,, Liu, Q., Zhang, J., & Kang, B. (2019). An improved
Deng entropy and its application in pattern recognition.
IEEE Access, 7, 18284-18292. https://doi.org/10.1109/
ACCESS.2019.2896286

Dasari, K. B., & Devarakonda, N. (2022). Detection of DDoS
attacks using machine learning classification algorithms.
International Journal of Computer Network and
Information Security, 14(6), 89. https://doi.org/10.5815/ijc
nis.2022.06.07

Elsaeidy, A. A., Jamalipour, A., & Munasinghe, K. S. (2021).
A hybrid deep learning approach for replay and DDoS
attack detection in a smart city. IEEE Access, 9, 154864--
154875. https://doi.org/10.1109/ACCESS.2021.3128701

Gaye, B., Zhang, D., & Wulamu, A. (2021). Improvement of
support vector machine algorithm in big data background.
Mathematical Problems in Engineering, 2021(1), 1-9.
https://doi.org/10.1155/2021/5594899

Gumaste, S., Narayan, D. G., Shinde, S., & Amit, K. (2020).
Detection of DDoS attacks in OpenStack-based private
cloud using Apache Spark. Journal of Telecommunications
and Information Technology, 4(2020), 62-71. https://
research.unsw.edu.au/projects/unsw-nb15-Dataset

Jiang, Y., Li, Z., Zhang, L., & Sun, P. (2007, June). An
improved SVM classifier for medical image classification.

attack detection in cloud


https://doi.org/10.3390/jsan12040051
https://doi.org/10.3390/jsan12040051
https://doi.org/10.5121/ijcnc.2022.14604
https://doi.org/10.5121/ijcnc.2022.14604
https://doi.org/10.1016/j.cose.2022.102748
https://doi.org/10.1016/j.cose.2022.102748
https://doi.org/10.1109/ACCESS.2024.3378727
https://doi.org/10.1109/ACCESS.2024.3378727
https://doi.org/10.3390/electronics11030494
https://doi.org/10.3390/electronics11030494
https://doi.org/10.5455/jjcit.71-1694806966
https://doi.org/10.5455/jjcit.71-1694806966
https://doi.org/10.3390/su131910743
https://doi.org/10.3390/su131910743
https://doi.org/10.30630/joiv.5.4.734
https://doi.org/10.30630/joiv.5.4.734
https://doi.org/10.1155/2023/2039217
https://doi.org/10.1504/IJCSE.2020.110182
https://doi.org/10.1504/IJCSE.2020.110182
https://doi.org/10.32604/cmc.2020.06177
https://doi.org/10.1109/ACCESS.2019.2896286
https://doi.org/10.1109/ACCESS.2019.2896286
https://doi.org/10.5815/ijcnis.2022.06.07
https://doi.org/10.5815/ijcnis.2022.06.07
https://doi.org/10.1109/ACCESS.2021.3128701
https://doi.org/10.1155/2021/5594899
https://doi.org/10.1155/2021/5594899
https://research.unsw.edu.au/projects/unsw-nb15-Dataset
https://research.unsw.edu.au/projects/unsw-nb15-Dataset

30 R.P AND S. KAMALAKKANNAN

In International conference on rough sets and intelligent
systems paradigms (pp. 764-773). Springer.

Jordanov, L., Petrov, N., & Petrozziello, A. (2018). Classifiers
accuracy improvement based on missing data imputation.
Journal of Artificial Intelligence and Soft Computing Research,
8(1), 31-48. https://doi.org/10.1515/jaiscr-2018-0002

Khalifa, A. B., Gazzah, S., & BenAmara, N. E. (2013). Adaptive
score normalization: A novel approach for multimodal
biometric systems. International Journal of Computer and
Information Engineering, 7(3), 376-384.

Khempetch, T., & Wauttidittachotti, P. (2021). DDoS attack
detection using deep learning. IAES International Journal
of Artificial Intelligence, 10(2), 382. https://doi.org/10.
11591/ijai.v10.i2.pp382-388

Kumar, R., Kumar, P., Tripathi, R., Gupta, G. P., Garg, S., &
Hassan, M. M. (2022). A distributed intrusion detection
system to detect DDoS attacks in blockchain-enabled IoT
network. Journal of Parallel and Distributed Computing,
164, 55-68. https://doi.org/10.1016/j.jpdc.2022.01.030

Moradibaad, A., & Mashhoud, R. J. (2018). Use dimensionality
reduction and SVM methods to increase the penetration rate
of computer networks. arXiv preprint arXiv: 1812.03173.

Mutholib, A., Rahim, N. A., Gunawan, T. S., & Kartiwi, M.
(2025). Trade-space exploration with data preprocessing
and machine learning for satellite anomalies reliability
classification. IEEE Access, 13, 35903-35921. https://doi.
org/10.1109/ACCESS.2025.3543813

Najafimehr, M., Zarifzadeh, S., & Mostafavi, S. (2022).
A hybrid machine learning approach for detecting unpre-
cedented DDoS attacks. Journal of Supercomputing, 78(6),
8106-8136. https://doi.org/10.1007/s11227-021-04253-x

Ouyang, S., Liu, Z. W,, Li, Q., & Shi, Y. L. (2013). A new
improved entropy method and its application in power
quality evaluation. Advanced Materials Research, 706,
1726-1733.  https://doi.org/10.4028/www.scientific.net/
AMR.706-708.1726

Oyucu, S., Polat, O., Tirkoglu, M., Polat, H., Aksoz, A., &
Agdas, M. T. (2023). Ensemble learning framework for
DDoS detection in SDN-based SCADA systems. Sensors,
24(1), 155. https://doi.org/10.3390/s24010155

Patil, N. V., Rama Krishna, C., & Kumar, K. (2020). S-DDoS:
Apache Spark based real-time DDoS detection system.
Journal of Intelligent & Fuzzy Systems, 38(5), 6527-6535.
https://doi.org/10.3233/JIFS-179733

Sahoo, K. S., Tripathy, B. K., Naik, K., Ramasubbareddy, S.,
Balusamy, B., Khari, M., & Burgos, D. (2020). An evolu-
tionary SVM model for DDoS attack detection in software
defined networks. IEEE Access, 8, 132502-132513. https://
doi.org/10.1109/ACCESS.2020.3009733

Saravanan, S., & Balasubramanian, U. M. (2024). UASDAC: An
unsupervised adaptive scalable DDoS attack classification in
large-scale IoT network under concept drift. IEEE Access, 12,
https://doi.org/10.1109/ACCESS.2024.3397512.

Seifousadati, A., Ghasemshirazi, S., & Fathian, M. (2021).
A machine learning approach for DDoS detection on IoT
devices. arXiv preprint arXiv: 2110.14911.

Shendi, M. M., Elkadi, H. M., & Khafagy, M. H. (2020). Real-
time attacks detection model and platform using big data
and machine learning. International Journal of Scientific
and Technology Research, 9(9), 108-116.

Siddigi, M. A., & Pak, W. (2021). An agile approach to identify
single and hybrid normalization for enhancing machine
learning-based network intrusion detection. IEEE Access, 9,
137494-137513. https://doi.org/10.1109/ACCESS.2021.
3118361

Singhal, S., Medeira, P. A,, Singhal, P., & Khorajiya, M. (2020).
Detection of application layer DDoS attacks using big data
technologies. Journal of Discrete Mathematical Sciences and
Cryptography, 23(2), 563-571. https://doi.org/10.1080/
09720529.2020.1729505

Tan, L., Pan, Y., Wu, ], Zhou, |, Jiang, H., & Deng, Y. (2020).
A new framework for DDoS attack detection and defense in
SDN environment. IEEE Access, 8, 161908-161919. https://
doi.org/10.1109/ACCESS.2020.3021435

Toptas, B., & Hanbay, D. (2021). Retinal blood vessel segmen-
tation using pixel-based feature vector. Biomedical Signal
Processing and Control, 70, 103053. https://doi.org/10.1016/
j.bspc.2021.103053

Tuan, T. A, Long, H. V., Son, L. H. Kumar, R,
Priyadarshini, I., & Son, N. T. K. (2020). Performance
evaluation of botnet DDoS attack detection using machine
learning. Evolutionary Intelligence, 13(2), 283-294. https://
doi.org/10.1007/512065-019-00310-w

Ullah, F., Ullah, S., Srivastava, G., & Lin, J. C. W. (2024). IDS-
INT: Intrusion detection system using transformer-based
transfer learning for imbalanced network traffic. Digital
Communications and Networks, 10(1), 190-204. https://
doi.org/10.1016/j.dcan.2023.03.008

Wang, B., Jiang, Y., Liao, Y., & Li, Z. (2024). DDoS-
MSCT: A DDoS attack detection method based on
multiscale convolution and transformer. IET
Information Security, 2024(1), 1056705. https://doi.
org/10.1049/2024/1056705

Yu, X, Yu, W., Li, S, Yang, X., Chen, Y., & Lu, H. (2021). Web
DDoS attack detection method based on semisupervised
learning. Security and Communication Networks, 2021(1),
1-10. https://doi.org/10.1155/2021/9534016


https://doi.org/10.1515/jaiscr-2018-0002
https://doi.org/10.11591/ijai.v10.i2.pp382-388
https://doi.org/10.11591/ijai.v10.i2.pp382-388
https://doi.org/10.1016/j.jpdc.2022.01.030
https://doi.org/10.1109/ACCESS.2025.3543813
https://doi.org/10.1109/ACCESS.2025.3543813
https://doi.org/10.1007/s11227-021-04253-x
https://doi.org/10.4028/www.scientific.net/AMR.706-708.1726
https://doi.org/10.4028/www.scientific.net/AMR.706-708.1726
https://doi.org/10.3390/s24010155
https://doi.org/10.3233/JIFS-179733
https://doi.org/10.3233/JIFS-179733
https://doi.org/10.1109/ACCESS.2020.3009733
https://doi.org/10.1109/ACCESS.2020.3009733
https://doi.org/10.1109/ACCESS.2024.3397512
https://doi.org/10.1109/ACCESS.2021.3118361
https://doi.org/10.1109/ACCESS.2021.3118361
https://doi.org/10.1080/09720529.2020.1729505
https://doi.org/10.1080/09720529.2020.1729505
https://doi.org/10.1109/ACCESS.2020.3021435
https://doi.org/10.1109/ACCESS.2020.3021435
https://doi.org/10.1016/j.bspc.2021.103053
https://doi.org/10.1016/j.bspc.2021.103053
https://doi.org/10.1007/s12065-019-00310-w
https://doi.org/10.1007/s12065-019-00310-w
https://doi.org/10.1016/j.dcan.2023.03.008
https://doi.org/10.1016/j.dcan.2023.03.008
https://doi.org/10.1049/2024/1056705
https://doi.org/10.1049/2024/1056705
https://doi.org/10.1155/2021/9534016

	Abstract
	1. Introduction
	2. Literature review
	2.1. Problem statement

	3. Proposed DDoS attack detection model under big data perspective
	3.1. Data acquisition
	3.2. Preprocessing via improved normalization
	3.3. Feature extraction under big data perspective
	3.3.1. MapReduce framework
	3.3.1.1. Mapper phase
	3.3.1.2. Raw features F<sub>R</sub>
	3.3.1.3. Improved entropy-based features F<sub>IE</sub>
	3.3.1.4. Statistical features, F<sub>S</sub>
	3.3.1.5. Mean
	3.3.1.6. Median
	3.3.1.7. Standard Deviation
	3.3.1.8. Shuffling to reducer phase
	3.3.1.9. Reducer phase
	3.3.1.10. Final output

	3.3.2. The procedure of MapReduce framework with an example

	3.4. Attack detection phase
	3.4.1. Improved SVM classifier
	3.4.2. NN


	4. Results and discussion
	4.1. Simulation procedure
	4.2. Dataset1 description
	4.3. Dataset2 description
	4.4. Performance analysis
	4.5. Evaluation of positive, negative, and other metrics for Dataset 1
	4.6. Evaluation of positive, negative, and other metrics for dataset 2
	4.7. ROC analysis using Dataset1 and Dataset2
	4.8. Ablation analysis of ISVM+NN based attack detection for Dataset1 and Dataset2
	4.9. Statistical evaluation of proposed and conventional models in terms of accuracy for Dataset1 and Dataset2
	4.10. Analysis on T-test for Dataset1 and Dataset2
	4.11. Friedman test evaluation for Dataset1 and Dataset2
	4.12. Analysis on Wilcoxon test for Dataset1 and Dataset2
	4.13. Comparison of DDoS detection classifiers across two Datasets using confidence intervals (CI) based on accuracy
	4.14. Proposed ISVM+NN model using different kernel functions across two Datasets
	4.15. Computational time analysis
	4.16. Discussion

	5. Conclusion
	Disclosure statement
	Abbreviations
	References

