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A B S T R A C T

The key difficulty lies in accurately classifying the relevant genes through analysis and selection. A variety of 
methods are used to classify the genes. However, in the selection of numerous genes in the huge dimensional 
microarray data, only a limited amount of success has been achieved. Thus, this study focuses on designing a new 
cancer classification framework. In the initial stage, the microarray and seq expression information is attained 
from the standard datasets. Next, the pre-processing is performed using NAN removal and the missing value 
removal from the samples to convert it into a numeric feature matrix for making the data suitable for further 
levels of processing. Then, the Modified Sandpiper Optimization Algorithm (MSOA) is suggested for confirming 
the optimal gene from the pre-processed information. Finally, the chosen optimal gene is fed to the cancer 
classification stage, where the Hybrid Deep Learning Framework (HDLF) is suggested by incorporating the Graph 
Convolutional Neural Network (GCNN) with One-Dimensional Convolutional Neural Networks (1D-CNN). The 
parameters of both Graph CNN and 1D-CNN are tuned via the same MSOA. Finally, the experimental results 
confirm that the developed model performs well compared to existing machine learning and currently utilized 
deep learning methods for cancer classification. The precision of the proposed model is 91.78 %.

1. Introduction

Currently, one primary issue of death is cancer (Wang et al., 2007), 
and microarray data-derived expression of the gene patterns has been 
discovered as promising cancer diagnostic indicators. In the medical 
field, cancer research has been going on for hundreds of years. 
Numerous academic areas are involved in the study of cancer causes. 
Numerous biological microarray studies have been carried out as a first 
step in the research of potential treatment that aims only to gather 
additional information (Muhammad et al., 2023; Jiaji et al., 2023; Xu 
et al., 2007). Early cancer detection is necessary because treating pa
tients is difficult when it comes final stages of the disease. An accurate 
cancer prognosis is important for patients to receive appropriate care 

(Leung and Hung, 2010). Due to the complexity of gene expression 
levels within the human body, cancer detection is challenging. It is 
well-recognized that gene expression levels hold significant clues to the 
fundamental issues surrounding the treatment and prevention of ill
nesses (Houssein et al., 2021). Detailed and thorough routes and also 
network-based notes with regulatory linkages should be taken into 
consideration to unveil the biology of cancer across several scale levels 
(Chakraborty andMaulik, 2014). To understand the connections be
tween transcription factors and the genes they are targeting, gene reg
ulatory networks have received extensive study. In cancer genomics, 
modelling the cellular and molecular events that occur during the pro
gression of the tumour by creating networks of gene modification is of 
utmost importance (Rabia et al., 2023).
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Microarrays are utilized to simultaneously evaluate thousands of 
gene interactions and provide a global picture of cellular activity. The 
most prevalent and significant feature of functional genomics is the 
classification of microarray data. Utilizing microarray data entails cat
egorizing patient samples into several classes following their gene 
expression profiles (Shen and Tan, 2005). To describe the comprehen
sive aspect of the cell function of a gene by gene methodologies, the 
microarray method is introduced. Microarray technology is also utilized 
to detect the activity of every gene throughout the entire genome in a 
single experiment (Harvey and Ji, 2017). The study of the genetic causes 
of cancer using microarray studies results in the development of 
cutting-edge therapeutic designs for the medical sector (Nguyen and 
Nahavandi, 2016). However, the tiny sample size and huge dimen
sionality of microarray data, classification is still a challenging and 
difficult operation (Maji, 2012). Microarray gene expression studies 
frequently produce a large number of characteristics for a limited 
number of patients, producing a high-dimensional dataset with a tiny 
sample size (Almazrua and Alshamlan, 2022). The genes are connected 
with one another either indirectly or directly, which makes classifying 
the expression of gene data a highly complicated and complex mission 
that naturally calls for the usage of an accurate and potent feature se
lection technique (Rabia, 2022b; 2022a). In recent times, data mining 
techniques are the methodologies that are further employed to examine 
enormous quantities of data.

Classification is a vital process in data mining and machine learning 
that places an instance into the appropriate classification. In (Maulik 
and Chakraborty, 2014), gene expression data in time series were sub
jected to Dynamic Bayesian Networks (DBN) and canonical correlation 
analysis for the involvement of evaluated gene-modifying networks. 
Similarly to this (Prabhakar and Lee, 2020), a characteristics selection 
approach based on the Partial Least Squares (PLS) has been used to 
design gene regulatory networks. By using biological data, particularly 
time series gene expression measurements, Bayesian techniques were 
taken into consideration for network analysis (Peng et al., 2021; 
Samundeeswari and Gunasundari 2023). DBNs have been consistently 
utilized to simulate changes in gene expression over time (Hsieh and 
Chou, 2016) among the several approaches for modelling gene regula
tory networks (Pham et al., 2006). These methods improve the repre
sentation of spatiotemporal input-output interdependence because they 
have the essential capacity to capture the varying time behaviour of the 
primary biological network (Wu et al., 2012). It is used to categorize 
various cancer kinds and can also be used to spot mislabeled data, which 
aids doctors in making a precise diagnosis. DNA expression data con
tains a substantial number of genes (Liu et al., 2019). In actuality, few of 
the characteristics of one sample have significant discriminative infor
mation. Recently, various deep learning models have been used to 
classify cancer efficiently. Further, the diverse research work helps to 
show the importance of the deep learning model, which is stated below. 
(Shams et al., 2023) have developed the entropy-controlled deep 
learning and flower pollination optimization algorithm for detecting 
breast cancer using mammogram images. For extracting the features, the 
deep learning technique is adopted. Also, the serial technique was uti
lized to attain the deep features for a better classification framework 
(Sethy et al., 2023; Shiyang et al., 2023). Additionally, the accurately 
classified outcomes were suggested using the neural network. In 
accordance, the deep learning model can train the inadequate datasets 
for further improvement. (Mamuna et al., 2023) have stated the com
puter diagnosis techniques along with the deep learning techniques. 
Additionally, the Breast cancer (BrC) classification model was adopted 
using deep learning models to show the reliable performance. To facil
itate better outcomes, the data augmentation approach was suggested 
using the CNN approach. Further, the experimentation was done 
through the standard CBIS-DDSM datasets. Consequently, the deep 
learning model was adapted to lower the performance of error rate to 
enhance performance. This paper introduces a novel idea for cancer 
classification on microarrays and seq expression data utilizing deep 

learning, among other newly applied techniques.
The primary contribution of the proposed model is summarised 

below. 

→ Hybrid Deep Learning Framework (HDLF) Integration: The pro
posed research combines GCNN with 1D-CNN, leveraging both 
relational gene information and sequential gene expression data for 
enhanced classification accuracy. The combination of Graph CNN 
and 1D-CNN within the HDLF allows for more precise identification 
of cancer types by leveraging the strengths of both models, leading to 
improved classification performance over existing methods.

→ Modified Sandpiper Optimization Algorithm (MSOA): Implements 
a novel optimized approach for simultaneous gene selection and 
hyperparameter tuning, leading to more accurate and computa
tionally efficient models. MSOA is designed to address the conver
gence issues faced by traditional SOA, providing more reliable and 
stable convergence towards the optimal solution, which is crucial for 
high-dimensional gene selection

→ Optimal Gene Selection Strategy: Employs MSOA to identify the 
most relevant genes from high-dimensional microarray and seq 
expression data, reducing noise and improving model focus on bio
logically significant features. It searches for an optimal subset of 
genes that contribute significantly to accurate cancer classification, 
ensuring that only the genes with the highest predictive power are 
used.

→ Parameter Optimization for Deep Models: Systematically tunes 
crucial parameters such as hidden neuron counts and epochs in both 
GCNN and 1D-CNN, maximizing their individual and combined 
performance. MSOA explores the parameter space for each model, 
determining the best values for hidden neurons, epochs, learning 
rates, and other hyperparameters to maximize classification 
accuracy.

→ Enhanced Feature Extraction: Combines structural information 
from GCNN with sequential pattern recognition from 1D-CNN, 
providing a richer feature set for classification tasks. This model 
utilizes GCNN’s ability to incorporate gene interaction networks, 
capturing complex biological relationships that traditional models 
neglect.

The paper is further provided by the following sections. Section II 
reviews the traditional approaches to cancer classification. Section III 
elaborates on the new cancer classification using microarray data with 
an advanced deep-learning model. Section IV explains the MSOA algo
rithm based on the optimal gene selection for the microarray cancer 
classification. Section V explored the proposed HDLF framework with 
the help of parameter optimization. Section VI explained the discussions 
and the results of the recommended model. The final Section VII finishes 
the developed cancer classification model.

2. Literature review

2.1. Systematic works

Fathi et al., (2021) have explained hybrid cancer types and multiple 
machine learning methodologies were utilized in the hybrid method. To 
optimise the high depth hyper hyperparameter, Grid Search 
Cross-Validation (CV) was used. There were seven best microarray 
cancer datasets were utilized to estimate the methodology. To find out 
which characteristics were more helpful and related using the existing 
model, multiple performances were used that contained accuracy for the 
classification, sensitivity, specificity, F1-score, and AUC. The recom
mended method highly reduces the amount of genes needed for cate
gorization, chooses the primary informative characteristics, and 
enhances categorisation correctness based on the results.

Kourou et al., (2019) have found the genes that perform as control
lers and mediate the activities of transcription metrics that were found in 
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every promoter of our multiple explained gene sets. These characteris
tics gave the strongest factors for differentiating the tumours from or
dinary samples utilizing a Deep Belief Network (DBN)-based 
classification method. In accordance, the Public functioned differential 
expression analysis, functional repository, and Gene Expression 
Omnibus (GEO) of the microarray datasets are gathered. Here, the DBN 
model is used to select the particular genes and find out the character
istics that could correctly differentiate the samples into the tumors and 
the control measures.

El Kafrawy et al. (2021) have combined the ensemble mRMRe, in a 

hybrid method for the selection of the gene considered as 
(SVM-mRMRe) with embedded SVM coefficients called features 
ranking. This methodology offers an effective model to combine the 
ensemble, filter-based, as well as embedded models that were per
formed. The method was assessed utilizing eight of the highly popular 
microarray datasets for multiple stages of cancer. Four alternative 
classifiers like Random Forest (RF), Multilayer Perception (MLP), SVM, 
and k-Nearest Neighbors (k-NN) were evaluated for the selected subset 
of features. The computational results have explained that the explained 
model has improved the distinction of cancer from benign tissues while 
requiring less time and dimensionality. Additionally, the gene’s bio
logical interpretation chosen for the brain cancer dataset accords with 
the outcomes of pertinent scientific studies and was crucial for pre
dicting the prognosis of patients.

Rojas et al., (2020) have explained a Memetic Cellular Genetic Al
gorithm (MCGA) to address the characteristics selection issue of cancer 
microarray datasets. Colon, lymphoma, and leukaemia data from the 
literature were used for implementation. Other well-known meta-
heuristic tactics have been contrasted with MCGA. The outcomes have 
shown that their approach can offer effective ways.

Othman et al., (2020) have implemented a hybrid multi-objective 
cuckoo search with the help of evolutionary operators for gene selec
tion. According to this essay, the evolutionary operators’ two-time 
mutation and one-time crossover have been applied. The goal of this 
study was to enhance the dimensions’ values and capacity for explor
atory search.

Wu and Wang, (2019) have explained a Complex Network (CN) 
classifier was allegedly used to carry out the classification task, ac
cording to the structure was started using an algorithm, allowing input 
variables to be chosen across layered various activation functions and 
connections for various nodes. Then, using the parameters stored in the 
classifier, an optimal structure was found using a hybrid approach that 
used particle swarm optimization and genetic programming techniques. 
We built a basic classifier based on various feature sets, including 
Spearman’s and Pearson’s correlation, Cosine coefficient, Fisher ratio, 
and Euclidean distance, to ensure variety in the ensemble classifiers. 
According to the experimental findings, a single classifier can be utilized 
to make cutting-edge results and however, the ensemble made superior 
outcomes.

Shah et al., (2020) have explained a hybrid deep learning model 
based on the Laplacian Score-Convolutional Neural Network (LS-CNN) 
for the categorization of specific cancer data. Haznedar et al., (2021)
have suggested a hybrid technique based on the Fuzzy C-Means Clus
tering (FCM), the Simulated Annealing (SA) algorithm, and the Adaptive 
Neuro-Fuzzy Inference System (ANFIS). The execution of the recom
mended model was contrasted to other distinct algorithms and also the 
other statistical techniques were adapted. The outcomes of the demon
strated FCM-based ANFIS were adapted with the SA algorithm to cate
gorize the cancer datasets.

Shoaib et al. (2025) have proposed a pre-trained CNN model for 
classifying brain tumours from CT images. The softmax activation of this 
model was used for extracting the relevant features, and they were given 
to the principal component analysis for the dimension reduction.

Whig et al. (2025) have presented an unsupervised machine learning 
model for classifying the different types of bone marrows. This model 
was well suited for the clinical decision-making process, also enhancing 
the accuracy of the diagnostic task. The experimental results showed 
that the proposed model attained compelling accuracy in cancer 
detection.

Badashah et al. (2025) have developed an image processing-based 
machine learning model for detecting bone cancer. Here, the Gaussian 
elimination was done to enhance the quality of the images. Finally, 
sufficient data was used for training and testing the proposed model to 
get accurate results.

Nurtay et al. (2025) have presented DCNN for the effective assess
ment of brain tumours in humans. The customised CNN with the specific 

Table 1 
Benefits and challenges of cancer classification over the traditional models.

Author 
[citation]

Methodology Advantages Limitations

(Fathi 
et al., 
2021)

Decision Tree 
classifier

• This method has 
the potential to 
effectively detect 
the optimal or 
near-optimal sub
sets to provide 
classification 
outcomes.

• It is used to choose 
the informative 
genes to improve 
the performance of 
the method.

• However, 
optimisation 
forecasting using 
other algorithms 
needs to be explored.

(Kourou 
et al., 
2019)

DBN • This technique can 
modify the 
parameters to 
improve the 
classification 
correctness of the 
model.

• It is precise and 
robust.

• The time 
consumption as well 
as the 
interpretability is 
higher.

(El Kafrawy 
et al., 
2021)

Ensemble • This method has 
provided high 
classification 
accuracy and has 
also successfully 
resolved the time 
complexity.

• It is regarded as an 
effective 
informative gene 
selection process to 
detect brain 
cancer.

• This method has 
high complexity, 
limited sample size 
as well as high 
dimensionality that 
degrade the 
performance.

(Rojas 
et al., 
2020)

MCGA • It intends to detect 
the tiny subset of 
useful genes to 
attain higher 
categorisation 
accuracy.

• This method faces 
the issue while 
performing on a 
large dataset.

(Othman 
et al., 
2020)

Multi-objective 
cuckoo search 
algorithms

• It consists of real- 
world clinical and 
biological applica
tions, which highly 
contribute to 
cancer.

• It has the maximum 
number of selected 
genes that increases 
the time duration.

(Wu and 
Wang, 
2019)

CN • It has used a 
standard dataset to 
attain the ideal 
classification 
model.

• This method is 
expensive regarding 
time and cost.

(Shah et al., 
2020)

LS-CNN • It is useful in 
enhancing the 
treatment strategy 
as well as in 
medical discovery.

• The multi-class 
image dataset to 
attain better out
comes is limited in 
this method.

(Haznedar 
al., 2021)

Ensemble • It is regarded as a 
successful model to 
effectively classify 
the disease.

• The implementation 
for training the 
ANFIS model needs 
to be explored.
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layer architecture was trained to accurately detect the brain tumour in 
humans. The robust performance of the model in the cancer classifica
tion is confirmed by the validation.

2.2. Problem statement

The microarray, depending on the gene expression technique, is 
regarded as the essential method for cancer prognosis, treatment as well 
as in diagnosis. It is significantly utilized to measure the gene expression 
level. The microarrays help measure the interaction among thousands of 
genes randomly as well as design the global picture for cellular function. 
The benefits and drawbacks are listed in Table 1. 

→ Conventional models struggle with the curse of dimensionality due 
to the large number of gene features relative to limited data samples, 
leading to overfitting and reduced accuracy. The model employs the 
MSOA to select optimal genes, reducing dimensionality, eliminating 
irrelevant features, and mitigating noise, thereby improving classi
fication accuracy.

→ The presence of noisy, irrelevant, or redundant genes hampers the 
reliability and interpretability of classification results. In the pro
posed model, Missing values and noise are handled through data pre- 
processing steps such as NAN removal and missing value handling, 
ensuring cleaner input data for the model.

→ Identifying the most informative genes from high-dimensional data 
is complex but crucial for improving model performance. Combining 
GCNN and 1D-CNN allows the model to capture complex patterns in 
high-dimensional data while being robust against overfitting.

→ Complex models tend to overfit training data, reducing their ability 
to accurately classify unseen data. Combining GCNN and 1D-CNN 
allows the model to capture complex patterns in high-dimensional 
data while being robust against overfitting.

→ Tuning hyperparameters such as the number of hidden neurons and 
epochs in deep learning models is challenging and time-consuming. 
MSOA optimizes hyperparameters like hidden neurons and epochs, 
enabling efficient and effective training without extensive manual 
tuning.

3. A new cancer classification model using microarray and seq 
data with an advanced deep-learning model

3.1. Microarray cancer classification framework

A group of disorders known as cancer is characterised by unnatural 
cell proliferation. Also, cell proliferation is normal in a healthy body, 
which shows the growth of the cells (Rabia et al., 2019). Based on 
external and internal factors, the genetic cells are harmed, which causes 
them to become tumours. While exposure to substances like radiation, 
UV light from the sun, and chemicals in cigarette smoke are important 
external variables that contribute to cancer, incorrect cell damage and 
division of DNA are the main internal contributors. Due to the intrinsic 
complexity in the data’s nature, including smaller sample size, improved 
dimensionality, an unbalanced number of classes, higher variation of 
feature values, and noisy data structure, analyzing microarray data is a 
very hard job (Jose et al., 2017). Less accurate classification and an 
over-fitting issue have resulted from this. For categorization, the 
microarray cancer data is split into a set of classes, where the authors set 
out to design a machine-learning algorithm (Kiran et al., 2022; 2023). It 
is lacking in strategy for expanding the recommended method to 
multi-class microarray cancer datasets. Additionally, the correctness of 
the categorization on those binary datasets with lower classification 
accuracy scores does not improve. Therefore, a new hybrid-optimized 
deep learning method utilizing microarray data has been imple
mented. Fig. 1 displays the fundamental architecture of the recom
mended model.

The main scope of this study is to implement a novel framework for 
classifying cancer. The microarray and seq expression data is obtained 
from established datasets. The collected data undergoes pre-processing 
through NAN removal and the missing value removal for further pro
cessing. NAN removal and missing value removal are essential pre- 
processing steps aimed at improving data quality and reliability for 
subsequent analysis. Specifically, they serve to eliminate incomplete or 
invalid data points that could negatively impact the performance of the 
classification model. NAN removal involves identifying and removing 
data entries where the value is NaN, which indicates missing or corrupt 
data. This step ensures that only valid numerical data is retained for 
analysis, preventing errors during feature extraction and model training. 
Missing value removal refers to further eliminate samples or features 
that contain missing data, ensuring the dataset consists solely of com
plete information. This process helps to reduce noise and biases caused 

Fig. 1. Architectural illustration of the recommended cancer classification using microarray and seq expression data.
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by incomplete data, thereby enhancing the accuracy and robustness of 
gene selection and classification. As a result, the performance of the data 
is enhanced. Then, for choosing the ideal gene from the pre-processed 
data, the MSOA is recommended. The optimal gene selection is 
described as a crucial step to improve the accuracy and efficiency of 
cancer classification. It involves selecting the most relevant genes from 
pre-processed data to reduce dimensionality and eliminate redundant or 
irrelevant features. Specifically, the MSOA algorithm is utilized for this 
purpose, helping to identify the best subset of genes that contribute 
significantly to differentiate various cancer types. By selecting these 
optimal genes that focus on the most informative features, which en
hances classification performance. This process ultimately leads to a 
more accurate and efficient classification framework, as it reduces noise 
and overfitting associated with high-dimensional data and irrelevant 
features. The optimized gene set serves as a refined input for the deep 
learning classifiers, improving their ability to correctly categorize can
cer types. The selected best gene is then fed into the stage for classifying 
cancer, where the HDLF is suggested by combining the GCNN and 1D- 
CNN.The GCNN is adept at handling the complex relationships and to
pological structures inherent in microarray data, capturing spatial and 
relational features effectively. Meanwhile, the 1D-CNN focuses on 
extracting feature patterns from sequential data, enhancing the model’s 
ability to recognize distinctive gene expression signatures. By inte
grating these two architectures, the HDLF can exploit both the relational 
structure and feature patterns of the data, leading to more precise 
classification outcomes. Additionally, the parameters of both networks, 
such as hidden neuron counts and epochs are optimized using the MSOA 
algorithm, ensuring the model is finely tuned for maximum perfor
mance. This hybrid approach significantly improves the classifier’s ac
curacy, robustness, and ability to assist clinicians in early and reliable 
cancer diagnosis. Here, the same MSOA is used to control the parameters 
of both the GCNN and the 1D-CNN. By utilizing these two methods 
optimal gene is acquired. Then, the developed HDLF model is used to 
classify the cancer effectively. Here, the clinician shows better treatment 
based on the final classified outcomes. Based on the outcomes, the multi- 
disease cancer classification is performed while classifying cancers like 
Central Nervous System Cancer, Lung Cancer, Endometrial Cancer, 
Brain Cancer, Prostate Cancer, Gene Expression, and Microarray. 
Finally, the numerical findings show that the developed model employs 
deep learning approaches for cancer classification.

3.2. Description of microarray cancer data

Initially, the data is collected from the benchmark datasets, which 
are depicted as follows.

Dataset 1 (Haznedar et al., 2017; Statnikov et al., 2005):It is gath
ered from https://data.mendeley.com/datasets/ynp2tst2hh/4: Access 
Date: 2023–02–06. The dataset is Microarray Gene Expression Cancer 
Data. It is mostly utilized for the categorization of microarray cancer 
data and is collected from Rutgers University. It is utilized to record the 
expression stage of thousands of genes simultaneously. It contains only a 
small set of genes that are appropriate for cancer recognition. The total 
number of samples available in this dataset is 1627.

Dataset 2 (Fiorini, 2016; García-Díaz et al., 2020): It collects from 
the given link https://archive.ics.uci.edu/dataset/401/gene+expres: 
Access date: 2023–02–06. The dataset is Gene Expression Cancer 
RNA-Seq Dataset. RNA-Seq (HiSeq) PANCAN data set is part of the 
dataset collection, which includes the gene expressions of the patients 
having multiple types of tumors called PRAD, BRCA, COAD, LUAD, and 
KIRC. It has 801 amounts of instances and 20531 attributes. The tasks 
which are associated with this dataset are clustering and classification. 
Each sample’s RNA-Seq level of the gene expression, as determined by 
the Illumina HiSeq platform, is its variable (attribute). Table 2 shows the 
number of features and instances in Datasets 1 and 2.

The needed data is gathered from the above-mentioned datasets that 
are expressedIxherex = 1,2,…,X; in turn, the variable Xdefines the total 
number of collected data.

Adaptability of the model in handling both types of data: The model 
is adaptable for handling both types of data because it processes 
standardised gene expression features, which are numerical values 
representing gene activity levels. The underlying input to the network is 
process the gene expression vectors, which are comparable regardless of 
whether they originate from DNA microarray data or RNA-seq data, and 
further they are pre-processed into a consistent format.

Input to the Network for Both Data Types: For DNA microarray data, 
the input consists of gene expression levels obtained from microarray 
experiments, formatted as a feature vector where each feature corre
sponds to a specific gene’s expression level. For RNA-seq data, after 
initial processing (such as normalization and feature selection), the 
input similarly becomes a numerical feature vector of gene expression 
levels. In essence, the model’s input layer accepts numerical vectors of 
gene expression data. Since both datasets are converted into this com
mon format, the model operates on the features directly, making it 
flexible and adaptable to handle both data types effectively. The key is 
the feature extraction and pre-processing steps that standardize the 
input data, rather than relying on the original data acquisition 
architecture.

3.3. Pre-processing

The raw dataIxis given as input to the pre-processing step. It is a step 
where the data analysis process and data mining convert the raw data 
into a format that machine learning algorithms and computers can 
evaluate and understand. It has two steps. One is NAN removal, and the 
other is missing value removal.

NAN removal: The first step of the data pre-processing is called NAN 
removal. Here, the original data Ixis given as input. NaN, or Not a 
Number, is a special value used in data frames and numpy arrays to 
indicate a cell’s missing value. Due to this, it affects the data quality and 
does not have the potential to determine the essential features. To 
overcome this, these values are removed and acquiredInan

x .
Missing Value Removal: This is the second phase of the pre- 

processing data. Because of the missing value, the data is not being 
collected properly. So, it creates collection and management errors. The 
elimination of missing values from the dataset may be one way to handle 
the problem. Here, the input is taken asInan

x , where the missing value is 
removed, and the final pre-processed data is indicated byIpre

x .

4. Modified Sandpiper optimization algorithm-based optimal 
gene selection for microarray cancer classification

4.1. Proposed MSOA

Motivation for using the MSOA algorithm: The motivation for 
developing the MSOA arises from the need to overcome the inherent 
limitations of the original Sandpiper Optimization Algorithm (SOA), 
which was initially designed to address complex optimization problems. 
While SOA demonstrated superior performance in evaluating standard 

Table 2 
Number of features and instances of different types of cancer in Datasets1 and 2.

Dataset Types of Cancer / Sample 
Labels

Number of 
Features

Number of 
Instances

Dataset 1 
(Microarray Gene 
Expression 
Cancer Data)

BRCA, KIRC, COAD, LUAD, 
PRAD, Brain_CG_1 to 
Brain_NG_14 (multiple 
brain cancer subtypes)

12000 
attributes

1627 
instances

Dataset 2 (Gene 
Expression 
Cancer RNA-Seq 
Data)

Endometrial Cancer, Lung 
Cancer, Prostate Cancer, 
Central Nervous System 
Cancer, Brain Cancer

20,531 
attributes 
(genes)

801 
instances
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test functions compared to other algorithms, it exhibited several draw
backs that hinder its effectiveness in real-world applications, particu
larly in high-dimensional and intricate problems such as gene selection 
for cancer classification. These limitations include a tendency to 
converge prematurely, getting trapped in local minima, and lacking the 
capability to handle multi-objective and binary optimization problems 
directly, which are crucial aspects when dealing with gene expression 
data, where selecting optimal gene subsets involves multi-faceted 
criteria. Additionally, the original SOA suffers from relatively low 
response times, limiting its efficiency for large datasets and time- 
sensitive scenarios. Recognizing these challenges, researchers pro
posed MSOA to enhance the exploration and exploitation balance, 
improve convergence speed, and incorporate multi-objective and binary 
functionalities effectively. These improvements ensure that the algo
rithm can better navigate complex search spaces, avoid suboptimal so
lutions, and provide more accurate and stable outcomes. Consequently, 
MSOA offers a more robust and versatile optimization tool suitable for 
critical tasks such as optimal gene selection and parameter tuning in 
cancer diagnosis frameworks, ultimately contributing to higher classi
fication accuracy and more reliable results in computational bioinfor
matics applications. Based on the cancer classification, various 
researchers are explored to show their significant performance. How
ever, the existing research often fails to provide better convergence, and 
it also easily traps into the local minima problems. Based on these, an 
SOA algorithm is adopted to achieve its superior outcomes. Here, the 
resolution of optimization issues in the complex structure becomes 
challenging. To alleviate these problems, an MSOA algorithm is 
enhanced to provide the optimal performance. The developed MSOA 
algorithm is implemented for estimating the optimal solutions. The 
previous SOA algorithm evaluated forty-four standard test functions. 
The results of the SOA show that it performs better than the other 
competing optimized algorithms. However, it lacks multi-objective and 
binary versions, and it has a low response time. To overcome that, a new 
proposed MSOA algorithm has been implemented. The MSOA algorithm 
helped to evaluate the optimal gene and parameter tuning on the pro
posed HDLF model.Fig. 2. Flowchart of developed MSOA.

Fig. 3. Diagrammatic representation of the step-by-step process of gene selection using MSOA.
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SOA (Kaur et al., 2020): The Sandpiper algorithm is used to solve 
real-life problems. This algorithm is inspired by the attacking and 
migration characteristics of the sandpipers. The mathematical model of 
MSAO is explored below.

i) Collision avoidance: Here, an extra variable calledDA is used for 
the estimation of the location for the new search agent to prevent 
collision among the neighbouring sandpipers is represented in Eq. (1)

D→PS = DA × Q→PS(w) (1) 

Here, the term D→PSdenotes the place of the search agent that didn’t 
mix with the other search agent, Q→PS indicates the existing position of 
the search agent, w denotes the existing looping, and DA refers to the 
motion of the search agent in the place of searching. In the SOA algo
rithm, there is a variable called DAbut it takes a random number. So it 
reduces the accuracy of the result. So, this proposed method uses a new 
DAestimation that is expressed using Eq. (2). 

DA =
CF − BF
WF − BF

× 2 (2) 

Here CFdenotes the current fitness, BFwhich is expressed as best 
fitness, and also WFrefers to the worst fitness.

The flowchart of the developed MSOA is shown in Fig. 2.

4.2. Optimal gene selection

The pre-processed data is represented asIx. To effectively decrease 
the data, the feature selection method is applied in data pre-processing. 
This helps to locate the precise data models. For a model to predict the 
target variable, feature selection models aim to minimize input variables 

to those that are thought to be most helpful. It eliminates the duplicate 
or unused predictors from the model. Feature selection is a crucial and 
popular dimensionality reduction strategy for data mining that involves 
selecting the appropriate features based on specific criteria. In most 
situations, an exhaustive search for the ideal feature subset is not 
practicable. The most fundamental and difficult problems in feature 
selection are stable feature selection, optimal redundancy removal, and 
the use of auxiliary data and prior knowledge. To overcome these 
problems, a new feature called optimal gene selection usingthe MSOA 
algorithm. The utilization ofthe MSOA algorithm removes the unwanted 
genes to provide the optimal genes. The output of the optimal gene se
lection is referred to asGf . There are 100 features that have been chosen 
before feature selection, and 50 features have been chosen after feature 
selection.

The following Fig. 3 explains the process of gene selection.

5. Advanced microarray cancer classification using a hybrid 
deep learning framework

5.1. Proposed hybrid deep learning framework with parameter 
optimization

The incorporation of GCNN with 1D-CNN in the proposed HDLF is 
driven by the need to effectively leverage the complementary strengths 
of both models to enhance cancer classification accuracy using micro
array data. GCNNs are specially designed to handle graph-structured 
data, capturing complex relationships and interactions between genes 
that are not easily modelled by traditional Euclidean-based neural net
works. By exploiting local connectivity, shift invariance, and the ability 

Fig. 4. Depicts HDLF for the proposed MSOA methodology.
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to incorporate topological information, GCNNs can learn rich, context- 
aware feature representations from gene interaction networks, which 
are critical in understanding the intricate biological pathways involved 
in cancer. Meanwhile, 1D-CNNs excel in processing sequential or one- 
dimensional data, such as gene expression profiles, by automatically 
extracting salient spectral features and capturing local patterns within 
the gene expression sequences. In the integrated HDLF, the GCNN 
component first captures the relational and topological characteristics 
among genes, enhancing the feature space with biologically meaningful 
information. The 1D-CNN then processes the gene expression data to 
extract features based on local sequential patterns. These two modules 
are interconnected and trained jointly, including the parameters such as 
hidden neurons and epochs optimized via the MSOA. This synergy al
lows the framework to effectively model both the gene interaction net
works and the sequential gene expression patterns, leading to more 
discriminative features and, consequently, improved cancer classifica
tion performance. The combined use of GCNN and 1D-CNN thus pro
vides a comprehensive, multi-faceted approach for analyzing 
microarray data, capturing both structural and sequential information 
inherent in biological data, which significantly enhances the robustness 
and accuracy of the classification system. In this proposed model, GCNN 
and 1D-CNN have been combined to acquire the final classified data. 
CNN data representation and classification abilities are aimed to be 
enhanced by GCNNs. Because of the graph’s arbitrary size and complex 
topology, there is no spatial locality, and CNN on graphs is particularly 
challenging to perform. Node ordering is also not fixed. CNNs leverage 
two key aspects that account for their effectiveness: local connection and 
shift in variance. The number of unknown parameters or weights that 
must be calculated is drastically reduced, and the computing cost is 
significantly reduced by parameter sharing. The 1D-CNN, a specific type 
of deep learning neural network, is developed specifically to handle one- 
dimensional input, such as time series data. Despite sharing many 
characteristics with regular CNNs, 1D-CNNs have a few key distinctions 
that make them the best choice for processing one-dimensional data. A 
CNN is good at spotting simple patterns in data that are then used to 
generate more complex patterns in higher layers. The primary benefits 
of the 1D-CNN-based method is suitable for real-time fault detection and 
monitoring. However, the CNN cannot effectively encode the position 
and orientation of objects without a large amount of trained data. The 
position and orientation of objects are not encoded. They struggle to 
categorize photos with various positions. The proposed hybrid deep 
learning framework is used with parameter optimization via MSOA. The 
optimization parameters like epochs in GCNN, hidden units in GCNN, 
Epochs in 1D-CNN, and hidden units in 1D-CNN. The Objective Function 

OF is presented in Eq. (3). 

OF = arg max
{ge,epgcnn ,hngcnn ,ep1dcnn ,hn1dcnn}

[

Acy

]

(3) 

The gene selection is represented byge, an epoch value of GCNN 
denoted byepgcnn, also the hidden units of GCNN are represented byhngcnn. 
Similarly, an epoch value of 1DCNN is denoted byep1dcnn; also, the hid
den units of 1DCNN are represented byhn1dcnn. The gene selection has 10 
values, which range from 0 to the data length. The epoch for GCNN 
limits from 50 to 100. The hidden units of GCNN range from 5 to 255. 
The epoch for GCNN limits from 50 to 100. Also, the hidden units of 1D- 
CNN range from 5 to 255. Here, the parameters like epochs and hidden 
neuron count are in the ranges of 52 and 145. Here, the ReLu activation 
function is performed. Moreover, the batch size lies between 32, and the 
learning rate of 0.01 is considered for the training process. Further, the 
term Acy defines the accuracy measure as how close a given set of cal
culations is to their true value, and it is computed by Eq. (4). 

Acy =
XY + NM

XY + NM + KL + AS
(4) 

The termsASand KLare denoted as false negative and false positive 
values. Also, the values of true negative and true positive repre
sentNMandXY. The upcoming Fig. 4 shows the framework of HDLF.

5.2. Graph convolutional neural network

CNN is very useful for signals explained on regular Euclidean do
mains. GCNNs attempt to improve the data indication and categorizing 
abilities of GCNN (Zhang et al., 2021) of individuals on the spectrum 
using the GCNN classifier into four groups: late mild cognitive impair
ment, early mild cognitive impairment, AD, and cognitively normal. By 
margins that depend on the illness category, the GCNN classifier sur
passes an SVM classifier.

GCNN is a cutting-edge technology for topic staging and AD spec
trum categorization. Local connection and shift in variance are two 
essential characteristics that CNNs make use of and which explain their 
effectiveness. Based on the receptive places that work in nearby neigh
borhoods, CNN feature extraction. To take advantage of translation 
invariance, this results in global parameter sharing across spatial re
gions. In neural networks, parameter sharing greatly minimizes the 
number of unknown parameters or weights that must be computed 
during the training stage and dramatically lowers the computational 
cost. Graph convolution, a linear layer, and a nonlinear activation 
function are the three crucial parts of a GCN. The GCN is a method for 

Fig. 5. The diagrammatic representation of GCNN.

B. Shyamala Gowri et al.                                                                                                                                                                                                                     Computational Biology and Chemistry 120 (2026) 108706 

8 



learning graph-structured data while under semi-supervised supervi
sion. The diagram of the GCNN architecture is shown in Fig. 5.

5.3. 1D-CNN

One particular kind of deep learning neural network, known as a 1D- 
CNN (Mostavi et al., 2020), is created expressly to handle 
one-dimensional input, including audio signals or time series data. 
Although 1D-CNNs are similar to standard CNNs, they differ in a few 
significant ways that make them ideal for handling one-dimensional 
data. A CNN is useful for finding basic patterns in information that are 
used to create more significant patterns in higher layers. The outcomes 
show that when used on spectroscopic datasets, the 1D-CNN had an 
average performance that was better than the other methods examined. 
The main benefit of CNN is that it provides an analytical way to directly 
extract characteristics from the input data’s raw form. Its classification 
and learning skills surpass those of conventional neural networks. As a 
result, a 1D-CNN method for the extraction of spectral character is 
introduced. The CNN contains different layers like pooling, convolution, 
and fully connected. Compared to the other AI methods, CNN gives the 
results. After the augmentation of the data, the specificity and sensitivity 
of the 1D-CNN methods have improved. Hence, the consideration of this 
flattened layer in the 1D-CNN model effectively minimizes the data 
dimensionality issues and could significantly reduce the number of pa
rameters in the fully connected layers. Finally, the accurate classifica
tion performance is achieved using the learned features, which shows 
accurate performance. To acquire dimensionality-reduced feature data, 

the convolutional layer is located behind the input layer, where the local 
feature extraction is carried out. The convolution layer d(i)is expressed 
below in Eq. (5). 

d(i) = Y ⊗ Gi,∀i ∈ [1,…, I] (5) 

The convolution layer is followed by the pooling layer and has the 
ability to further reduce the feature vector’s dimensionality, improve the 
network’s robustness, and retrieve lower-resolution feature data. Thus, 
it prevents overfitting during training and boosts the network’s common 
efficiency. Fig. 6 shows the diagrammatic representation of a 1D-CNN.

Reshaping process in the flatten layer: The flatten layer in the 1D- 
CNN model plays a crucial role in reshaping the extracted feature 
maps into a one-dimensional vector, making them compatible for sub
sequent fully connected layers. In our implementation, after the con
volutional and pooling layers, the feature maps are flattened using the 
Flatten () function in Python’s Keras library. Specifically, the parameters 
involved include the dimensions of the feature maps prior to flattening, 
which depend on the input data size, the kernel size, the stride, and the 
pooling parameters are set during the convolution and pooling opera
tions. For example, assuming the input data has a length of 10,000 
features, and the convolutional layer utilizes a kernel size of 3 with 
stride 1 and ’valid’ padding, the output size after convolution would be 
(10,000–3 +1)= 9998 features per filter. If 64 filters are applied, the 
resulting feature map would have dimensions (9998, 64). When passing 
through a pooling layer (e.g., max pooling with pool size 2), the di
mensions reduce further by half, resulting in an output shape of 
approximately (4999, 64). The flattened layer then reshapes this multi- 
dimensional tensor into a 1D vector of size 4999 × 64 = 319,936 fea
tures, which serve as input to the dense layers. This reshaping process 
minimizes data dimensionality issues by transforming complex feature 
maps into a manageable vector form, significantly reducing the number 
of parameters in subsequent layers.

6. Simulation findings

6.1. Implementation platform

This designed cancer classification method using microarray and seq 

Fig. 6. The architecture of 1D-CNN is used in the proposed method.

Table 3 
Simulation parameters of the designed method for the cancer classification 
framework.

Algorithm Parameters Values

SOA Iteration 25
Number of population 10
Sandpiper control frequency 2–0

Proposed MSOA Total number of population 10
Maximum iteration 25
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data was implemented in the Python platform. Based on the maximum 
iteration and population size, the offered model is validated, which 
shows the value of 25 and 10. Thus, the comparison algorithms like 
Honey Badger Algorithm (HBA)-HDLF (Vaiyapuri et al., 2022), Deer 

Hunting Optimisation Algorithm (DHOA)-HDLF (Brammya et al., 2019), 
Sunflower Optimization (SFO)-HDLF (Gomes et al., 2019), and 
SOA-HDLF (Kaur et al., 2020) were taken. Consequently, conventional 
classifier models were considered as DT (Fathi et al., 2021), DBN 

Fig. 7. K-fold performance evaluation of developed cancer classification method using microarray and seq data compared with dataset 1 concerning (a) Accuracy, 
(b) F1-Score, (c) FNR,(d) FPR,(e) MCC and (f) Precision.
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(Kourou et al., 2019), 1D-CNN (Mostavi et al., 2020), and Ensemble 
(Haznedar et al., 2021), respectively. The data is split into two phases: 
training and testing. Further, 75 % of the data is validated in the training 
phase and the remaining 25 % of the data is given in the testing phase. 

The simulation parameter for the developed model is listed in Table 3.

Fig. 8. K-fold performance evaluation of the proposed method using microarray and seq data compared with a traditional classifier model for dataset 1 in terms of(a) 
Accuracy, (b) F1-Score, (c) FNR,(d) FPR,(e) MCC and (f) Precision.
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6.2. Performance measures

Precision: The localised results and the related value of the anomaly 
detected are known as precision. 

As =
XY

XY + AS
(6) 

Specificity: Specificity is estimated by the probability of a negative 

Fig. 9. Performance analysis of the developed method using microarray and seq data for dataset 1 concerning (a) Accuracy, (b) F1-Score, (c) FNR,(d) FPR,(e) MCC, 
and (f)Precision.
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rate. 

spec =
NM

NM + AS
(7) 

FPR and FNR: The False Positive Rate evaluates the value that is 
identified by mistake. On the other side, the False Negative Rate esti
mates the abnormalities not correctly, even if it has the images. 

Fig. 10. Performance evaluation of proposed cancer classification method using microarray and seq data compared with traditional classifier model for dataset 1 
concerning (a) Accuracy, (b) F1-Score, (c) FNR,(d) FPR,(e) MCC, and (f) Precision.
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FPR =
KL

KL + XY
(8) 

FNP =
NM

NM + XY
(9) 

Recall: It is the Metric that calculates the number of correct positive 

values out of all positive rates. 

Re =
XY

XY + AS
(13) 

F1-Score: The ratio between the harmonic value of recall as well as precision. 

Fig. 11. K-fold performance evaluation of developed cancer classification model for dataset 2 regarding(a) Accuracy, (b) F1-Score, (c)FNR,(d)FPR,(e)MCC, 
(f)Precision.
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Fig. 12. K-fold performance evaluation of proposed cancer classification model using microarray and seq data for dataset 2 concerning (a) Accuracy, (b) F1-Score, (c) 
FNR, (d) FPR,(e) MCC and (f) Precision.
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Fig. 13. Performance evaluation of proposed cancer classification model using microarray and seq data for dataset 2 in terms of(a) Accuracy, (b) F1-Score, (c) FNR, 
(d) FPR,(e) MCC, and (f)Precision.
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Fig. 14. Performance analysis of proposed model using microarray and seq data for dataset 2 regarding (a) Accuracy, (b) F1-Score, (c) FNR,(d) FPR,(e) MCC, and 
(f) Precision.
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F1Score = 2 ×
XY × KL
XY + KL

(10) 

FDR: False Discovery Rate is estimated by defining the ratio of false positive and true 

negative and false positive. 

FDR =
KL

XY + KL
(11) 

NPV: Negative Predictive Value is estimated by the ratio between true negative and true 

negative and false negative. 

NPV =
NM

NM + AS
(12) 

MCC: It evaluates the difference between the detected image output and actual image. 

MCC =
XY × NM − KL × AS

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(XY + KL)(XY + AS)(NM + KL)(NM + AS)

√ (13) 

6.3. K-fold analysis of the designed cancer classification model using 
Dataset 1

Fig. 7 and Fig. 8 visualise the K-fold validation of diverse algorithms 
and classifiers for dataset 1 is validated using the developed model. The 
validation is carried out with standard measures to provide efficiency in 
the developed model. While evaluating with the K-fold analysis, it helps 
to build the recommended framework into a more generalized one. 
Moreover, it avoids the problem of overfitting. For the evaluation of k- 
fold analysis, we have divided the whole dataset into 5 sets. For 
example, the K-fold is performed based on a total of 100 data. Here, the 
1-fold takes 1–20, followed by the 2-fold considered 21–40, followed by 
the 3-fold shows 41–60, followed by the 4-fold takes 61–80, and finally 
the 4-fold contains 81–100. If the 1-fold analysis is considered, the 
testing is performed on 1 set, and the rest of the data are in the process of 
training. This execution helps to maximize the performance. This pro
cess is repeated until better solutions are attained. Considering the 
algorithm-based analysis, the F1-score of the proposed model is 
enhanced by 13.2 % of HBA-HDLF, 11.2 % of DHOA-HDLF, 7.3 %, and 
4.9 % of SFO-HDLF and SOA-HDLF. However, these evaluations are 
utilized to provide accurate outcomes. Here, the existing HBA-HDLF 
shows a higher error rate. Certainly, it leads to misclassification errors 
that affect the system’s performance. The classifier-based analysis shows 
that the performance of the offered model achieves 65 %, 60 %, 37 %, 
and 23 % than DT, DBN, 1D-CNN, and Ensemble regarding precision. 
The entire validation shows that the recommended method attained 
enhanced performance.

6.4. Performance evaluation of the developed model using Dataset 1

The overall validation for the cancer classification model is sug
gested to show better outcomes of the designed MSOA-HDLF model. The 
effective analysis is provided based on diverse methods for dataset 1 is 
validated and it is represented in Figs. 9 and 10. Here, the learning 
percentage-based analysis is provided for both existing approaches. 
While considering the accuracy analysis, the learning percentage varies 
based on the different variations like 40, 50, 60, 70, and 80. Here, the 
FNR value of the proposed method is decreased by 18.42 % of HBA- 
HDLF, 22.10 % of DHOA-HDLF, 12.89 %, and 12.36 % of SFO-HDLF 
and SOA-HDLF. The existing SOA-HDLF shows the second greatest 
outcomes while considering the accuracy. Certainly, the DHOA and DT 
approaches cannot provide accurate outcomes, and they cannot handle 
larger datasets. The accuracy analysis recommends that the imple
mented MSOA-HDLF model offers 17 %, 15 %, 12 %, and 9 % better 
than DT, DBN, 1D-CNN, and Ensemble. The findings of the offered 
method proved the effective outcomes.

6.5. Validation of 5-fold of the offered cancer classification model for 
dataset 2

For dataset 2, the K-fold analysis is experimented with various ap
proaches for the cancer classification model is visualized in Figs. 11 and 
12. Also, the five sets of K-fold validation are considered, which helps to 
show the different variations of each set to prove its efficiency. Here, the 
5-fold validation is a technique that is utilized for cross-validation. In 5- 
fold validation, 25 % of the data is utilized for testing. Cross-validation 
involves dividing a dataset into test and training data. In addition, the 
dataset is split to employ a cross-validation test. It is utilized to evaluate 
the expert systems and also to detect overfitting issues. It is mainly 
utilized for understanding the performance of the algorithm. Further, 
the performance of the developed method is improved by 4.9 % of HBA- 

Table 4 
Performance validation of the suggested cancer classification model using 
microarray and seq data over algorithms.

Measures HBA- 
HDLF (
Vaiyapuri 
al., 2022)

DHOA- 
HDLF (
Brammya 
al., 2019)

SFO-HDLF 
(Gomes 
et al., 
2019)

SOA-HDLF 
(Kaur 
et al., 
2020)

MSOA- 
HDLF

Dataset 1
Accuracy 91.51292 91.12341 93.64494 93.17343 96.97622
FDR 31.71402 32.77425 25.2704 26.85632 13.49424
Sensitivity 91.63592 91.20541 93.48093 93.29643 96.98647
FNR 8.364084 8.794588 6.519065 6.703567 3.01353
MCC 0.743435 0.733322 0.799606 0.787418 0.898337
FPR 8.511685 8.892989 6.322263 6.851169 3.02583
Specificity 91.48831 91.10701 93.67774 93.14883 96.97417
Precision 68.28598 67.22575 74.7296 73.14368 86.50576
NPV 91.48831 91.10701 93.67774 93.14883 96.97417
F1-Score 78.2563 77.40084 83.06011 82 91.4468
Dataset 2
Accuracy 91.61049 91.0362 93.7578 93.18352 97.00375
Sensitivity 91.51061 90.88639 93.88265 93.00874 97.12859
Specificity 91.63546 91.07366 93.72659 93.22722 96.97253
Precision 73.22677 71.79487 78.90871 77.44283 88.91429
FPR 8.364544 8.926342 6.273408 6.772784 3.027466
FNR 8.489388 9.113608 6.117353 6.991261 2.871411
NPV 91.63546 91.07366 93.72659 93.22722 96.97253
FDR 26.77323 28.20513 21.09129 22.55717 11.08571
F1-Score 81.35405 80.22039 85.74686 84.51503 92.8401
MCC 0.768134 0.753941 0.82295 0.807444 0.910922

Table 5 
Comparative analysis of the suggested cancer classification model using 
microarray and seq data over techniques.

Measures DT (Fathi 
al., 2021)

DBN (
Kourou 
et al., 
2019)

1D-CNN (
Mostavi 
al., 2020)

Ensemble 
(Haznedar 
al., 2021)

MSOA- 
HDLF

Dataset 1
Sensitivity 90.77491 91.57442 92.68143 94.09594 96.98647
Specificity 90.72571 91.53752 92.65683 93.97294 96.97417
Accuracy 90.73391 91.54367 92.66093 93.99344 96.97622
NPV 90.72571 91.53752 92.65683 93.97294 96.97417
MCC 0.723322 0.743933 0.773284 0.810017 0.898337
F1-Score 76.55602 78.3066 80.80429 83.92759 91.4468
Precision 66.18834 68.39688 71.62548 75.74257 86.50576
FPR 9.274293 8.462485 7.343173 6.02706 3.02583
FNR 9.225092 8.425584 7.318573 5.904059 3.01353
FDR 33.81166 31.60312 28.37452 24.25743 13.49424
Dataset 2
Sensitivity 90.26217 91.51061 92.63421 93.88265 97.12859
FPR 9.17603 8.520599 7.209738 6.117353 3.027466
FNR 9.737828 8.489388 7.365793 6.117353 2.871411
Accuracy 90.71161 91.48564 92.75905 93.88265 97.00375
Specificity 90.82397 91.4794 92.79026 93.88265 96.97253
F1-Score 79.53795 81.12894 83.65276 85.992 92.8401
Precision 71.09145 72.86282 76.25899 79.32489 88.91429
NPV 90.82397 91.4794 92.79026 93.88265 96.97253
FDR 28.90855 27.13718 23.74101 20.67511 11.08571
MCC 0.745175 0.765422 0.796753 0.825911 0.910922
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HDLF, 3.8 % of DHOA-HDLF2.4 %, and 1.5 % of SFO-HDLF and SOA- 
HDLF regarding accuracy. While considering the error analysis in clas
sifiers, the precision of the model shows 57 %, 52 %, 26 %, and 21 % 
improvement over DT, DBN, 1D-CNN, and Ensemble. This validation 
shows that the offered MSOA-HDLF-based cancer classification model 

provides better performance.

6.6. Performance estimation of the developed model for Dataset 2

Fig. 13 shows a superior analysis of the recommended approach in 
contrast with various algorithms. Here, the proposed model is improved 
over 24.0 % of HBA-HDLF, 32.5 % of DHOA-HDLF 18.0 %, and 12.0 % 
of SFO-HDLF and SOA-HDLF based on precision. Fig. 14 shows the 
performance evaluation of the recommended model in contrast with the 
existing classifier model for dataset 2. Considering 35, the precision of 
the offered method is enhanced by 29.2 % of DT, 28.0 % of DBN, 25.6 % 
1D-CNN, and 23.1 % of Ensemble accordingly. Thus, the proposed 
model is used for the effective and early detection of cancer to save the 
lifespan of humans. The proposed model can determine the level of a 
thousand genes in a single experiment to accurately determine the 
presence of cancer in humans, which assists clinicians in making de
cisions for cancer-affected patients.

6.7. Numerical analysis

The comparison of the designed cancer classification model on 
diverse metrics is given in Tables 4 and 5. The MSOA-HDLF shows better 
results than the other traditional methods. The proposed MSOA-HDLF 
methodology has 96.9 % accuracy. In addition, the FNR of the pro
posed cancer classification model is 3.01 % while the existing models, 
such as HBA-HDLF, DHOA-HDLF, SFO-HDLF, and SOA-HDLF, attained 
the FNR of 8.364 %, 8.79 %, 6.519 %, and 6.703 % in the cancer clas
sification. The lower FNR of the suggested model indicates that it can 
effectively classify the cancer-affected patient to extend their overall life 
span.

6.8. Analysis based on Convergence

THE DEVELOPED MODEL IS VALIDATED BASED ON THE CONVERGENCE ANALYSIS IN 

Fig. 15. AS THE ITERATION IN THE ANALYSIS INCREASED, THE COST FUNCTION OF THE 

MODEL WOULD DECREASE AUTOMATICALLY. THE RAPID CONVERGENCE RATE OF THE 

PROPOSED ALGORITHM IS VERIFIED BY Fig. 15, AND IT IS ATTAINED BECAUSE OF THE 

IMPROVED RANDOM PARAMETER OF THE PROPOSED MSOA. THIS IMPROVED RANDOM 

NUMBER HELPS REACH THE GLOBAL OPTIMAL SOLUTION WITH MINIMUM ITERATION VALUE, 
AND IT DOES NOT FALL INTO THE CONDITION OF THE LOCAL OPTIMAL WHILE SEARCHING FOR 

THE SOLUTION IN THE SEARCH SPACE.

Fig. 15. Performance estimation based on convergence regarding (a) Dataset 1 and (a) Dataset 2.

Table 6 
Overall performance analysis of the developed model.

Measures DSCCNet (
Maryam et al., 
2023)

Inception 
ResNetV2 (
Mamoona et al., 
2023)

DCNNBT (
Mohd et al., 
2023)

MSOA- 
HDLF

Dataset 1
Accuracy 93.34 93.66 93.97 96.97
Sensitivity 93.17 93.54 93.84 96.98
Specificity 93.38 93.69 93.99 96.97
Precision 73.79 74.77 75.76 86.50
FPR 6.617 6.309 6.002 3.025
FNR 6.826 6.457 6.150 3.013
NPV 93.38 93.69 93.99 96.97
FDR 26.205 25.22 24.23 13.49
F1-Score 82.35 83.11 83.84 91.44
MCC 79.14 80.03 80.89 89.83
Dataset 2
Accuracy 93.56 93.96 94.28 97.00
Sensitivity 93.51 93.88 94.13 97.13
Specificity 93.57 93.98 94.32 96.97
Precision 78.43 79.58 80.56 88.91
FPR 6.43 6.02 5.68 3.03
FNR 6.49 6.12 5.87 2.87
NPV 93.57 93.98 94.32 96.97
FDR 21.57 20.42 19.44 11.09
F1-Score 85.31 86.14 86.82 92.84
MCC 81.74 82.77 83.61 91.09

Table 7 
Ablation study for the recommendedMSOA-HDLF model.

Measures 1DCNN GCNN GCNN+ 1DCNN MSOA-HDLF

Dataset 1
Accuracy 92.06 93.15 94.04 96.98
Sensitivity 92.00 93.05 93.97 96.99
Specificity 92.07 93.17 94.06 96.97
Dataset 2
Accuracy 92.48 93.31 94.26 97.00
Sensitivity 92.76 93.26 94.13 97.13
Specificity 92.42 93.32 94.29 96.97
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6.9. Comparative validation using recent methods

The comparative analysis is performed to validate the recent 
methods for the cancer classification model for datasets 1 and 2 are 
tabulated in Table 6. The performance of the designed method achieves 
13.5 %, 12.2 %, and 11.0 % better performance than DSCC_Net, Incep
tionResNetV2, and DCNNBT regarding MCC. Throughout the empirical 
analysis, the developed model shows effective outcomes. The results 
from the model is helpful for determining the most effective treatment 
for improving the life span of the patient affected with the cancer. The 
proposed model uses gene expression, which helps to offer effective 
therapies to the patient by making accurate predictions.

6.10. Ablation experiment for the developed cancer classification model

The ablation study conducted for the offered cancer classification 
framework is validated in Table 7. The ablation study showed that the 
recommended model attained a higher accuracy of 96.98 % when 
combining all models such as1DCNN, GCNN, and MSOA. The results 

from the ablation study showed that the hybrid model offers a precise 
level of accuracy in the cancer classification and also reduces the mor
tality rate of humans by suggesting effective treatment therapies.

6.11. Statistical performance of the designed framework using diverse 
algorithms

The statistical outcome of the recommended cancer classification 
model using existing algorithms is listed in Table 8. The different mea
sures like best, worst, mean, median, and standard deviation. While 
considering the median-based analysis, the offered MSOA-HDLF model 
shows 3.1 %, 32.0 %, 15.1 %, and 32.% enhancements over HBA-HDLF, 
DHOA-HDLF, SFO-HDLF, and SOA-HDLF. These empirical findings 
suggest that the recommended model shows superior performance over 
the existing approaches. Here, the proposed model uses the microarray 
and seq gene expression data that is more efficiently processed by the 
deep learning model to get an efficient and effective classification 
outcome compared to the other models. In addition, the proposed model 
uses the MSOA for the parameter optimization that greatly reduces the 
chance of misclassification and reduces the error in the cancer classifi
cation process.

Table 8 
Statistical analysis of the recommended framework.

Algorithms HBA-HDLF (Vaiyapuri al., 2022) DHOA-HDLF (Brammya al., 2019) SFO-HDLF (Gomes et al., 2019) SOA-HDLF (Kaur et al., 2020) MSOA- 
HDLF

Dataset 1
Mean 1.740188 1.884313 1.803032 1.715145 1.419061
Worst 2.208421 2.308278 1.833202 2.045684 2.519547
Standard Deviation 0.224602 0.276997 0.01555 0.173944 0.224636
Best 1.628263 1.534511 1.791018 1.618597 1.373207
Median 1.628263 1.848495 1.791018 1.618597 1.373207
Dataset 2
Mean 1.417262 1.794925 1.783624 1.92823 1.461948
Best 1.341805 1.590551 1.532606 1.694477 1.299923
Standard Deviation 0.171732 0.151358 0.330178 0.194216 0.217222
Worst 2.224335 1.969047 2.796438 2.330428 1.791842
Median 1.341805 1.912086 1.532606 1.913051 1.299923

Table 9 
Computational time analysis of the recommended method among algorithms.

TERMS HBA-HDLF (
Vaiyapuri 
al., 2022)

DHOA-HDLF 
(Brammya 
al., 2019)

SFO-HDLF 
(Gomes 
et al., 
2019)

SOA- 
HDLF (
Kaur et al., 
2020)

MSOA- 
HDLF

Dataset 
1

Time 
(sec)

41.4577 49.4671 42.5783 45.8434 37.2147

Dataset 
2

Time 
(sec)

31.3557 36.5472 30.6898 31.8455 37.2147

Table 10 
Analysis based on computational time using diverse classifiers.

TERMS DT (Fathi 
al., 2021)

DBN (
Kourou 
et al., 
2019)

1D-CNN (
Mostavi al., 
2020)

Ensemble (
Haznedar al., 
2021)

MSOA- 
HDLF

Dataset 
1

Time 
(sec)

55.6843 58.4682 52.2356 47.3689 37.2147

Dataset 
2

Time 
(sec)

48.5478 50.7695 46.9432 41.4578 37.2147

Table 11 
Comparision over prior algorithms.

TERMS HBA-HDLF (
Vaiyapuri 
al., 2022)

DHOA-HDLF 
(Brammya 
al., 2019)

SFO-HDLF 
(Gomes 
et al., 
2019)

SOA- 
HDLF (
Kaur 
et al., 
2020)

MSOA- 
HDLF

Dataset 1
Accuracy 91.32 90.08 95.04 93.12 97
Sensitivity 91.28 90.05 95.07 93.17 96.96
Specificity 91.36 90.11 95.02 93.07 97.04
Precision 90.91 89.61 94.75 92.72 96.88
FPR 8.64 9.89 4.98 6.93 2.96
FNR 8.72 9.95 4.93 6.83 3.04
NPV 91.36 90.11 95.02 93.07 97.04
FDR 9.09 10.39 5.25 7.28 3.12
F1-Score 91.10 89.83 94.91 92.95 96.92
MCC 82.63 80.15 90.07 86.23 94.00
Dataset 2
Accuracy 93.58 91.58 89.86 95.4 97.3
Sensitivity 93.55 91.62 89.94 95.39 97.31
Specificity 93.61 91.54 89.78 95.41 97.29
Precision 93.58 91.51 89.76 95.39 97.28
FPR 6.39 8.46 10.22 4.59 2.71
FNR 6.45 8.38 10.06 4.61 2.69
NPV 93.61 91.54 89.78 95.41 97.29
FDR 6.42 8.49 10.24 4.61 2.72
F1-Score 93.57 91.57 89.85 95.39 97.30
MCC 87.16 83.16 79.72 90.80 94.60
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6.12. Computational time analysis

The analysis based on computational time is evaluated using the 
diverse methods for datasets 1 and 2 are provided in Tables 9 and 10. 
The proposed MSOA-HDLF model consumes the time of 37.21 sec in the 
cancer classification process. The lower computational time of the pro
posed model is mainly due to the incorporation of the hybrid model, 
which incorporates the advantages of both models, reducing the overall 
time involved in the cancer classification process.

6.13. Overall analysis of the proposed model

The significant analysis is made using the developed model, where 
the K-fold is performed to provide a reliable performance, which is 
depicted in Tables 11 and 12. Here, the classifiers and algorithms are 
evaluated using the offered MSOA-HDLF model for the cancer classifi
cation model. The performance of the developed model achieves 5.12 %, 
7.3 %, 3.1 %, and 1 % to HBA-HDLF, DHOA-HDLF, SFO-HDLF, and 
SOA-HDLF. The findings show better performance in the developed 
model.

6.14. Comparison of data and parameters before and after optimization

The comparison of the proposed HDLF before and after the param
eter optimization is given in Table 13. It can be seen from Table 13 that 
the proposed HDLF model provides an accuracy of 93.7 % and the after 
the optimization, thr accuracy of the HDLF model is 4.10 % lower if the 
optimization is not applied to the recommended model. So, the results 
indicate that the MSOA shows a great impact on the proposed HDLF, so 
it attained excellent accuracy in the cancer classification.

6.15. Comparison with recent models

Table 14 indicates the comparison of the proposed model with recent 
approaches. Here, the accuracy of the proposed model is 88.30 %, and 
precision of 90.32 %. The higher value of the proposed model indicates 
its efficiency in the cancer classification compared to the pre-trained 
CNN, unsupervised machine learning model, CNN, and Ensemble 
models.

6.16. Discussion on better results of the proposed model

The proposed method is capable of producing excellent results pri
marily due to its comprehensive and integrated approach that combines 
advanced feature selection, parameter optimization, and sophisticated 
deep learning architectures. The utilization of the MSOA for optimal 
gene selection ensures that only the most informative genes are chosen 
from high-dimensional microarray and seq data, reducing redundancy 
and noise that can adversely affect model accuracy. This targeted feature 
selection not only streamlines the data but also mitigates overfitting, 
leading to more reliable and generalizable models. Additionally, the 
systematic tuning of hyperparameters such as hidden neuron counts and 
epochs in both the GCNN and 1D-CNN via MSOA ensures that the 
models are configured at their optimal settings, further boosting clas
sification performance. The hybrid deep learning framework leverages 

Table 12 
Comparison over prior techniques.

TERMS DT (
Fathi 
al., 
2021)

DBN (
Kourou 
et al., 
2019)

1D-CNN (
Mostavi al., 
2020)

Ensemble (
Haznedar al., 
2021)

MSOA- 
HDLF

Dataset 1
Accuracy 90.12 94.16 92.28 95.92 97
Sensitivity 90.13 94.33 92.35 95.89 96.96
Specificity 90.11 94.00 92.21 95.95 97.04
Precision 89.62 93.71 91.82 95.73 96.88
FPR 9.89 6.00 7.79 4.05 2.96
FNR 9.87 5.67 7.65 4.11 3.04
NPV 90.11 94.00 92.21 95.95 97.04
FDR 10.38 6.29 8.18 4.27 3.12
F1-Score 89.87 94.02 92.09 95.81 96.92
MCC 80.23 88.32 84.55 91.83 94.00
Dataset 2
Accuracy 92.58 90.66 94.36 96.34 97.3
Sensitivity 92.55 90.74 94.35 96.35 97.31
Specificity 92.61 90.58 94.37 96.33 97.29
Precision 92.58 90.56 94.35 96.31 97.28
FPR 7.39 9.42 5.63 3.67 2.71
FNR 7.45 9.26 5.65 3.65 2.69
NPV 92.61 90.58 94.37 96.33 97.29
FDR 7.42 9.44 5.65 3.69 2.72
F1-Score 92.56 90.65 94.35 96.33 97.30
MCC 85.16 81.32 88.72 92.68 94.60

Table 13 
Comparison of data and parameters before and after optimization.

Model Accuracy (Before 
Optimization)

Accuracy (After 
Optimization - MSOA)

Improvement 
(%)

1D- 
CNN

88.50 % 91.20 % 2.70 %

GCNN 87.30 % 90.80 % 3.50 %
HDLF 89.60 % 93.70 % 4.10 %

Table 14 
Comparison of the proposed model with recent models.

TERMS Pretrained CNN (Shoaib et al. 
2025)

Unsupervised machine learning model (Whig, et al. 
2025)

CNN Nurtay, et al. 
(2025)

Ensemble (Haznedar al., 
2021)

MSOA- 
HDLF

Dataset 1
Accuracy 84.85378 87.82191 80.44522 82.71497 88.30205
Sensitivity 82.65993 85.28428 77.68663 79.722 86.38298
Specificity 87.21668 90.59361 83.58209 86.14232 90.32258
Precision 87.44435 90.82814 84.32769 86.82102 90.3829
FPR 12.78332 9.406393 16.41791 13.85768 9.677419
FNR 17.34007 14.71572 22.31337 20.278 13.61702
NPV 82.36301 84.93151 76.71233 78.76712 86.30137
FDR 12.55565 9.171861 15.67231 13.17898 9.617097
Dataset 2
Accuracy 84.88132 87.7709 80.03096 82.97214 89.06089
Sensitivity 81.59923 85.24752 77.17602 80.0194 86.66667
Specificity 88.66667 90.51724 83.29646 86.32856 91.63987
Precision 89.25184 90.72708 84.08851 86.93361 91.78082
FPR 11.33333 9.482759 16.70354 13.67144 8.360129
FNR 18.40077 14.75248 22.82398 19.9806 13.33333
NPV 80.68756 84.93428 76.13751 79.17088 86.45096
FDR 10.74816 9.272919 15.91149 13.06639 8.219178
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the strengths of both GCNN’s ability to handle complex graph-structured 
data and 1D-CNN’s proficiency with sequential data, providing a robust 
architecture capable of capturing intricate patterns within gene 
expression data. Moreover, the model’s design incorporates rigorous 
validation techniques like K-fold cross-validation, which enhances its 
stability and reliability. The combination of these elements provides 
precise feature selection, automated hyperparameter tuning, and a 
hybrid architecture that contributes to the model’s high accuracy, 
robustness, and adaptability, making it well-suited for complex tasks 
such as cancer classification from microarray and seq data. This 
comprehensive methodology not only enhances the deep learning 
models’ effectiveness but also ensures that the system can generalize 
well to unseen data, resulting in consistently good performance across 
diverse datasets. It shows a brief discussion of the sustainability of the 
developed model in terms of scalability, interpretability, and computa
tional effectiveness, which is described below.

Scalability: Accurate data is needed to provide strong performance 
regarding accuracy to select the best features. If the size of the data 
increases, then it provides significant performance in the larger 
expression of gene data. Thus, the recommended model provides better 
scalable performance in the cancer classification model.

Interpretability:The observation that shows the cause and effect of 
the system. In some instances, the deep learning model shows more 
hidden layers, which makes the interpretability of the model more 
difficult. In the future, the interpretability will be considered using the 
developed model.

Computational analysis: Computational analysis is the amount of 
memory or time that is taken for each step in the calculation. Moreover, 
the computational analysis of the developed model shows better 
outcomes.

Limitations of the database: In larger datasets, it may not have the 
ability tofit into the RAM of desktop computers. Further, it may not be 
reliable and may lose the data. It tends to affect the accuracy of the 
model. In addition to this, a novel method is developed where the pre- 
processing is performed using the NAN removal and missing values. 
Although the larger dataset has been considered for the validation 
process using the developed model. Thus, it significantly chooses the 
optimal features based on the gene selection process. Owing to these, 
larger data are suitable in this proposed methodology to provide accu
rate outcomes. While training the data, an accurate outcome is provided 
to enhance the system’s performance. Hence, the accurate classification 
of cancer is suggested for attaining superior performance.

7. Conclusion

This research work has explored the implementation of a new cancer 
classification framework using microarray and seq data. The microarray 
and seq data were obtained from the different standard datasets. The 
collected data were passed through the phase of pre-processing. Further, 
the MSOA algorithm is suggested to select the optimal genes from the 
pre-processed data. At last, the HDLF model has recommended that the 
optimal gene fed into the cancer classification for attaining better- 
classified outcomes. In accordance, the execution of the method was 
evaluated using different metrics and compared with other existing 
methodologies. By using dataset 1, the k-fold is 2, and the accuracy of 
the proposed model was improved by 5.4 % of HBA-HDLF, 4.8 % of 
DHOA-HDLF, 3.2 % and 2.3 % of SFO-HDLF and SOA-HDLF, respec
tively. The results confirmed the effectiveness of the proposed model in 
the cancer classification process.

Advantages and limitations of the developed model

The implemented model can classify the cancer in the appropriate 
location in an effective way. Thus, it would be more beneficial for the 
clinicians to provide better treatment. Here, the recommended MSOA 
algorithm is performed to optimize the complex parameters to provide 

an optimal solution. Therefore, it enhances the feature propagation, 
which helps to minimize the false errors, and thus it boosts the training 
speed of the model. In accordance, the K-fold analysis is evaluated to 
prove that the designed HDLF model tends to solve issues like over
fitting. Thus, it enhances the performance of the system. To the best of 
our knowledge, the recommended approach shows superiority over the 
existing algorithms, but it also has certain limitations. It does not have 
the facility to be applicable in real-time environments.

Future scope of the developed model

In the future, the developed model will be utilized to evaluate the 
model using real-time data. Consequently, the artificial intelligence will 
be adapted to provide precise performance in the cancer classification 
model. Also, the ensemble models will be used to show the enhanced 
performance of the cancer classification model. The future work will 
focus on integrating larger datasets with more number of instances and 
SMOTE analysis to validate the model’s generalizability.
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