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The key difficulty lies in accurately classifying the relevant genes through analysis and selection. A variety of
methods are used to classify the genes. However, in the selection of numerous genes in the huge dimensional
microarray data, only a limited amount of success has been achieved. Thus, this study focuses on designing a new
cancer classification framework. In the initial stage, the microarray and seq expression information is attained
from the standard datasets. Next, the pre-processing is performed using NAN removal and the missing value
removal from the samples to convert it into a numeric feature matrix for making the data suitable for further
levels of processing. Then, the Modified Sandpiper Optimization Algorithm (MSOA) is suggested for confirming
the optimal gene from the pre-processed information. Finally, the chosen optimal gene is fed to the cancer
classification stage, where the Hybrid Deep Learning Framework (HDLF) is suggested by incorporating the Graph
Convolutional Neural Network (GCNN) with One-Dimensional Convolutional Neural Networks (1D-CNN). The
parameters of both Graph CNN and 1D-CNN are tuned via the same MSOA. Finally, the experimental results
confirm that the developed model performs well compared to existing machine learning and currently utilized
deep learning methods for cancer classification. The precision of the proposed model is 91.78 %.

(Leung and Hung, 2010). Due to the complexity of gene expression
levels within the human body, cancer detection is challenging. It is
well-recognized that gene expression levels hold significant clues to the
fundamental issues surrounding the treatment and prevention of ill-

1. Introduction

Currently, one primary issue of death is cancer (Wang et al., 2007),
and microarray data-derived expression of the gene patterns has been

discovered as promising cancer diagnostic indicators. In the medical
field, cancer research has been going on for hundreds of years.
Numerous academic areas are involved in the study of cancer causes.
Numerous biological microarray studies have been carried out as a first
step in the research of potential treatment that aims only to gather
additional information (Muhammad et al., 2023; Jiaji et al., 2023; Xu
et al., 2007). Early cancer detection is necessary because treating pa-
tients is difficult when it comes final stages of the disease. An accurate
cancer prognosis is important for patients to receive appropriate care

nesses (Houssein et al., 2021). Detailed and thorough routes and also
network-based notes with regulatory linkages should be taken into
consideration to unveil the biology of cancer across several scale levels
(Chakraborty andMaulik, 2014). To understand the connections be-
tween transcription factors and the genes they are targeting, gene reg-
ulatory networks have received extensive study. In cancer genomics,
modelling the cellular and molecular events that occur during the pro-
gression of the tumour by creating networks of gene modification is of
utmost importance (Rabia et al., 2023).
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Microarrays are utilized to simultaneously evaluate thousands of
gene interactions and provide a global picture of cellular activity. The
most prevalent and significant feature of functional genomics is the
classification of microarray data. Utilizing microarray data entails cat-
egorizing patient samples into several classes following their gene
expression profiles (Shen and Tan, 2005). To describe the comprehen-
sive aspect of the cell function of a gene by gene methodologies, the
microarray method is introduced. Microarray technology is also utilized
to detect the activity of every gene throughout the entire genome in a
single experiment (Harvey and Ji, 2017). The study of the genetic causes
of cancer using microarray studies results in the development of
cutting-edge therapeutic designs for the medical sector (Nguyen and
Nahavandi, 2016). However, the tiny sample size and huge dimen-
sionality of microarray data, classification is still a challenging and
difficult operation (Maji, 2012). Microarray gene expression studies
frequently produce a large number of characteristics for a limited
number of patients, producing a high-dimensional dataset with a tiny
sample size (Almazrua and Alshamlan, 2022). The genes are connected
with one another either indirectly or directly, which makes classifying
the expression of gene data a highly complicated and complex mission
that naturally calls for the usage of an accurate and potent feature se-
lection technique (Rabia, 2022b; 2022a). In recent times, data mining
techniques are the methodologies that are further employed to examine
enormous quantities of data.

Classification is a vital process in data mining and machine learning
that places an instance into the appropriate classification. In (Maulik
and Chakraborty, 2014), gene expression data in time series were sub-
jected to Dynamic Bayesian Networks (DBN) and canonical correlation
analysis for the involvement of evaluated gene-modifying networks.
Similarly to this (Prabhakar and Lee, 2020), a characteristics selection
approach based on the Partial Least Squares (PLS) has been used to
design gene regulatory networks. By using biological data, particularly
time series gene expression measurements, Bayesian techniques were
taken into consideration for network analysis (Peng et al., 2021;
Samundeeswari and Gunasundari 2023). DBNs have been consistently
utilized to simulate changes in gene expression over time (Hsieh and
Chou, 2016) among the several approaches for modelling gene regula-
tory networks (Pham et al., 2006). These methods improve the repre-
sentation of spatiotemporal input-output interdependence because they
have the essential capacity to capture the varying time behaviour of the
primary biological network (Wu et al., 2012). It is used to categorize
various cancer kinds and can also be used to spot mislabeled data, which
aids doctors in making a precise diagnosis. DNA expression data con-
tains a substantial number of genes (Liu et al., 2019). In actuality, few of
the characteristics of one sample have significant discriminative infor-
mation. Recently, various deep learning models have been used to
classify cancer efficiently. Further, the diverse research work helps to
show the importance of the deep learning model, which is stated below.
(Shams et al., 2023) have developed the entropy-controlled deep
learning and flower pollination optimization algorithm for detecting
breast cancer using mammogram images. For extracting the features, the
deep learning technique is adopted. Also, the serial technique was uti-
lized to attain the deep features for a better classification framework
(Sethy et al., 2023; Shiyang et al., 2023). Additionally, the accurately
classified outcomes were suggested using the neural network. In
accordance, the deep learning model can train the inadequate datasets
for further improvement. (Mamuna et al., 2023) have stated the com-
puter diagnosis techniques along with the deep learning techniques.
Additionally, the Breast cancer (BrC) classification model was adopted
using deep learning models to show the reliable performance. To facil-
itate better outcomes, the data augmentation approach was suggested
using the CNN approach. Further, the experimentation was done
through the standard CBIS-DDSM datasets. Consequently, the deep
learning model was adapted to lower the performance of error rate to
enhance performance. This paper introduces a novel idea for cancer
classification on microarrays and seq expression data utilizing deep
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learning, among other newly applied techniques.
The primary contribution of the proposed model is summarised
below.

— Hybrid Deep Learning Framework (HDLF) Integration: The pro-
posed research combines GCNN with 1D-CNN, leveraging both
relational gene information and sequential gene expression data for
enhanced classification accuracy. The combination of Graph CNN
and 1D-CNN within the HDLF allows for more precise identification
of cancer types by leveraging the strengths of both models, leading to
improved classification performance over existing methods.

— Modified Sandpiper Optimization Algorithm (MSOA): Implements
a novel optimized approach for simultaneous gene selection and
hyperparameter tuning, leading to more accurate and computa-
tionally efficient models. MSOA is designed to address the conver-
gence issues faced by traditional SOA, providing more reliable and
stable convergence towards the optimal solution, which is crucial for
high-dimensional gene selection

— Optimal Gene Selection Strategy: Employs MSOA to identify the
most relevant genes from high-dimensional microarray and seq
expression data, reducing noise and improving model focus on bio-
logically significant features. It searches for an optimal subset of
genes that contribute significantly to accurate cancer classification,
ensuring that only the genes with the highest predictive power are
used.

— Parameter Optimization for Deep Models: Systematically tunes
crucial parameters such as hidden neuron counts and epochs in both
GCNN and 1D-CNN, maximizing their individual and combined
performance. MSOA explores the parameter space for each model,
determining the best values for hidden neurons, epochs, learning
rates, and other hyperparameters to maximize -classification
accuracy.

— Enhanced Feature Extraction: Combines structural information
from GCNN with sequential pattern recognition from 1D-CNN,
providing a richer feature set for classification tasks. This model
utilizes GCNN’s ability to incorporate gene interaction networks,
capturing complex biological relationships that traditional models
neglect.

The paper is further provided by the following sections. Section II
reviews the traditional approaches to cancer classification. Section III
elaborates on the new cancer classification using microarray data with
an advanced deep-learning model. Section IV explains the MSOA algo-
rithm based on the optimal gene selection for the microarray cancer
classification. Section V explored the proposed HDLF framework with
the help of parameter optimization. Section VI explained the discussions
and the results of the recommended model. The final Section VII finishes
the developed cancer classification model.

2. Literature review
2.1. Systematic works

Fathi et al., (2021) have explained hybrid cancer types and multiple
machine learning methodologies were utilized in the hybrid method. To
optimise the high depth hyper hyperparameter, Grid Search
Cross-Validation (CV) was used. There were seven best microarray
cancer datasets were utilized to estimate the methodology. To find out
which characteristics were more helpful and related using the existing
model, multiple performances were used that contained accuracy for the
classification, sensitivity, specificity, F1-score, and AUC. The recom-
mended method highly reduces the amount of genes needed for cate-
gorization, chooses the primary informative characteristics, and
enhances categorisation correctness based on the results.

Kourou et al., (2019) have found the genes that perform as control-
lers and mediate the activities of transcription metrics that were found in
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Table 1
Benefits and challenges of cancer classification over the traditional models.

Author Methodology Advantages Limitations

[citation]

(Fathi Decision Tree e This method has e However,
et al., classifier the potential to optimisation
2021) effectively detect forecasting using

the optimal or other algorithms
near-optimal sub- needs to be explored.
sets to provide
classification
outcomes.
o It is used to choose
the informative
genes to improve
the performance of
the method.

(Kourou DBN e This technique can e The time
et al., modify the consumption as well
2019) parameters to as the

improve the interpretability is
classification higher.
correctness of the
model.

o It is precise and
robust.

(El Kafrawy Ensemble e This method has e This method has
et al., provided high high complexity,
2021) classification limited sample size

accuracy and has as well as high
also successfully dimensionality that
resolved the time degrade the
complexity. performance.

o It is regarded as an
effective
informative gene
selection process to
detect brain
cancer.

(Rojas MCGA e It intends to detect e This method faces
et al., the tiny subset of the issue while
2020) useful genes to performing on a

attain higher large dataset.
categorisation
accuracy.

(Othman Multi-objective o It consists of real- o It has the maximum
et al., cuckoo search world clinical and number of selected
2020) algorithms biological applica- genes that increases

tions, which highly the time duration.
contribute to
cancer.

(Wu and CN e It has used a e This method is
Wang, standard dataset to expensive regarding
2019) attain the ideal time and cost.

classification
model.

(Shah et al., LS-CNN e It is useful in e The multi-class
2020) enhancing the image dataset to

treatment strategy attain better out-
as well as in comes is limited in
medical discovery. this method.

(Haznedar Ensemble o It is regarded as a e The implementation
al., 2021) successful model to for training the

ANFIS model needs
to be explored.

effectively classify
the disease.

every promoter of our multiple explained gene sets. These characteris-
tics gave the strongest factors for differentiating the tumours from or-
dinary samples utilizing a Deep Belief Network (DBN)-based
classification method. In accordance, the Public functioned differential
expression analysis, functional repository, and Gene Expression
Omnibus (GEO) of the microarray datasets are gathered. Here, the DBN
model is used to select the particular genes and find out the character-
istics that could correctly differentiate the samples into the tumors and
the control measures.

El Kafrawy et al. (2021) have combined the ensemble mRMRe, in a
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hybrid method for the selection of the gene considered as
(SVM-mRMRe) with embedded SVM coefficients called features
ranking. This methodology offers an effective model to combine the
ensemble, filter-based, as well as embedded models that were per-
formed. The method was assessed utilizing eight of the highly popular
microarray datasets for multiple stages of cancer. Four alternative
classifiers like Random Forest (RF), Multilayer Perception (MLP), SVM,
and k-Nearest Neighbors (k-NN) were evaluated for the selected subset
of features. The computational results have explained that the explained
model has improved the distinction of cancer from benign tissues while
requiring less time and dimensionality. Additionally, the gene’s bio-
logical interpretation chosen for the brain cancer dataset accords with
the outcomes of pertinent scientific studies and was crucial for pre-
dicting the prognosis of patients.

Rojas et al., (2020) have explained a Memetic Cellular Genetic Al-
gorithm (MCGA) to address the characteristics selection issue of cancer
microarray datasets. Colon, lymphoma, and leukaemia data from the
literature were used for implementation. Other well-known meta--
heuristic tactics have been contrasted with MCGA. The outcomes have
shown that their approach can offer effective ways.

Othman et al., (2020) have implemented a hybrid multi-objective
cuckoo search with the help of evolutionary operators for gene selec-
tion. According to this essay, the evolutionary operators’ two-time
mutation and one-time crossover have been applied. The goal of this
study was to enhance the dimensions’ values and capacity for explor-
atory search.

Wu and Wang, (2019) have explained a Complex Network (CN)
classifier was allegedly used to carry out the classification task, ac-
cording to the structure was started using an algorithm, allowing input
variables to be chosen across layered various activation functions and
connections for various nodes. Then, using the parameters stored in the
classifier, an optimal structure was found using a hybrid approach that
used particle swarm optimization and genetic programming techniques.
We built a basic classifier based on various feature sets, including
Spearman’s and Pearson’s correlation, Cosine coefficient, Fisher ratio,
and Euclidean distance, to ensure variety in the ensemble classifiers.
According to the experimental findings, a single classifier can be utilized
to make cutting-edge results and however, the ensemble made superior
outcomes.

Shah et al., (2020) have explained a hybrid deep learning model
based on the Laplacian Score-Convolutional Neural Network (LS-CNN)
for the categorization of specific cancer data. Haznedar et al., (2021)
have suggested a hybrid technique based on the Fuzzy C-Means Clus-
tering (FCM), the Simulated Annealing (SA) algorithm, and the Adaptive
Neuro-Fuzzy Inference System (ANFIS). The execution of the recom-
mended model was contrasted to other distinct algorithms and also the
other statistical techniques were adapted. The outcomes of the demon-
strated FCM-based ANFIS were adapted with the SA algorithm to cate-
gorize the cancer datasets.

Shoaib et al. (2025) have proposed a pre-trained CNN model for
classifying brain tumours from CT images. The softmax activation of this
model was used for extracting the relevant features, and they were given
to the principal component analysis for the dimension reduction.

Whig et al. (2025) have presented an unsupervised machine learning
model for classifying the different types of bone marrows. This model
was well suited for the clinical decision-making process, also enhancing
the accuracy of the diagnostic task. The experimental results showed
that the proposed model attained compelling accuracy in cancer
detection.

Badashah et al. (2025) have developed an image processing-based
machine learning model for detecting bone cancer. Here, the Gaussian
elimination was done to enhance the quality of the images. Finally,
sufficient data was used for training and testing the proposed model to
get accurate results.

Nurtay et al. (2025) have presented DCNN for the effective assess-
ment of brain tumours in humans. The customised CNN with the specific
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Fig. 1. Architectural illustration of the recommended cancer classification using microarray and seq expression data.

layer architecture was trained to accurately detect the brain tumour in
humans. The robust performance of the model in the cancer classifica-
tion is confirmed by the validation.

2.2. Problem statement

The microarray, depending on the gene expression technique, is
regarded as the essential method for cancer prognosis, treatment as well
as in diagnosis. It is significantly utilized to measure the gene expression
level. The microarrays help measure the interaction among thousands of
genes randomly as well as design the global picture for cellular function.
The benefits and drawbacks are listed in Table 1.

— Conventional models struggle with the curse of dimensionality due
to the large number of gene features relative to limited data samples,
leading to overfitting and reduced accuracy. The model employs the
MSOA to select optimal genes, reducing dimensionality, eliminating
irrelevant features, and mitigating noise, thereby improving classi-
fication accuracy.

— The presence of noisy, irrelevant, or redundant genes hampers the
reliability and interpretability of classification results. In the pro-
posed model, Missing values and noise are handled through data pre-
processing steps such as NAN removal and missing value handling,
ensuring cleaner input data for the model.

— Identifying the most informative genes from high-dimensional data
is complex but crucial for improving model performance. Combining
GCNN and 1D-CNN allows the model to capture complex patterns in
high-dimensional data while being robust against overfitting.

— Complex models tend to overfit training data, reducing their ability
to accurately classify unseen data. Combining GCNN and 1D-CNN
allows the model to capture complex patterns in high-dimensional
data while being robust against overfitting.

— Tuning hyperparameters such as the number of hidden neurons and
epochs in deep learning models is challenging and time-consuming.
MSOA optimizes hyperparameters like hidden neurons and epochs,
enabling efficient and effective training without extensive manual
tuning.

3. A new cancer classification model using microarray and seq
data with an advanced deep-learning model

3.1. Microarray cancer classification framework

A group of disorders known as cancer is characterised by unnatural
cell proliferation. Also, cell proliferation is normal in a healthy body,
which shows the growth of the cells (Rabia et al., 2019). Based on
external and internal factors, the genetic cells are harmed, which causes
them to become tumours. While exposure to substances like radiation,
UV light from the sun, and chemicals in cigarette smoke are important
external variables that contribute to cancer, incorrect cell damage and
division of DNA are the main internal contributors. Due to the intrinsic
complexity in the data’s nature, including smaller sample size, improved
dimensionality, an unbalanced number of classes, higher variation of
feature values, and noisy data structure, analyzing microarray data is a
very hard job (Jose et al., 2017). Less accurate classification and an
over-fitting issue have resulted from this. For categorization, the
microarray cancer data is split into a set of classes, where the authors set
out to design a machine-learning algorithm (Kiran et al., 2022; 2023). It
is lacking in strategy for expanding the recommended method to
multi-class microarray cancer datasets. Additionally, the correctness of
the categorization on those binary datasets with lower classification
accuracy scores does not improve. Therefore, a new hybrid-optimized
deep learning method utilizing microarray data has been imple-
mented. Fig. 1 displays the fundamental architecture of the recom-
mended model.

The main scope of this study is to implement a novel framework for
classifying cancer. The microarray and seq expression data is obtained
from established datasets. The collected data undergoes pre-processing
through NAN removal and the missing value removal for further pro-
cessing. NAN removal and missing value removal are essential pre-
processing steps aimed at improving data quality and reliability for
subsequent analysis. Specifically, they serve to eliminate incomplete or
invalid data points that could negatively impact the performance of the
classification model. NAN removal involves identifying and removing
data entries where the value is NaN, which indicates missing or corrupt
data. This step ensures that only valid numerical data is retained for
analysis, preventing errors during feature extraction and model training.
Missing value removal refers to further eliminate samples or features
that contain missing data, ensuring the dataset consists solely of com-
plete information. This process helps to reduce noise and biases caused
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Table 2
Number of features and instances of different types of cancer in Datasets1 and 2.
Dataset Types of Cancer / Sample  Number of Number of
Labels Features Instances

Dataset 1 BRCA, KIRC, COAD, LUAD, 12000 1627
(Microarray Gene PRAD, Brain_CG_1 to attributes instances
Expression Brain NG_14 (multiple
Cancer Data) brain cancer subtypes)

Dataset 2 (Gene Endometrial Cancer, Lung 20,531 801
Expression Cancer, Prostate Cancer, attributes instances
Cancer RNA-Seq Central Nervous System (genes)

Data) Cancer, Brain Cancer

by incomplete data, thereby enhancing the accuracy and robustness of
gene selection and classification. As a result, the performance of the data
is enhanced. Then, for choosing the ideal gene from the pre-processed
data, the MSOA is recommended. The optimal gene selection is
described as a crucial step to improve the accuracy and efficiency of
cancer classification. It involves selecting the most relevant genes from
pre-processed data to reduce dimensionality and eliminate redundant or
irrelevant features. Specifically, the MSOA algorithm is utilized for this
purpose, helping to identify the best subset of genes that contribute
significantly to differentiate various cancer types. By selecting these
optimal genes that focus on the most informative features, which en-
hances classification performance. This process ultimately leads to a
more accurate and efficient classification framework, as it reduces noise
and overfitting associated with high-dimensional data and irrelevant
features. The optimized gene set serves as a refined input for the deep
learning classifiers, improving their ability to correctly categorize can-
cer types. The selected best gene is then fed into the stage for classifying
cancer, where the HDLF is suggested by combining the GCNN and 1D-
CNN.The GCNN is adept at handling the complex relationships and to-
pological structures inherent in microarray data, capturing spatial and
relational features effectively. Meanwhile, the 1D-CNN focuses on
extracting feature patterns from sequential data, enhancing the model’s
ability to recognize distinctive gene expression signatures. By inte-
grating these two architectures, the HDLF can exploit both the relational
structure and feature patterns of the data, leading to more precise
classification outcomes. Additionally, the parameters of both networks,
such as hidden neuron counts and epochs are optimized using the MSOA
algorithm, ensuring the model is finely tuned for maximum perfor-
mance. This hybrid approach significantly improves the classifier’s ac-
curacy, robustness, and ability to assist clinicians in early and reliable
cancer diagnosis. Here, the same MSOA is used to control the parameters
of both the GCNN and the 1D-CNN. By utilizing these two methods
optimal gene is acquired. Then, the developed HDLF model is used to
classify the cancer effectively. Here, the clinician shows better treatment
based on the final classified outcomes. Based on the outcomes, the multi-
disease cancer classification is performed while classifying cancers like
Central Nervous System Cancer, Lung Cancer, Endometrial Cancer,
Brain Cancer, Prostate Cancer, Gene Expression, and Microarray.
Finally, the numerical findings show that the developed model employs
deep learning approaches for cancer classification.

3.2. Description of microarray cancer data

Initially, the data is collected from the benchmark datasets, which
are depicted as follows.

Dataset 1 (Haznedar et al., 2017; Statnikov et al., 2005):It is gath-
ered from https://data.mendeley.com/datasets/ynp2tst2hh/4: Access
Date: 2023-02-06. The dataset is Microarray Gene Expression Cancer
Data. It is mostly utilized for the categorization of microarray cancer
data and is collected from Rutgers University. It is utilized to record the
expression stage of thousands of genes simultaneously. It contains only a
small set of genes that are appropriate for cancer recognition. The total
number of samples available in this dataset is 1627.
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Dataset 2 (Fiorini, 2016; Garcia-Diaz et al., 2020): It collects from
the given link https://archive.ics.uci.edu/dataset/401/gene-+expres:
Access date: 2023-02-06. The dataset is Gene Expression Cancer
RNA-Seq Dataset. RNA-Seq (HiSeq) PANCAN data set is part of the
dataset collection, which includes the gene expressions of the patients
having multiple types of tumors called PRAD, BRCA, COAD, LUAD, and
KIRC. It has 801 amounts of instances and 20531 attributes. The tasks
which are associated with this dataset are clustering and classification.
Each sample’s RNA-Seq level of the gene expression, as determined by
the Illumina HiSeq platform, is its variable (attribute). Table 2 shows the
number of features and instances in Datasets 1 and 2.

The needed data is gathered from the above-mentioned datasets that
are expressedl herex = 1,2,...,X; in turn, the variable Xdefines the total
number of collected data.

Adaptability of the model in handling both types of data: The model
is adaptable for handling both types of data because it processes
standardised gene expression features, which are numerical values
representing gene activity levels. The underlying input to the network is
process the gene expression vectors, which are comparable regardless of
whether they originate from DNA microarray data or RNA-seq data, and
further they are pre-processed into a consistent format.

Input to the Network for Both Data Types: For DNA microarray data,
the input consists of gene expression levels obtained from microarray
experiments, formatted as a feature vector where each feature corre-
sponds to a specific gene’s expression level. For RNA-seq data, after
initial processing (such as normalization and feature selection), the
input similarly becomes a numerical feature vector of gene expression
levels. In essence, the model’s input layer accepts numerical vectors of
gene expression data. Since both datasets are converted into this com-
mon format, the model operates on the features directly, making it
flexible and adaptable to handle both data types effectively. The key is
the feature extraction and pre-processing steps that standardize the
input data, rather than relying on the original data acquisition
architecture.

3.3. Pre-processing

The raw datal,is given as input to the pre-processing step. It is a step
where the data analysis process and data mining convert the raw data
into a format that machine learning algorithms and computers can
evaluate and understand. It has two steps. One is NAN removal, and the
other is missing value removal.

NAN removal: The first step of the data pre-processing is called NAN
removal. Here, the original data ILis given as input. NaN, or Not a
Number, is a special value used in data frames and numpy arrays to
indicate a cell’s missing value. Due to this, it affects the data quality and
does not have the potential to determine the essential features. To
overcome this, these values are removed and acquiredl}*".

Missing Value Removal: This is the second phase of the pre-
processing data. Because of the missing value, the data is not being
collected properly. So, it creates collection and management errors. The
elimination of missing values from the dataset may be one way to handle
the problem. Here, the input is taken asI}™", where the missing value is

X
removed, and the final pre-processed data is indicated byt"®.

4. Modified Sandpiper optimization algorithm-based optimal
gene selection for microarray cancer classification

4.1. Proposed MSOA

Motivation for using the MSOA algorithm: The motivation for
developing the MSOA arises from the need to overcome the inherent
limitations of the original Sandpiper Optimization Algorithm (SOA),
which was initially designed to address complex optimization problems.
While SOA demonstrated superior performance in evaluating standard
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test functions compared to other algorithms, it exhibited several draw-
backs that hinder its effectiveness in real-world applications, particu-
larly in high-dimensional and intricate problems such as gene selection
for cancer classification. These limitations include a tendency to
converge prematurely, getting trapped in local minima, and lacking the
capability to handle multi-objective and binary optimization problems
directly, which are crucial aspects when dealing with gene expression
data, where selecting optimal gene subsets involves multi-faceted
criteria. Additionally, the original SOA suffers from relatively low
response times, limiting its efficiency for large datasets and time-
sensitive scenarios. Recognizing these challenges, researchers pro-
posed MSOA to enhance the exploration and exploitation balance,
improve convergence speed, and incorporate multi-objective and binary
functionalities effectively. These improvements ensure that the algo-
rithm can better navigate complex search spaces, avoid suboptimal so-
lutions, and provide more accurate and stable outcomes. Consequently,
MSOA offers a more robust and versatile optimization tool suitable for
critical tasks such as optimal gene selection and parameter tuning in
cancer diagnosis frameworks, ultimately contributing to higher classi-
fication accuracy and more reliable results in computational bioinfor-
matics applications. Based on the cancer classification, various
researchers are explored to show their significant performance. How-
ever, the existing research often fails to provide better convergence, and
it also easily traps into the local minima problems. Based on these, an
SOA algorithm is adopted to achieve its superior outcomes. Here, the
resolution of optimization issues in the complex structure becomes
challenging. To alleviate these problems, an MSOA algorithm is
enhanced to provide the optimal performance. The developed MSOA
algorithm is implemented for estimating the optimal solutions. The
previous SOA algorithm evaluated forty-four standard test functions.
The results of the SOA show that it performs better than the other
competing optimized algorithms. However, it lacks multi-objective and
binary versions, and it has a low response time. To overcome that, a new
proposed MSOA algorithm has been implemented. The MSOA algorithm
helped to evaluate the optimal gene and parameter tuning on the pro-
posed HDLF model.

Sort the
genes

Optimal
genes

Fig. 3. Diagrammatic representation of the step-by-step process of gene selection using MSOA.
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SOA (Kaur et al., 2020): The Sandpiper algorithm is used to solve
real-life problems. This algorithm is inspired by the attacking and
migration characteristics of the sandpipers. The mathematical model of
MSAO is explored below.

i) Collision avoidance: Here, an extra variable calledD, is used for
the estimation of the location for the new search agent to prevent
collision among the neighbouring sandpipers is represented in Eq. (1)

Bps =Dj X 6PS(W) @

Here, the term ﬁpsdenotes the place of the search agent that didn’t

mix with the other search agent, aps indicates the existing position of
the search agent, w denotes the existing looping, and D, refers to the
motion of the search agent in the place of searching. In the SOA algo-
rithm, there is a variable called D,but it takes a random number. So it
reduces the accuracy of the result. So, this proposed method uses a new
Dyestimation that is expressed using Eq. (2).

_ CF—BF
- WF —BF
Here CFdenotes the current fitness, BFwhich is expressed as best

fitness, and also WFrefers to the worst fitness.
The flowchart of the developed MSOA is shown in Fig. 2.

Dy 2 (2)

4.2. Optimal gene selection

The pre-processed data is represented asly. To effectively decrease
the data, the feature selection method is applied in data pre-processing.
This helps to locate the precise data models. For a model to predict the
target variable, feature selection models aim to minimize input variables

to those that are thought to be most helpful. It eliminates the duplicate
or unused predictors from the model. Feature selection is a crucial and
popular dimensionality reduction strategy for data mining that involves
selecting the appropriate features based on specific criteria. In most
situations, an exhaustive search for the ideal feature subset is not
practicable. The most fundamental and difficult problems in feature
selection are stable feature selection, optimal redundancy removal, and
the use of auxiliary data and prior knowledge. To overcome these
problems, a new feature called optimal gene selection usingthe MSOA
algorithm. The utilization ofthe MSOA algorithm removes the unwanted
genes to provide the optimal genes. The output of the optimal gene se-
lection is referred to asGy. There are 100 features that have been chosen
before feature selection, and 50 features have been chosen after feature
selection.
The following Fig. 3 explains the process of gene selection.

5. Advanced microarray cancer classification using a hybrid
deep learning framework

5.1. Proposed hybrid deep learning framework with parameter
optimization

The incorporation of GCNN with 1D-CNN in the proposed HDLF is
driven by the need to effectively leverage the complementary strengths
of both models to enhance cancer classification accuracy using micro-
array data. GCNNs are specially designed to handle graph-structured
data, capturing complex relationships and interactions between genes
that are not easily modelled by traditional Euclidean-based neural net-
works. By exploiting local connectivity, shift invariance, and the ability
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to incorporate topological information, GCNNs can learn rich, context-
aware feature representations from gene interaction networks, which
are critical in understanding the intricate biological pathways involved
in cancer. Meanwhile, 1D-CNNs excel in processing sequential or one-
dimensional data, such as gene expression profiles, by automatically
extracting salient spectral features and capturing local patterns within
the gene expression sequences. In the integrated HDLF, the GCNN
component first captures the relational and topological characteristics
among genes, enhancing the feature space with biologically meaningful
information. The 1D-CNN then processes the gene expression data to
extract features based on local sequential patterns. These two modules
are interconnected and trained jointly, including the parameters such as
hidden neurons and epochs optimized via the MSOA. This synergy al-
lows the framework to effectively model both the gene interaction net-
works and the sequential gene expression patterns, leading to more
discriminative features and, consequently, improved cancer classifica-
tion performance. The combined use of GCNN and 1D-CNN thus pro-
vides a comprehensive, multi-faceted approach for analyzing
microarray data, capturing both structural and sequential information
inherent in biological data, which significantly enhances the robustness
and accuracy of the classification system. In this proposed model, GCNN
and 1D-CNN have been combined to acquire the final classified data.
CNN data representation and classification abilities are aimed to be
enhanced by GCNNs. Because of the graph’s arbitrary size and complex
topology, there is no spatial locality, and CNN on graphs is particularly
challenging to perform. Node ordering is also not fixed. CNNs leverage
two key aspects that account for their effectiveness: local connection and
shift in variance. The number of unknown parameters or weights that
must be calculated is drastically reduced, and the computing cost is
significantly reduced by parameter sharing. The 1D-CNN, a specific type
of deep learning neural network, is developed specifically to handle one-
dimensional input, such as time series data. Despite sharing many
characteristics with regular CNNs, 1D-CNNs have a few key distinctions
that make them the best choice for processing one-dimensional data. A
CNN is good at spotting simple patterns in data that are then used to
generate more complex patterns in higher layers. The primary benefits
of the 1D-CNN-based method is suitable for real-time fault detection and
monitoring. However, the CNN cannot effectively encode the position
and orientation of objects without a large amount of trained data. The
position and orientation of objects are not encoded. They struggle to
categorize photos with various positions. The proposed hybrid deep
learning framework is used with parameter optimization via MSOA. The
optimization parameters like epochs in GCNN, hidden units in GCNN,
Epochs in 1D-CNN, and hidden units in 1D-CNN. The Objective Function

OF is presented in Eq. (3).

OF = 3)

arg max
{ ge.epscnn hpgenn epldenn pnldenn }

Acy

The gene selection is represented byge, an epoch value of GCNN
denoted byep¥™, also the hidden units of GCNN are represented byhns™.
Similarly, an epoch value of 1DCNN is denoted byep'®™; also, the hid-
den units of 1DCNN are represented byhn'®™. The gene selection has 10
values, which range from 0 to the data length. The epoch for GCNN
limits from 50 to 100. The hidden units of GCNN range from 5 to 255.
The epoch for GCNN limits from 50 to 100. Also, the hidden units of 1D-
CNN range from 5 to 255. Here, the parameters like epochs and hidden
neuron count are in the ranges of 52 and 145. Here, the ReLu activation
function is performed. Moreover, the batch size lies between 32, and the
learning rate of 0.01 is considered for the training process. Further, the
term Acy defines the accuracy measure as how close a given set of cal-
culations is to their true value, and it is computed by Eq. (4).

XY + NM

Acy=— - T
Y = XY T NM+KL + AS Q)

The termsASand KLare denoted as false negative and false positive
values. Also, the values of true negative and true positive repre-
sentNMandXY. The upcoming Fig. 4 shows the framework of HDLF.

5.2. Graph convolutional neural network

CNN is very useful for signals explained on regular Euclidean do-
mains. GCNNs attempt to improve the data indication and categorizing
abilities of GCNN (Zhang et al., 2021) of individuals on the spectrum
using the GCNN classifier into four groups: late mild cognitive impair-
ment, early mild cognitive impairment, AD, and cognitively normal. By
margins that depend on the illness category, the GCNN classifier sur-
passes an SVM classifier.

GCNN is a cutting-edge technology for topic staging and AD spec-
trum categorization. Local connection and shift in variance are two
essential characteristics that CNNs make use of and which explain their
effectiveness. Based on the receptive places that work in nearby neigh-
borhoods, CNN feature extraction. To take advantage of translation
invariance, this results in global parameter sharing across spatial re-
gions. In neural networks, parameter sharing greatly minimizes the
number of unknown parameters or weights that must be computed
during the training stage and dramatically lowers the computational
cost. Graph convolution, a linear layer, and a nonlinear activation
function are the three crucial parts of a GCN. The GCN is a method for
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Table 3
Simulation parameters of the designed method for the cancer classification
framework.

Algorithm Parameters Values

SOA Iteration 25
Number of population 10
Sandpiper control frequency 2-0

Proposed MSOA Total number of population 10
Maximum iteration 25

learning graph-structured data while under semi-supervised supervi-
sion. The diagram of the GCNN architecture is shown in Fig. 5.

5.3. 1D-CNN

One particular kind of deep learning neural network, known as a 1D-
CNN (Mostavi et al, 2020), is created expressly to handle
one-dimensional input, including audio signals or time series data.
Although 1D-CNNs are similar to standard CNNs, they differ in a few
significant ways that make them ideal for handling one-dimensional
data. A CNN is useful for finding basic patterns in information that are
used to create more significant patterns in higher layers. The outcomes
show that when used on spectroscopic datasets, the 1D-CNN had an
average performance that was better than the other methods examined.
The main benefit of CNN is that it provides an analytical way to directly
extract characteristics from the input data’s raw form. Its classification
and learning skills surpass those of conventional neural networks. As a
result, a 1D-CNN method for the extraction of spectral character is
introduced. The CNN contains different layers like pooling, convolution,
and fully connected. Compared to the other Al methods, CNN gives the
results. After the augmentation of the data, the specificity and sensitivity
of the 1D-CNN methods have improved. Hence, the consideration of this
flattened layer in the 1D-CNN model effectively minimizes the data
dimensionality issues and could significantly reduce the number of pa-
rameters in the fully connected layers. Finally, the accurate classifica-
tion performance is achieved using the learned features, which shows
accurate performance. To acquire dimensionality-reduced feature data,

the convolutional layer is located behind the input layer, where the local
feature extraction is carried out. The convolution layer d(i)is expressed
below in Eq. (5).

di) =Y ®G.Viel,..]] (5)

The convolution layer is followed by the pooling layer and has the
ability to further reduce the feature vector’s dimensionality, improve the
network’s robustness, and retrieve lower-resolution feature data. Thus,
it prevents overfitting during training and boosts the network’s common
efficiency. Fig. 6 shows the diagrammatic representation of a 1D-CNN.

Reshaping process in the flatten layer: The flatten layer in the 1D-
CNN model plays a crucial role in reshaping the extracted feature
maps into a one-dimensional vector, making them compatible for sub-
sequent fully connected layers. In our implementation, after the con-
volutional and pooling layers, the feature maps are flattened using the
Flatten () function in Python’s Keras library. Specifically, the parameters
involved include the dimensions of the feature maps prior to flattening,
which depend on the input data size, the kernel size, the stride, and the
pooling parameters are set during the convolution and pooling opera-
tions. For example, assuming the input data has a length of 10,000
features, and the convolutional layer utilizes a kernel size of 3 with
stride 1 and "valid’ padding, the output size after convolution would be
(10,000-3 +1)= 9998 features per filter. If 64 filters are applied, the
resulting feature map would have dimensions (9998, 64). When passing
through a pooling layer (e.g., max pooling with pool size 2), the di-
mensions reduce further by half, resulting in an output shape of
approximately (4999, 64). The flattened layer then reshapes this multi-
dimensional tensor into a 1D vector of size 4999 x 64 = 319,936 fea-
tures, which serve as input to the dense layers. This reshaping process
minimizes data dimensionality issues by transforming complex feature
maps into a manageable vector form, significantly reducing the number
of parameters in subsequent layers.

6. Simulation findings
6.1. Implementation platform

This designed cancer classification method using microarray and seq
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Fig. 7. K-fold performance evaluation of developed cancer classification method using microarray and seq data compared with dataset 1 concerning (a) Accuracy,
(b) F1-Score, (c¢) FNR,(d) FPR,(e) MCC and (f) Precision.

data was implemented in the Python platform. Based on the maximum
iteration and population size, the offered model is validated, which
shows the value of 25 and 10. Thus, the comparison algorithms like
Honey Badger Algorithm (HBA)-HDLF (Vaiyapuri et al., 2022), Deer

10

Hunting Optimisation Algorithm (DHOA)-HDLF (Brammya et al., 2019),
Sunflower Optimization (SFO)-HDLF (Gomes et al., 2019), and
SOA-HDLF (Kaur et al., 2020) were taken. Consequently, conventional
classifier models were considered as DT (Fathi et al.,, 2021), DBN
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Fig. 8. K-fold performance evaluation of the proposed method using microarray and seq data compared with a traditional classifier model for dataset 1 in terms of(a)

Accuracy, (b) F1-Score, (c) FNR,(d) FPR,(e) MCC and (f) Precision.

(Kourou et al.,

2019), 1D-CNN (Mostavi et al.,

2020), and Ensemble

(Haznedar et al., 2021), respectively. The data is split into two phases:
training and testing. Further, 75 % of the data is validated in the training
phase and the remaining 25 % of the data is given in the testing phase.

11

The simulation parameter for the developed model is listed in Table 3.
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Fig. 9. Performance analysis of the developed method using microarray and seq data for dataset 1 concerning (a) Accuracy, (b) F1-Score, (c) FNR,(d) FPR,(e) MCC,

and (f)Precision.

6.2. Performance measures

Precision: The localised results and the related value of the anomaly

detected are known as precision.

12

Ay

XY

T XY 1 AS

(6)

Specificity: Specificity is estimated by the probability of a negative
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rate.

NM

SPeC = NM 1 AS

)

13

FPR and FNR: The False Positive Rate evaluates the value that is

identified by mistake. On the other side, the False Negative Rate esti-
mates the abnormalities not correctly, even if it has the images.
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Recall: It is the Metric that calculates the number of correct positive

14

values out of all positive rates.

Re

F1-Score: The ratio between the harmonic value of recall as well as precision.

XY

XY 1AS
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Fig. 12. K-fold performance evaluation of proposed cancer classification model using microarray and seq data for dataset 2 concerning (a) Accuracy, (b) F1-Score, (c)
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Fig. 14. Performance analysis of proposed model using microarray and seq data for dataset 2 regarding (a) Accuracy, (b) F1-Score, (c) FNR,(d) FPR,(e) MCC, and

(f) Precision.
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Table 4
Performance validation of the suggested cancer classification model using
microarray and seq data over algorithms.

Measures HBA- DHOA- SFO-HDLF SOA-HDLF ~ MSOA-

HDLF ( HDLF ( (Gomes (Kaur HDLF

Vaiyapuri Brammya etal., etal.,

al., 2022) al., 2019) 2019) 2020)
Dataset 1
Accuracy 91.51292 91.12341 93.64494 93.17343 96.97622
FDR 31.71402 32.77425 25.2704 26.85632 13.49424
Sensitivity =~ 91.63592 91.20541 93.48093 93.29643 96.98647
FNR 8.364084 8.794588 6.519065 6.703567 3.01353
MCC 0.743435 0.733322 0.799606 0.787418 0.898337
FPR 8.511685 8.892989 6.322263 6.851169 3.02583
Specificity ~ 91.48831 91.10701 93.67774 93.14883 96.97417
Precision 68.28598 67.22575 74.7296 73.14368 86.50576
NPV 91.48831 91.10701 93.67774 93.14883 96.97417
F1-Score 78.2563 77.40084 83.06011 82 91.4468
Dataset 2
Accuracy 91.61049 91.0362 93.7578 93.18352 97.00375
Sensitivity ~ 91.51061 90.88639 93.88265 93.00874 97.12859
Specificity ~ 91.63546 91.07366 93.72659 93.22722 96.97253
Precision 73.22677 71.79487 78.90871 77.44283 88.91429
FPR 8.364544 8.926342 6.273408 6.772784 3.027466
FNR 8.489388 9.113608 6.117353 6.991261 2.871411
NPV 91.63546 91.07366 93.72659 93.22722 96.97253
FDR 26.77323 28.20513 21.09129 22.55717 11.08571
F1-Score 81.35405 80.22039 85.74686 84.51503 92.8401
McCC 0.768134 0.753941 0.82295 0.807444 0.910922

Table 5

Comparative analysis of the suggested cancer classification model using
microarray and seq data over techniques.

Measures DT (Fathi DBN ( 1D-CNN ( Ensemble MSOA-
al., 2021) Kourou Mostavi (Haznedar HDLF
etal., al., 2020) al., 2021)
2019)
Dataset 1
Sensitivity ~ 90.77491 91.57442 92.68143 94.09594 96.98647
Specificity ~ 90.72571 91.53752 92.65683 93.97294 96.97417
Accuracy 90.73391 91.54367 92.66093 93.99344 96.97622
NPV 90.72571 91.53752 92.65683 93.97294 96.97417
MCC 0.723322 0.743933 0.773284 0.810017 0.898337
F1-Score 76.55602 78.3066 80.80429 83.92759 91.4468
Precision 66.18834 68.39688 71.62548 75.74257 86.50576
FPR 9.274293 8.462485 7.343173 6.02706 3.02583
FNR 9.225092 8.425584 7.318573 5.904059 3.01353
FDR 33.81166 31.60312 28.37452 24.25743 13.49424
Dataset 2
Sensitivity ~ 90.26217 91.51061 92.63421 93.88265 97.12859
FPR 9.17603 8.520599 7.209738 6.117353 3.027466
FNR 9.737828 8.489388 7.365793 6.117353 2.871411
Accuracy 90.71161 91.48564 92.75905 93.88265 97.00375
Specificity ~ 90.82397 91.4794 92.79026 93.88265 96.97253
F1-Score 79.53795 81.12894 83.65276 85.992 92.8401
Precision 71.09145 72.86282 76.25899 79.32489 88.91429
NPV 90.82397 91.4794 92.79026 93.88265 96.97253
FDR 28.90855 27.13718 23.74101 20.67511 11.08571
MCC 0.745175 0.765422 0.796753 0.825911 0.910922
XY x KL
F1Score = 2 X XY+ KL 10$)

FDR: False Discovery Rate is estimated by defining the ratio of false positive and true

negative and false positive.

KL

FDR=——"_
R=Xv+xL

(€8]
NPV: Negative Predictive Value is estimated by the ratio between true negative and true

negative and false negative.

NM

NPV = ———
NM + AS

(12)
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MCC: It evaluates the difference between the detected image output and actual image.

XY x NM — KL x AS

MCC =
/(XY + KL)(XY + AS)(NM + KL)(NM + AS)
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6.3. K-fold analysis of the designed cancer classification model using
Dataset 1

Fig. 7 and Fig. 8 visualise the K-fold validation of diverse algorithms
and classifiers for dataset 1 is validated using the developed model. The
validation is carried out with standard measures to provide efficiency in
the developed model. While evaluating with the K-fold analysis, it helps
to build the recommended framework into a more generalized one.
Moreover, it avoids the problem of overfitting. For the evaluation of k-
fold analysis, we have divided the whole dataset into 5 sets. For
example, the K-fold is performed based on a total of 100 data. Here, the
1-fold takes 1-20, followed by the 2-fold considered 21-40, followed by
the 3-fold shows 41-60, followed by the 4-fold takes 61-80, and finally
the 4-fold contains 81-100. If the 1-fold analysis is considered, the
testing is performed on 1 set, and the rest of the data are in the process of
training. This execution helps to maximize the performance. This pro-
cess is repeated until better solutions are attained. Considering the
algorithm-based analysis, the Fl-score of the proposed model is
enhanced by 13.2 % of HBA-HDLF, 11.2 % of DHOA-HDLF, 7.3 %, and
4.9 % of SFO-HDLF and SOA-HDLF. However, these evaluations are
utilized to provide accurate outcomes. Here, the existing HBA-HDLF
shows a higher error rate. Certainly, it leads to misclassification errors
that affect the system’s performance. The classifier-based analysis shows
that the performance of the offered model achieves 65 %, 60 %, 37 %,
and 23 % than DT, DBN, 1D-CNN, and Ensemble regarding precision.
The entire validation shows that the recommended method attained
enhanced performance.

6.4. Performance evaluation of the developed model using Dataset 1

The overall validation for the cancer classification model is sug-
gested to show better outcomes of the designed MSOA-HDLF model. The
effective analysis is provided based on diverse methods for dataset 1 is
validated and it is represented in Figs. 9 and 10. Here, the learning
percentage-based analysis is provided for both existing approaches.
While considering the accuracy analysis, the learning percentage varies
based on the different variations like 40, 50, 60, 70, and 80. Here, the
FNR value of the proposed method is decreased by 18.42 % of HBA-
HDLF, 22.10 % of DHOA-HDLF, 12.89 %, and 12.36 % of SFO-HDLF
and SOA-HDLF. The existing SOA-HDLF shows the second greatest
outcomes while considering the accuracy. Certainly, the DHOA and DT
approaches cannot provide accurate outcomes, and they cannot handle
larger datasets. The accuracy analysis recommends that the imple-
mented MSOA-HDLF model offers 17 %, 15 %, 12 %, and 9 % better
than DT, DBN, 1D-CNN, and Ensemble. The findings of the offered
method proved the effective outcomes.

6.5. Validation of 5-fold of the offered cancer classification model for
dataset 2

For dataset 2, the K-fold analysis is experimented with various ap-
proaches for the cancer classification model is visualized in Figs. 11 and
12. Also, the five sets of K-fold validation are considered, which helps to
show the different variations of each set to prove its efficiency. Here, the
5-fold validation is a technique that is utilized for cross-validation. In 5-
fold validation, 25 % of the data is utilized for testing. Cross-validation
involves dividing a dataset into test and training data. In addition, the
dataset is split to employ a cross-validation test. It is utilized to evaluate
the expert systems and also to detect overfitting issues. It is mainly
utilized for understanding the performance of the algorithm. Further,
the performance of the developed method is improved by 4.9 % of HBA-
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Fig. 15. Performance estimation based on convergence regarding (a) Dataset 1 and (a) Dataset 2.

Table 6

Overall performance analysis of the developed model.
Measures DSCCNet ( Inception DCNNBT ( MSOA-

Maryam et al., ResNetV2 ( Mohd et al., HDLF
2023) Mamoona et al., 2023)
2023)

Dataset 1
Accuracy 93.34 93.66 93.97 96.97
Sensitivity ~ 93.17 93.54 93.84 96.98
Specificity 93.38 93.69 93.99 96.97
Precision 73.79 74.77 75.76 86.50
FPR 6.617 6.309 6.002 3.025
FNR 6.826 6.457 6.150 3.013
NPV 93.38 93.69 93.99 96.97
FDR 26.205 25.22 24.23 13.49
F1-Score 82.35 83.11 83.84 91.44
MCC 79.14 80.03 80.89 89.83
Dataset 2
Accuracy 93.56 93.96 94.28 97.00
Sensitivity ~ 93.51 93.88 94.13 97.13
Specificity 93.57 93.98 94.32 96.97
Precision 78.43 79.58 80.56 88.91
FPR 6.43 6.02 5.68 3.03
FNR 6.49 6.12 5.87 2.87
NPV 93.57 93.98 94.32 96.97
FDR 21.57 20.42 19.44 11.09
F1-Score 85.31 86.14 86.82 92.84
MCC 81.74 82.77 83.61 91.09

Table 7

Ablation study for the recommendedMSOA-HDLF model.
Measures 1DCNN GCNN GCNN+ 1DCNN MSOA-HDLF
Dataset 1
Accuracy 92.06 93.15 94.04 96.98
Sensitivity 92.00 93.05 93.97 96.99
Specificity 92.07 93.17 94.06 96.97
Dataset 2
Accuracy 92.48 93.31 94.26 97.00
Sensitivity 92.76 93.26 94.13 97.13
Specificity 92.42 93.32 94.29 96.97

HDLF, 3.8 % of DHOA-HDLF2.4 %, and 1.5 % of SFO-HDLF and SOA-
HDLF regarding accuracy. While considering the error analysis in clas-
sifiers, the precision of the model shows 57 %, 52 %, 26 %, and 21 %
improvement over DT, DBN, 1D-CNN, and Ensemble. This validation
shows that the offered MSOA-HDLF-based cancer classification model
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provides better performance.
6.6. Performance estimation of the developed model for Dataset 2

Fig. 13 shows a superior analysis of the recommended approach in
contrast with various algorithms. Here, the proposed model is improved
over 24.0 % of HBA-HDLF, 32.5 % of DHOA-HDLF 18.0 %, and 12.0 %
of SFO-HDLF and SOA-HDLF based on precision. Fig. 14 shows the
performance evaluation of the recommended model in contrast with the
existing classifier model for dataset 2. Considering 35, the precision of
the offered method is enhanced by 29.2 % of DT, 28.0 % of DBN, 25.6 %
1D-CNN, and 23.1 % of Ensemble accordingly. Thus, the proposed
model is used for the effective and early detection of cancer to save the
lifespan of humans. The proposed model can determine the level of a
thousand genes in a single experiment to accurately determine the
presence of cancer in humans, which assists clinicians in making de-
cisions for cancer-affected patients.

6.7. Numerical analysis

The comparison of the designed cancer classification model on
diverse metrics is given in Tables 4 and 5. The MSOA-HDLF shows better
results than the other traditional methods. The proposed MSOA-HDLF
methodology has 96.9 % accuracy. In addition, the FNR of the pro-
posed cancer classification model is 3.01 % while the existing models,
such as HBA-HDLF, DHOA-HDLF, SFO-HDLF, and SOA-HDLF, attained
the FNR of 8.364 %, 8.79 %, 6.519 %, and 6.703 % in the cancer clas-
sification. The lower FNR of the suggested model indicates that it can
effectively classify the cancer-affected patient to extend their overall life
span.

6.8. Analysis based on Convergence

THE DEVELOPED MODEL IS VALIDATED BASED ON THE CONVERGENCE ANALYSIS IN
Fig. 15. As THE ITERATION IN THE ANALYSIS INCREASED, THE COST FUNCTION OF THE
MODEL WOULD DECREASE AUTOMATICALLY. THE RAPID CONVERGENCE RATE OF THE
PROPOSED ALGORITHM IS VERIFIED BY Fig. 15, AND IT IS ATTAINED BECAUSE OF THE
IMPROVED RANDOM PARAMETER OF THE PROPOSED MSOA. THIS IMPROVED RANDOM
NUMBER HELPS REACH THE GLOBAL OPTIMAL SOLUTION WITH MINIMUM ITERATION VALUE,
AND IT DOES NOT FALL INTO THE CONDITION OF THE LOCAL OPTIMAL WHILE SEARCHING FOR
THE SOLUTION IN THE SEARCH SPACE.
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Table 8
Statistical analysis of the recommended framework.
Algorithms HBA-HDLF (Vaiyapuri al., 2022) DHOA-HDLF (Brammya al., 2019) SFO-HDLF (Gomes et al., 2019) SOA-HDLF (Kaur et al., 2020) MSOA-
HDLF

Dataset 1

Mean 1.740188 1.884313 1.803032 1.715145 1.419061

Worst 2.208421 2.308278 1.833202 2.045684 2.519547

Standard Deviation 0.224602 0.276997 0.01555 0.173944 0.224636

Best 1.628263 1.534511 1.791018 1.618597 1.373207

Median 1.628263 1.848495 1.791018 1.618597 1.373207

Dataset 2

Mean 1.417262 1.794925 1.783624 1.92823 1.461948

Best 1.341805 1.590551 1.532606 1.694477 1.299923

Standard Deviation 0.171732 0.151358 0.330178 0.194216 0.217222

Worst 2.224335 1.969047 2.796438 2.330428 1.791842

Median 1.341805 1.912086 1.532606 1.913051 1.299923

Table 9 Table 11
Computational time analysis of the recommended method among algorithms. Comparision over prior algorithms.

TERMS HBA-HDLF ( DHOA-HDLF SFO-HDLF SOA- MSOA- TERMS HBA-HDLF ( DHOA-HDLF SFO-HDLF SOA- MSOA-
Vaiyapuri (Brammya (Gomes HDLF ( HDLF Vaiyapuri (Brammya (Gomes HDLF ( HDLF
al., 2022) al., 2019) et al., Kaur et al., al., 2022) al., 2019) et al., Kaur

2019) 2020) 2019) etal.,
2020)
Dataset
1 Dataset 1
Time 41.4577 49.4671 42.5783 45.8434 37.2147 Accuracy 91.32 90.08 95.04 93.12 97
(sec) Sensitivity 91.28 90.05 95.07 93.17 96.96
Dataset Specificity ~ 91.36 90.11 95.02 93.07 97.04
2 Precision 90.91 89.61 94.75 92.72 96.88
Time 31.3557 36.5472 30.6898 31.8455 37.2147 FPR 8.64 9.89 4.98 6.93 2.96
(sec) FNR 8.72 9.95 4.93 6.83 3.04
NPV 91.36 90.11 95.02 93.07 97.04
FDR 9.09 10.39 5.25 7.28 3.12
F1-Score 91.10 89.83 94.91 92.95 96.92
Table 10 I];/I(?[C " 82.63 80.15 90.07 86.23 94.00
. . . . . . atase
Analysis based on computational time using diverse classifiers. Accuracy 03.58 01.58 80.86 5.4 97.3
TERMS DT (Fathi DBN ( 1D-CNN ( Ensemble ( MSOA- Sensitivity 93.55 91.62 89.94 95.39 97.31
al., 2021) Kourou Mostavi al., Haznedar al., HDLF Specificity 93.61 91.54 89.78 95.41 97.29
et al., 2020) 2021) Precision 93.58 91.51 89.76 95.39 97.28
2019) FPR 6.39 8.46 10.22 4.59 2.71
FNR 6.45 8.38 10.06 4.61 2.69
Dataset NPV 93.61 91.54 89.78 95.41 97.29
,1 FDR 6.42 8.49 10.24 4.61 2.72
Time 55.6843 58.4682 52.2356 47.3689 37.2147 F1-Score 93.57 91.57 89.85 95.39 97.30
(seq) MCC 87.16 83.16 79.72 90.80 94.60
Dataset
2
TIZZC) 48.5478 507695 46.9432 41.4578 37.2147 from the ablation study showed that the hybrid model offers a precise

6.9. Comparative validation using recent methods

The comparative analysis is performed to validate the recent
methods for the cancer classification model for datasets 1 and 2 are
tabulated in Table 6. The performance of the designed method achieves
13.5 %, 12.2 %, and 11.0 % better performance than DSCC_Net, Incep-
tionResNetV2, and DCNNBT regarding MCC. Throughout the empirical
analysis, the developed model shows effective outcomes. The results
from the model is helpful for determining the most effective treatment
for improving the life span of the patient affected with the cancer. The
proposed model uses gene expression, which helps to offer effective
therapies to the patient by making accurate predictions.

6.10. Ablation experiment for the developed cancer classification model

The ablation study conducted for the offered cancer classification
framework is validated in Table 7. The ablation study showed that the
recommended model attained a higher accuracy of 96.98 % when
combining all models such as1DCNN, GCNN, and MSOA. The results
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level of accuracy in the cancer classification and also reduces the mor-
tality rate of humans by suggesting effective treatment therapies.

6.11. Statistical performance of the designed framework using diverse
algorithms

The statistical outcome of the recommended cancer classification
model using existing algorithms is listed in Table 8. The different mea-
sures like best, worst, mean, median, and standard deviation. While
considering the median-based analysis, the offered MSOA-HDLF model
shows 3.1 %, 32.0 %, 15.1 %, and 32.% enhancements over HBA-HDLF,
DHOA-HDLF, SFO-HDLF, and SOA-HDLF. These empirical findings
suggest that the recommended model shows superior performance over
the existing approaches. Here, the proposed model uses the microarray
and seq gene expression data that is more efficiently processed by the
deep learning model to get an efficient and effective classification
outcome compared to the other models. In addition, the proposed model
uses the MSOA for the parameter optimization that greatly reduces the
chance of misclassification and reduces the error in the cancer classifi-
cation process.
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Table 12
Comparison over prior techniques.
TERMS DT ( DBN ( 1D-CNN ( Ensemble ( MSOA-
Fathi Kourou Mostavi al., Haznedar al., HDLF
al., et al., 2020) 2021)
2021) 2019)
Dataset 1
Accuracy 90.12 94.16 92.28 95.92 97
Sensitivity 90.13 94.33 92.35 95.89 96.96
Specificity 90.11 94.00 92.21 95.95 97.04
Precision 89.62 93.71 91.82 95.73 96.88
FPR 9.89 6.00 7.79 4.05 2.96
FNR 9.87 5.67 7.65 4.11 3.04
NPV 90.11 94.00 92.21 95.95 97.04
FDR 10.38 6.29 8.18 4.27 3.12
F1-Score 89.87 94.02 92.09 95.81 96.92
MCC 80.23 88.32 84.55 91.83 94.00
Dataset 2
Accuracy 92.58 90.66 94.36 96.34 97.3
Sensitivity 92.55 90.74 94.35 96.35 97.31
Specificity 92.61 90.58 94.37 96.33 97.29
Precision 92.58 90.56 94.35 96.31 97.28
FPR 7.39 9.42 5.63 3.67 2.71
FNR 7.45 9.26 5.65 3.65 2.69
NPV 92.61 90.58 94.37 96.33 97.29
FDR 7.42 9.44 5.65 3.69 2.72
F1-Score 92.56 90.65 94.35 96.33 97.30
MCC 85.16 81.32 88.72 92.68 94.60
Table 13
Comparison of data and parameters before and after optimization.
Model Accuracy (Before Accuracy (After Improvement
Optimization) Optimization - MSOA) (%)
1D- 88.50 % 91.20 % 2.70 %
CNN
GCNN 87.30 % 90.80 % 3.50 %
HDLF 89.60 % 93.70 % 4.10 %

6.12. Computational time analysis

The analysis based on computational time is evaluated using the
diverse methods for datasets 1 and 2 are provided in Tables 9 and 10.
The proposed MSOA-HDLF model consumes the time of 37.21 sec in the
cancer classification process. The lower computational time of the pro-
posed model is mainly due to the incorporation of the hybrid model,
which incorporates the advantages of both models, reducing the overall
time involved in the cancer classification process.
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6.13. Overall analysis of the proposed model

The significant analysis is made using the developed model, where
the K-fold is performed to provide a reliable performance, which is
depicted in Tables 11 and 12. Here, the classifiers and algorithms are
evaluated using the offered MSOA-HDLF model for the cancer classifi-
cation model. The performance of the developed model achieves 5.12 %,
7.3 %, 3.1 %, and 1 % to HBA-HDLF, DHOA-HDLF, SFO-HDLF, and
SOA-HDLF. The findings show better performance in the developed
model.

6.14. Comparison of data and parameters before and after optimization

The comparison of the proposed HDLF before and after the param-
eter optimization is given in Table 13. It can be seen from Table 13 that
the proposed HDLF model provides an accuracy of 93.7 % and the after
the optimization, thr accuracy of the HDLF model is 4.10 % lower if the
optimization is not applied to the recommended model. So, the results
indicate that the MSOA shows a great impact on the proposed HDLF, so
it attained excellent accuracy in the cancer classification.

6.15. Comparison with recent models

Table 14 indicates the comparison of the proposed model with recent
approaches. Here, the accuracy of the proposed model is 88.30 %, and
precision of 90.32 %. The higher value of the proposed model indicates
its efficiency in the cancer classification compared to the pre-trained
CNN, unsupervised machine learning model, CNN, and Ensemble
models.

6.16. Discussion on better results of the proposed model

The proposed method is capable of producing excellent results pri-
marily due to its comprehensive and integrated approach that combines
advanced feature selection, parameter optimization, and sophisticated
deep learning architectures. The utilization of the MSOA for optimal
gene selection ensures that only the most informative genes are chosen
from high-dimensional microarray and seq data, reducing redundancy
and noise that can adversely affect model accuracy. This targeted feature
selection not only streamlines the data but also mitigates overfitting,
leading to more reliable and generalizable models. Additionally, the
systematic tuning of hyperparameters such as hidden neuron counts and
epochs in both the GCNN and 1D-CNN via MSOA ensures that the
models are configured at their optimal settings, further boosting clas-
sification performance. The hybrid deep learning framework leverages

Table 14

Comparison of the proposed model with recent models.
TERMS Pretrained CNN (Shoaib et al. Unsupervised machine learning model (Whig, et al. CNN Nurtay, et al. Ensemble (Haznedar al., MSOA-

2025) 2025) (2025) 2021) HDLF

Dataset 1
Accuracy 84.85378 87.82191 80.44522 82.71497 88.30205
Sensitivity 82.65993 85.28428 77.68663 79.722 86.38298
Specificity 87.21668 90.59361 83.58209 86.14232 90.32258
Precision 87.44435 90.82814 84.32769 86.82102 90.3829
FPR 12.78332 9.406393 16.41791 13.85768 9.677419
FNR 17.34007 14.71572 22.31337 20.278 13.61702
NPV 82.36301 84.93151 76.71233 78.76712 86.30137
FDR 12.55565 9.171861 15.67231 13.17898 9.617097
Dataset 2
Accuracy 84.88132 87.7709 80.03096 82.97214 89.06089
Sensitivity 81.59923 85.24752 77.17602 80.0194 86.66667
Specificity 88.66667 90.51724 83.29646 86.32856 91.63987
Precision 89.25184 90.72708 84.08851 86.93361 91.78082
FPR 11.33333 9.482759 16.70354 13.67144 8.360129
FNR 18.40077 14.75248 22.82398 19.9806 13.33333
NPV 80.68756 84.93428 76.13751 79.17088 86.45096
FDR 10.74816 9.272919 15.91149 13.06639 8.219178
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the strengths of both GCNN’s ability to handle complex graph-structured
data and 1D-CNN’s proficiency with sequential data, providing a robust
architecture capable of capturing intricate patterns within gene
expression data. Moreover, the model’s design incorporates rigorous
validation techniques like K-fold cross-validation, which enhances its
stability and reliability. The combination of these elements provides
precise feature selection, automated hyperparameter tuning, and a
hybrid architecture that contributes to the model’s high accuracy,
robustness, and adaptability, making it well-suited for complex tasks
such as cancer classification from microarray and seq data. This
comprehensive methodology not only enhances the deep learning
models’ effectiveness but also ensures that the system can generalize
well to unseen data, resulting in consistently good performance across
diverse datasets. It shows a brief discussion of the sustainability of the
developed model in terms of scalability, interpretability, and computa-
tional effectiveness, which is described below.

Scalability: Accurate data is needed to provide strong performance
regarding accuracy to select the best features. If the size of the data
increases, then it provides significant performance in the larger
expression of gene data. Thus, the recommended model provides better
scalable performance in the cancer classification model.

Interpretability:The observation that shows the cause and effect of
the system. In some instances, the deep learning model shows more
hidden layers, which makes the interpretability of the model more
difficult. In the future, the interpretability will be considered using the
developed model.

Computational analysis: Computational analysis is the amount of
memory or time that is taken for each step in the calculation. Moreover,
the computational analysis of the developed model shows better
outcomes.

Limitations of the database: In larger datasets, it may not have the
ability tofit into the RAM of desktop computers. Further, it may not be
reliable and may lose the data. It tends to affect the accuracy of the
model. In addition to this, a novel method is developed where the pre-
processing is performed using the NAN removal and missing values.
Although the larger dataset has been considered for the validation
process using the developed model. Thus, it significantly chooses the
optimal features based on the gene selection process. Owing to these,
larger data are suitable in this proposed methodology to provide accu-
rate outcomes. While training the data, an accurate outcome is provided
to enhance the system’s performance. Hence, the accurate classification
of cancer is suggested for attaining superior performance.

7. Conclusion

This research work has explored the implementation of a new cancer
classification framework using microarray and seq data. The microarray
and seq data were obtained from the different standard datasets. The
collected data were passed through the phase of pre-processing. Further,
the MSOA algorithm is suggested to select the optimal genes from the
pre-processed data. At last, the HDLF model has recommended that the
optimal gene fed into the cancer classification for attaining better-
classified outcomes. In accordance, the execution of the method was
evaluated using different metrics and compared with other existing
methodologies. By using dataset 1, the k-fold is 2, and the accuracy of
the proposed model was improved by 5.4 % of HBA-HDLF, 4.8 % of
DHOA-HDLF, 3.2 % and 2.3 % of SFO-HDLF and SOA-HDLF, respec-
tively. The results confirmed the effectiveness of the proposed model in
the cancer classification process.

Advantages and limitations of the developed model

The implemented model can classify the cancer in the appropriate
location in an effective way. Thus, it would be more beneficial for the
clinicians to provide better treatment. Here, the recommended MSOA
algorithm is performed to optimize the complex parameters to provide
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an optimal solution. Therefore, it enhances the feature propagation,
which helps to minimize the false errors, and thus it boosts the training
speed of the model. In accordance, the K-fold analysis is evaluated to
prove that the designed HDLF model tends to solve issues like over-
fitting. Thus, it enhances the performance of the system. To the best of
our knowledge, the recommended approach shows superiority over the
existing algorithms, but it also has certain limitations. It does not have
the facility to be applicable in real-time environments.

Future scope of the developed model

In the future, the developed model will be utilized to evaluate the
model using real-time data. Consequently, the artificial intelligence will
be adapted to provide precise performance in the cancer classification
model. Also, the ensemble models will be used to show the enhanced
performance of the cancer classification model. The future work will
focus on integrating larger datasets with more number of instances and
SMOTE analysis to validate the model’s generalizability.
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