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7.1 Model Interpretability: SHAP, LIME, Surrogate Modeling 

In materials informatics, interpretability is pivotal for transitioning 

from black-box predictions to scientific insights that can inform 

material design and discovery. As deep learning models increase in 

complexity, the demand for transparency in decision-making has driven 

the development of explainable AI (XAI) techniques tailored for 

scientific domains. 

SHapley Additive exPlanations (SHAP) provides a unified approach 

to interpreting predictions by assigning feature importance based on 

cooperative game theory. In the context of materials science, SHAP can 

quantify how elemental features (e.g., electronegativity, valence 

electron count) influence target properties such as bandgap or formation 

energy (Lundberg & Lee, 2017). SHAP's global and local 

interpretability has been effectively used in predicting thermoelectric 

performance and phase stability. 
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Local Interpretable Model-Agnostic Explanations (LIME) offers 

complementary interpretability by perturbing the input locally and 

fitting a simple interpretable model (like a linear regression) to 

approximate the black-box behavior. In high-dimensional materials 

descriptors, LIME can reveal which structural motifs contribute to 

property enhancements or failures (Ribeiro et al., 2016). 

Surrogate modeling simplifies interpretation by approximating 

complex models with interpretable ones such as decision trees or 

symbolic regressors. These surrogates allow for analytical examination 

of trends and relationships, especially useful in inverse design 

workflows where model transparency can guide synthetic feasibility. 

By integrating SHAP, LIME, and surrogate models into ML pipelines, 

researchers can demystify predictions, enhance trust in AI-generated 

materials, and derive structure–property principles that align with 

physical laws. 

Table 7.1: Challenges and Strategies in Deploying ML for Materials 

Science 

Challenge Cause Mitigation Strategy 

Lack of 

interpretability 

Deep, nonlinear 

models 

SHAP, LIME, surrogate 

modeling 
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Challenge Cause Mitigation Strategy 

Poor 

transferability 

Biased datasets, 

limited chemical 

space 

Active learning, domain 

adaptation 

Reproducibility 

issues 

Inconsistent 

pipelines and 

preprocessing 

Open-source standards, 

version control, 

benchmarking 

Ethical & 

sustainability risk 

Unbalanced data, 

high energy use 

Bias audit, green AI, data 

democratization 

 

 

Figure 7.1: Global SHAP and Local SHAP 
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7.2 Transferability and Extrapolation Challenges 

Despite their success in interpolative regimes, ML models in materials 

science often struggle with transferability—the ability to generalize 

across materials classes—and extrapolation—predicting properties 

outside the bounds of the training data. This limitation stems from 

biased training sets that do not represent the full diversity of chemical 

and structural space. 

For instance, a model trained on transition-metal oxides may fail to 

predict accurately for halide perovskites due to differences in bonding 

environments and electronic structures. Moreover, models can overfit 

to dominant element combinations and ignore underrepresented ones, 

limiting their discovery potential. 

To address this, domain adaptation techniques and active learning 

strategies are increasingly being employed to iteratively enrich the 

training set with chemically diverse and informative samples. 

Additionally, uncertainty quantification via Bayesian deep learning 

or ensemble modeling helps to identify regions of poor generalization, 

allowing for informed deployment of models in high-risk applications. 

Advancing transferability requires not only algorithmic innovations but 

also curated, diverse, and high-fidelity datasets that span the periodic 

table and crystal structure space. 
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7.3 Reproducibility and Open-Source Best Practices 

Reproducibility is a cornerstone of scientific rigor, yet remains a 

challenge in machine learning-based materials research due to 

differences in data preprocessing, feature generation, model 

architecture, and training dynamics. 

To mitigate this, several open-source frameworks have emerged (e.g., 

MatBench, Automatminer, and JARVIS-ML), offering standardized 

datasets, benchmark protocols, and automated pipelines (Dunn et al., 

2020). These platforms reduce human-induced variability and support 

reproducibility across institutions. 

Best practices include: 

• Versioning datasets and models using tools like DVC and 

MLflow. 

• Sharing code and configurations through repositories with 

detailed documentation. 

• Reporting performance with confidence intervals and 

multiple random seeds to reflect statistical stability. 

• Utilizing containerization (Docker, Singularity) to ensure 

environment consistency. 

Adopting these practices fosters community trust, facilitates 

benchmarking, and accelerates collective progress in materials 

discovery. 
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7.4 Ethical, Sustainable, and Responsible AI in Materials 

As AI becomes integral to materials research, its ethical and sustainable 

deployment must be carefully considered. Key concerns include: 

• Bias and representation: ML models may reflect biases in 

training datasets, disproportionately favoring well-studied 

elements (like Si, Fe, Ti) while ignoring underrepresented or 

toxic materials. 

• Environmental impact: Deep models, especially those 

requiring large-scale simulations or massive datasets, consume 

considerable computational energy. Green AI approaches, such 

as model compression and energy-aware training, can mitigate 

this. 

• Data provenance and intellectual property: Proprietary 

datasets pose questions around transparency and 

reproducibility. Open-access databases and clear licensing can 

reduce ethical ambiguity. 

• Responsible decision-making: In high-stakes applications like 

biomedical materials or battery chemistries, model errors can 

propagate into costly or hazardous outcomes. Here, human 

oversight, uncertainty estimation, and interpretability are not 

optional—they are essential. 
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Establishing ethical guidelines tailored to materials AI, akin to the EU's 

AI Act or IEEE's Ethically Aligned Design, is critical to ensuring that 

technological advances serve societal good without unintended harm. 

7.5 Future: Quantum ML, Self-Learning Pipelines, Human–AI 

Collaboration 

The future of AI in materials science is poised to be shaped by three 

converging frontiers: quantum machine learning, autonomous 

discovery systems, and synergistic human–AI collaboration. 

Quantum machine learning (QML) leverages the principles of quantum 

computation to enhance ML capabilities in simulating quantum 

systems. Algorithms like Quantum Kernel Estimation and Quantum 

Boltzmann Machines are being explored for electronic structure 

prediction and property classification (Benedetti et al., 2019). As 

quantum hardware matures, QML may unlock unprecedented speedups 

for many-body simulations. 

Self-driving labs and closed-loop optimization pipelines, guided by 

active learning and reinforcement learning, are transforming materials 

synthesis and characterization. These platforms, such as the 

Autonomous Research System (Ares) and ChemOS, integrate ML 

models with robotic experimentation, enabling autonomous hypothesis 

generation, testing, and validation. 

Human–AI collaboration represents the synthesis of domain intuition 

with algorithmic power. Instead of replacing scientists, AI augments 
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decision-making—highlighting anomalous patterns, proposing 

unconventional candidates, and refining theories through data-driven 

feedback. Interactive tools like Explainable Notebooks and model-

guided design interfaces are paving the way for intuitive co-design 

systems. 

________________________________________________________ 
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