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Abstract

This study reveals that leveraging XAl to assess the impact of
nutritional and contextual parameters on blood sugar for type
1 diabetes mellitus in machine learning methods. The method
of this study includes Type 1 diabetes mellitus (T1DM) is
defined by insulin dependent diabetes as well as difficulty in
controlling blood sugar. This project introduces a blood
glucose forecasting model that utilizes machine learning
methods, namely the Random Forest algorithm, to predict
blood glucose levels from past patient data. The model utilizes
different input features, such as past glucose levels, insulin
doses, and carb intake, to make precise short-term predictions.
Data preprocessing methods are used enhance the dataset
quality. The model is gauged as effective through its
performance measures in terms of Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE), reflecting that the
model could effectively predict high variability in blood
glucose with utmost precision. Last but not least, the adoption
of XAI such as SHAP and LIME adds interpretability to this
model and helps users to trace in what manner the given feature
contributes towards prediction results. The intended system
will enable patients and clinicians which directly contributes
patient safety and quality of life. Future developments involve
merging real-time data from continuous glucose monitoring,
personalization of prediction models for individualized
patients. This research establishes the foundation for an
extended diabetes management tool that closes the gap
between data science and medicine.

Keywords: Type 1 Diabetes Mellitus, Blood Glucose
Prediction, Random Forest Algorithm, SHAP (Shapley Additive
explanations), LIME(Local Interpretable Model-agnostic
Explanations).

1.Introduction

Insulin Dependent Diabetes Mellitus or TIDM [1][7]is
a persistent condition where the pancreas secretes little
or no insulin, and the patients need to control their blood
sugar levels by taking external insulin and making life-
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style modifications. Effective glycaemic control is
necessary to avoid complications like hypoglycaemia
(hypoglycaemia) or hyperglycaemia (hyperglycaemia),
which can result in serious health problems. Continuous
Glucose Monitoring (CGM) devices are commonly
employed for monitoring blood glucose levels during the
day, which gives real-time information that individuals
and clinicians can use to resolve and to make correct
choice about insulin therapy and meal planning.

Managing blood glucose levels is a complex task due to
various factors that affect glucose metabolism, including
insulin dosing, food intake, physical activity, and stress.
Predicting future blood glucose levels is a challenging
problem because it involves nonlinear relationships and
dynamic factors that interact in real time. Although
CGM systems provide valuable data, there is a need for
predictive models to alert patients of impending hypo-
or hyperglycaemia.

The current methods aim to develop a more accurate and
interpretable predictive model for predicting blood
glucose level for every 15 minutes for one hour given
past data and patient-specific covariates.

This study suggests a machine learning-driven blood
glucose prediction system that uses the Random Forest
algorithm to improve prediction accuracy. The solution
is organized as follows:

1. Data-Driven Predictive Modeling
2. Machine Learning Model — Random Forest
3. Explainability Using SHAP & LIME

2.Related work

Blood glucose prediction has emerged as an active
research domain as a result of increased accessibility of
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wearable devices, which yield abundant data on real-
time glucose fluctuations. Conventional methods have
relied on rule-based systems or basic linear models to
forecast blood glucose levels, but these models are
incapable of handling the intricate, nonlinear
interrelations between factors like insulin dosing,
carbohydrate consumption, exercise, and -circadian
cycles. With advancements in machine learning
methods, more advanced models have been proposed for
enhanced prediction accuracy such as decision trees,
neural networks, and hybrid models that incorporate
patient-specific information. This section discusses the
current methods of blood glucose prediction, as well as
certain research on serial number extraction for time-
based prediction intervals, feature extraction methods,
and the shortcomings that are present in current systems.

Giovanni annuzzil et al,[1] have proposed effect of
various factors of food in glycaemic prediction in
juvenile diabetes through algorithms in machine
learning, this study has proposed glycaemic prediction
which involves collecting data from continuous glucose
monitors (CGM), dietary intake (carbohydrates, fats,
proteins), insulin dosage, physical activity, and other
relevant factors. Data preprocessing includes cleaning,
handling missing values, normalizing, and creating
time-lagged features. Feature selection techniques
identify key nutritional factors influencing blood
glucose levels. ML models like XGBoost, or LSTMs are
applied, followed by model evaluation using metrics
such as MAE, RMSE, or R-squared. Explainability tools
like SHAP or LIME provide insights into the impact of
nutritional factors. However, limitations include the
potential for inaccurate dietary data, difficulties in
generalizing models across individuals, and challenges
in predicting delayed glucose responses from high-fat
meals.

Annuzzi, Giovanni, Lutgarda et al,[2] have proposed
examine the factors of food that effects on blood glucose
anticipating for juvenile diabetes using XAI, the
methodology involves collecting real-time data such as
continuous glucose monitoring (CGM) readings,
detailed dietary intake (carbohydrates, fats, proteins),
insulin dosage, activity, and other factors. Data
preprocessing includes data scaling, missing data
management and feature creation to capture time-
dependent patterns. Machine learning models like
LSTMs, GRUs, or XGBoost are applied for time-series
blood glucose prediction. Explainability techniques are
used to interpret model predictions, providing insights
into the influence of food on glycemic levels.
Limitations include the dependence on accurate dietary
data, individual variability in glucose response, and
challenges in predicting delayed effects of certain foods.

E. A. Pustogerov, A. S. Tkachuk, E. A. Vasukova,et
al,[3] have suggested a method of forecasting blood
glucose after via meal in diabetes mellitus during
pregnancies called gestational diabetes includes the
collection of real-time data such as blood glucose values,

the intake of food (particularly the carbohydrate), basal
insulin dose, physical workouts, and other parameters of
the state of body. The process involves data
preprocessing using data scaling, data missing
management and feature creation for the generation of
time-lagged variables. Model performance which
monitored utilizes the metrics such as MAE, RMSE, and
R-squared. Explainable AI (XAI) methods like SHAP or
LIME offer insights into how various features impact
predictions. Some limitations are the need for precise
dietary and activity information, variability between
individuals in their glucose responses, and inability to
capture delayed impacts of fat or protein intake.

Duckworth,C, Guy, M.J.Kumaran, A.O.Kane, et al,[4]
[9] have suggested Al methods for real time prediction
for high and low glycemia and also to provide personal
suggestion. In this the research used the XGBoost
machine learning algorithm to forecast hypoglycaemia
and hyperglycaemia events up to 60 minutes ahead
based on continual blood glucose details from 153
people with juvenile diabetes. Features capturing
according to time frames, and population data were
included. SHAP (Shapley Additive explanation’s) was
used to explain individual predictions and determine the
top features driving risk predictions for a given user. The
research concentrated on one particular age group
(young adults) and might not be generalizable to other
populations.

Taiyu Zhu, Kezhi Li, Pau Herroro, Pantelis Georgiou,
et.al,[5] have suggested Personalized Blood Glucose
Prediction Using Machine Learning Techniques. The
model incorporated historical continuous glucose
monitoring (CGM) data, insulin dosages, carbs intake,
and other activity levels to enhance prediction accuracy.
Meta-learning was used to adapt the model to individual
patient variations, allowing personalized predictions.
Data preprocessing involved data scaling, addressing
uncertainty, and creating features to enhance model
accuracy. Real-time deployment challenges were not
fully addressed, impacting the practical application of
the system. Finally, the lack of explainability approaches
makes healthcare providers to feel difficult to explain
and belief the model forecast.

Erico Tjoa, Cuntai Guan,et al,[6] have proposed
Explainable Al (XAI) toward medicinal applications, the
methodology typically involves reviewing existing XAl
techniques used to interpret complex Al models in
healthcare. It categorizes these methods into model-
specific (e.g., decision trees, linear models) and model-
agnostic approaches (e.g., SHAP, LIME) that provide
post-hoc explanations. The survey also assesses their
applicability in wvarious medical domains like
diagnostics, prognosis, and treatment recommendations.
Emphasis is placed on evaluating interpretability,
transparency, and usability for medical practitioners.
However, limitations include the trade-off between
model accuracy and explainability, potential biases in
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data and model interpretation, and challenges in
validating the reliability of explanations.

3. Proposed Methodology

The proposed system aims to develop a robust
forecasting model to forecasting blood glucose levels in
juvenile Diabetes patients. Here, major elements of the
system proposed are:

1. Dealing with Missing Data: The system uses
missing data imputation methods to make sure that the
gaps in the CGM readings do not hamper the model's
accuracy.

2. Enhanced Feature Extraction: A robust
feature engineering process is utilized, extracting
meaningful time-based, event-based, and physiological
features. This involves rolling windows to extract
historical trends and derive features like time of day,
insulin timing, and carbohydrate intake.

3. Machine Learning-Based Prediction: The
model utilizes a Random Forest Regressor to address the
intricate, nonlinear relationships between different
features that influence blood glucose levels. The model
is trained on historical glucose data as well as external
variables, including insulin doses, food consumption,
and exercise.

4. Multiple Time Horizons: The system makes
predictions for blood glucose levels at a series of time
intervals of every 15 minutes for one hour and provides
flexibility in dealing with short-term and long-term
glucose excursions.
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FIG 1.1: Architecture Diagram
3.2 Dataset

AT1DM Data sample is a collection of the data that were
gathered from kaggle dataset that has CGM
measurements. It comprises data of 100 T1D patients
having CGM device, which was meant to calculate the
glycemic levels in the scale of 40-400mg/dl. The details
of data that contains both genders, between the age from
18 upto 80 years, with a T1D diagnosis. The dataset that
includes comprehensive data on dietary factors such as
carbohydrate intake, glycemic index, protein, fiber, fat,
continuous blood glucose of every 15 minutes for one
hour. The dataset is often stored in CSV or other
structured formats. The system loads this data using
libraries like Pandas in Python, enabling seamless
handling of large datasets. Tablel.1 and 1.2 provides
detailed attribute information for the TIDM diabetes
dataset.

Table 1.1 T1DM Diabetes Dataset 1

patie patieﬂ carby protd fat | fiber| glycd contin timestal
5. Model Explainability: The use of _id | age cind us_ | p

Explainability Al such as SHAP and LIME will allow
for greater transparency in the forecast outcomes, blood
helping users, healthcare providers to realize the factors eose
that are contributing most to the predicted glucose
levels.

0 56 57.66( 31.23] 1434 1431] 62.43] 176.477 2024-01
By addressing the shortcomings of existing models and 7 3 20 |8 8 |4 00:00:0
building on the literature around serial number and
feature extraction, the proposed system aims to offer a
more accurate and personalized approach to blood 1 69 94.86( 27.91] 21.99 13.08§ 66.51] 79.7249 2024-01
glucose prediction. ! ! % 11 6 00:05:0
3.1 Architecture
The architecture diagram Figl.l has providedoutlinesa P 46 80.904 32.119 18.04 18.990 71.72] 157.099 2024-01
machine learning workflow that can be closely mapped 0 4 40 19 2 2 00:10:0
to the preprocessing steps and subsequent model
validation procedure in the code. This system
architecture diagram outlines the pipeline for developing 3 32 52.851 33.707 18.8] 18.99( 62.68| 134.895 2024-01
and validating a machine learning model for diabetic 4 ? oo ? ? 00:10:0
prediction, such as predicting Type 1 Diabetes Mellitus
(TIDM) outcomes. Here's a breakdown of the
components: 4 60 69.93] 13.23] 34.54 17.60 70.26] 122.803 2024-01

8 3 60 |1 4 6 00:20:0
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Table 1.2 T1DM Diabetes Dataset 2

missin| basal boluf blood_g] blood_g] blood_g] blood_g

cbg ose_15 | ose_30 | ose_45 | ose 60

0 1.961 4.099 148.7953 210.899¢ 229.5134 193.7239
8 9

0 1.887% 2.074 180.572§ 94.4540] 105.875] 195.2051
5 1

0 0.833 2.607 128.5257 86.28053 194.848¢ 135.844
2 3

0 2.257 3.317 1725099 92.11231 118.3837 187.138
8 2

0 1.49¢ 2.199 130.6443 96.9533¢ 222.245% 132.214
7 7

3.3 Data Cleaning and Pre-Processing

Data cleaning and preprocessing module is crucial for
preparing the dataset to place it into the model workflow
pipeline. The set of data with high quality has better
model performance and interpretability.
i.  Handling Missing Values:

e Drops rows with
continuous_blood glucose.

e Fills missing values in basal and bolus using the
mean, which helps quantify the number of
missing values in each feature column.

e Missing values are then imputed based on the
nature of the data, For continuous features like
blood glucose or carbohydrate intake, missing
values are filled with the average value of the
respective column. For discrete data, such as
meal type or insulin type, the method is often
used to replace missing values. Visualize the
missing data patterns with missingno.

ii. Filtering:

e Filters out patients under the age of 18.

e Filters blood glucose values outside realistic
ranges (40—400 mg/dL).

iii. Statistical Calculations:

e Computes basic descriptive statistics for all
numeric columns.

e Calculates the standard deviation and coefficient
of variation (CV) for continuous blood glucose.

e Computes the mean and standard deviation for
future blood glucose predictions (15, 30, 45, 60
minutes).

iv. Timestamp Handling:

e Converts timestamps to date, time and extracts
time features like the hour in a day and days in a
week.

e Calculation of time
consecutive readings.

V. Outlier Removal:

e Optionally removes unrealistic blood glucose
levels. Outliers are either removed or capped
depending on their significance. Outlier
treatment helps stabilize the model and prevents
skewed predictions.

missing

difference  between

3.4 Feature Extraction

Feature engineering is about building new features or
reworking the current features to more accurately reflect
the hidden patterns in the data. This module contains

o  Time-based features: Time since last meal, time
of insulin administration.

*  Composite features: Features like total
carbohydrate-to-insulin ratio.

*  Encoding Categorical Variables: Categorical
variables, such as meal type, are encoded as
numerical values (e.g., one-hot encoding) for
model compatibility. Use ordinal encoding for
ranked ordered features like severity scale. Use
target encoding in cases of high cardinality
features wherein the mean target value per
category is calculated.

Feature engineering is the process of choosing
appropriate variables (features) from the data that can
potentially affect blood glucose levels [8]. The chosen
features are nutritional intake variables (carbohydrates,
protein, fat, Fiber), which affect blood glucose during
digestion and absorption. The glycemic index
quantifies how rapidly foods increase blood glucose and
is thus an important factor [14]. Insulin management
factors such as basal and bolus units are also included
since they directly control glucose levels [9]. patient_age
is also taken into consideration, because age has an
impact on glucose metabolism and insulin sensitivity
[10]. These are stored in variable X, the independent
variables upon which predictions will be made. The
target variable y, assigned continuous_blood_glucose, is
the actual blood glucose to be predicted. This systematic
selection of features is a crucial first step in feature
engineering to enable the model to learn useful patterns
and associations to be able to predict glucose levels
accurately.

3.4 ML Model Validation

The validation process is performed by utilizing a two-
stage splitting of the data to separate the dataset into
three sets: 60% training, 20% validation, and 20% test
sets. Initially, the train_test_split () method is employed
to separate the data into a training set (X_train, y train)
comprising 60% of the data, and a temporary set
(X_temp, y_temp) comprising the remaining 40%. Next,
the temporary set is split again by train_test split() into
halves: a validation set such as X valid, y _valid and a
test set such as X test, y test. The validation set is
utilized to adjust model hyperparameters and measure
model performance during training to avoid overfitting.
The test set is kept unseen until the point of final
evaluation, giving an unbiased estimate of the
generalization capacity of the model. Random_state=42
ensures reproducibility by stabilizing the random seed
for stable results across run repetitions. The well-
structured validation process is a necessity to develop
robust, reliable predictive models.

3.5 Scaling the Data
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Scaling is used to make all features contribute equally to
the model, particularly when they have different scales,
as is usual in medical data. Various dietary and
contextual factors are usually measured in various units
and also have different ranges. For instance:
Carbohydrate consumption would be quantified in
grams and would generally lie between 0 to 100+ grams
whereas Blood glucose can be quantified in mg/dL and
lie between 40 to 400 mg/dL. In intended work Standard
scaler is utilized which works on the basis of
standardization to get the mean value as 0 and also have
to attain the value 1 for standard deviation for every
factors. The change carried out by Standard Scaler has
been expressed as:
xX—H
o

x represents the real factor value, p represents the mean
of the factors, o is the standard deviation, and z is the
standardized factors value.

Feature scaling is done by using the StandardScaler ()
from the sklearn.preprocessing module. Scaling is one
of the important step in data preprocessing especially for
models sensitive to feature value magnitudes, like linear
models or neural networks. The StandardScaler () scales
the factors by subtracting the mean and scaling the unit
variance, thus converting the factors in the dataset to get
the mean value as 0 and also attain the value 1 for

standard deviation. This is done through the formula:
X—-mean

Z =

X __A—mean
scaled Standard deviation

First, X train calculates the mean and the standard
deviation using the  training set and performs scaling
transformation on the same. Then, X valid and X _test
apply the same transformation parameters to the
validation and test sets, ensuring consistency. This
prevents data leakage, as information from the validation
or test sets is not used during the scaling of the training
data. Standardization improves model convergence,
particularly for algorithms that rely on gradient-based
optimization, and make sure that all features have an
equal importance on the model’s training.

3.6 Training the Model
3.6.1 Random Forest Regressor:

The machine learning algorithms which can be
used for regression tasks can build a group of decision
trees. Each tree is trained on random subsets of the data
and features. The ultimate prediction is usually the
average of the predictions from all the individual trees
in the forest.

3.6.2 Hyperparameter Tuning:
In this context, hyperparameters such as n_estimators
and max_depth are adjusted.

1. n_estimators: More trees can lead to better
performance as the model averages more
results, but it also increases computational cost.

il. max_depth: Deeper trees can fit the training
data better (leading to low training error) but
may overfit if they become too complex.

3.6.2.1 Training Multiple Models:

Different combinations of n_estimators and
max_depth values are used to train multiple Random
Forest Regressor models. For example, one model might
have 100 trees with a max depth of 5, while another
might have 200 trees with a max depth of 10, and so on.
3.6.2.2 Validation Set MSE (Mean Squared Error):

e  After training, each model is evaluated on a
validation set, which is a subset of the data not
used for training.

e MSE is used as the performance metric for
evaluating the validation set’s model. MSE
estimates the mean squared difference between
predicted and actual values, and lower values
indicate better performance.

3.6.2.3 Best-Performing Model:

e  Once trained and tested on all the models, the
best model is the one that has the minimum
validation set MSE. This best model should
perform better on unseen data since it has been
picked on the basis of its accuracy on the
validation set (how well the model will actually
do in real situations).

e Inshort, this is a type of hyperparameter tuning
in which varying values for the number of trees
(n_estimators) and the tree depths (max_depth)
are experimented with, and the model that
results in the least prediction error (MSE) on a
validation set is selected as the best one.

4 Results and Discussions

4.1 Model Evaluation

The ultimate assessment of the best-tuned Random
Forest Regressor model is performed based on the
unseen test set. Following hyperparameter tuning, the
best model (best_model) is utilized to make predictions
(y_test_pred) on the scaled test data (X test scaled).
The performance of the model is subsequently evaluated
based on two important assessment metrics:

4.1.1 Mean Squared Error (MSE):

This calculates the mean of the square of differences
between predicted (y_test_pred) and actual (y_test) blood
glucose levels. MSE is a sensitive measure for large
errors, hence it is a good measure to use in pointing out
large deviations in predictions.

1
MSE = ;Z (yactual - ypredicted)2

4.1.2  Mean Absolute Error (MAE):

MAE is the mean absolute difference between the values
of actual and predicted, a more understandable metrics
of the model prediction accuracy. It is less sensitive to
outliers than MSE.

MAE = % )2 |yactual - ypredicted'
These values are output to give a clear view of
the accuracy of the model and the magnitude of the
errors. A smaller MSE and MAE show that the model is
performing better. Testing on the test set provides a final,
unbiased measurement can be applied to new model,
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unseen information, making it reliable for real-world
blood glucose prediction applications [13].

4.2 Explainability and Visualization Tools

The overall process is implemented to analyse the
performance of the best-selected Random Forest
Regressor model, interpret its predictions using SHAP
and visualize both model insights and blood glucose data
trends.

4.2.1 Explainability using SHAP

e The SHAP values are -calculated using
shap.TreeExplainer(best_model) to explain the
predictions by determining the contribution of
each attribute to the predicted blood glycemic
levels.

e A SHAP summary plot (shap.summary plot) is
generated to provide a global view of the
feature importance, indicating which features
had the most significant influence on
predictions.

The Fig 1.2 and Fig 1.3 provides insights into the impact
of individual features like carbohydrates, protein, fat,
etc., on the prediction of blood glucose levels.
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FIG 1.3 SHAP Value Plot for Carbohydrates Showing the Impact on
Blood Glucose Prediction with Protein Levels as a Colour Gradient

4.3 Correlation Matrix:

A correlation matrix as shown in Fig 1.4 is generated
using to visualize correlations between the features and
the blood glucose levels. Strong correlations indicate
which factors are most influential in determining
glucose levels, aiding in model interpretation and feature
selection.
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FIG 1.4 Correlation Matrix

4.4 Blood Glucose Trend Analysis

One of the main issues in juvenile diabetes patients is to
control blood Glucose occurring after meal, through
dosing the insulin bolus to be delivered pre-prandial
meals [11][12]. According to these assumptions, an
experiment to find the influence of nutritional
parameters such as carbohydrates, proteins, fats, fibres
and other factors that acts on blood glucose over short
and middle time range has been predicted by Machine
Learning (ML) methods. The Fig 1.5 shows the
prediction of the blood glucose readings for every 15
minutes for one hour after meals using insulin dosing,
blood glucose, and nutritional variables in T1D patients
on AP systems was used.

Continuous Blood Glucose Levels Over Time

— Blood Glucase 15 mins
— Biood Glucose 30 mins
— Biood Glucose 45 mins
— Biood Glucose 60 mins.

9 ;l
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tmardL)
8
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F IG 1.5 Continuous Blood Glucose Levels Over Time with
Hyperglycemic and Hypoglycemic Thresholds

4.5 Actual vs Predicted Plot

A scatter plot as shown in Figl.6 is drawn via
plt.scatter() for comparing observed blood glucose
measurements and predicted ones. A dotted diagonal red
line illustrates the desired case when observed and
predicted are the same. Shifts away from this line
identify prediction flaws and model inefficiencies.

979-8-3315-1211-8/25/$31.00 ©2025 IEEE

1776
Authorized licensed use limited to: SRM Institute of Science and Technology Kattankulathur. Downloaded on December 16,2025 at 03:58:55 UTC from IEEE Xplore. Restrictions apply.



Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)

IEEE Xplore Part Number: CFP25K25-ART; ISBN: 979-8-3315-1211-8

Actual vs Predicted Blood Glucose Levels
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FIG 1.6 Actual vs. Predicted Blood Glucose Levels with Reference
Line

4.6 Interpreting Model Prediction using LIME For

Explainability

Interpretability is a critical component of the blood

glucose prediction system, especially in a healthcare

context where model decisions must be explainable.

The LIME framework is used to generate local
explanations for individual predictions, making the

Random Forest model more interpretable. LIME (Local
Interpretable Model-agnostic Explanations) explains
individual predictions by modeling the behavior of the
model in the vicinity of each data point using a simple
interpretable model, like a linear model. LIME helps to
understand features (e.g., carbohydrate consumption,
insulin) influencing blood glucose predictions.

4.6.1 Validating LIME Explanations

e To test LIME's validity, explanations from
similar instances are compared. Consistent
explanations verify that the model's decision-
making is in accordance with established
physiological factors.

e Clinicians review explanations produced by
LIME as shown in Fig 1.7 to verify that they
are consistent with medical understanding of
glucose control and Fig 1.8 shows the model
prediction of blood glycemic values using
LIME for the corresponding features.

LIME Explanation - Feature Contributions

bolus <= 2.13 {

30.52 < protein <= 40.28 {

patient age <= 37.25 {

Feature

fiber <= 8.90 {

50.24 < carbohydrates <= 63.61{

-02 00 02 04 06 08 10 12
Contribution to Prediction

FIG 1.7 Blood Glucose Prediction Using LIME Based On Features

4.6.2 Feature value Table

The “Feature Value” in Table 1.3 contains the list of real

values of the respective instance:
Table 1.3 Feature Value Table

bolus 2.03
protein 37.83
basal 2.15
carbohydrates | 55.96
Patient_age 29.00
Model Prediction: 118.59
[('bolus ¢= 2.13', 1 ), (130,52 < protein <= 48.6", -0.16042048347230985), ("basal » 182", 0.118536982269362), ('50.24 ¢ carhohydrates
(= B0, -B.0268) 3gp <= 315", -0.00065901105TR1E) |
el e - Feature Vahue
e ] wH n
(min) 11859 (max) 3032 < proen <= 402§
" u
fual> 18 Fo
i
5024 < carbobydrates.
pﬂﬁiﬁJ‘.Tng“f.::‘ oyl 556
it 300
FIG 1.8 Model Prediction Using LIME with Feature Contributions
for Blood Glucose

4.7 Model Improvement Strategies

In order to enhance the performance and consistency of
the blood glucose prediction model, a number of
improvement strategies were investigated:
1) Performance was improved by hyperparameter
tuning of Random Forest parameters n_estimators and
max_depth, and by sophisticated feature engineering
with time-based and physiological features.
2) Accuracy was enhanced through time-aware cross-
validation, which minimized model bias and captured
true-world trends more accurately. Clinical relevance
was leveraged to inform feature selection based on
domain expertise.
3) Reliability was enhanced by strong cross-validation,
repeated random seed use, and data anomaly
management. Regular model updating and drift
detection were prioritized for long-term stability.
4) Precision was improved by the addition of weighted
loss functions to focus on key glucose ranges and
incorporating SHAP and LIME analysis insights to
optimize feature importance and model behavior.
5) The model has been improved by employing temporal
sequences, includes contextual factors such as physical
activities create hybrid predictions and combine the
random forest with thin neural network.
6) The tools like SHAP and LIME make clinicians to
validate model behaviour, increase transparency and
increase patient confidence in automation decision
making.
These approaches in combination provide a high-
performing, interpretable, and clinically valuable
glucose prediction model for the management of
juvenile diabetes.

5. Conclusion

The creation of a blood glucose prediction model with
the Random Forest algorithm proves a strong, data-
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driven methodology for predicting future glucose values
for Type 1 Diabetes (T1DM) patients. By leveraging
historical patient information, including insulin dosing,
blood glucose values, and carbohydrate ingestion, the
system can produce short-term forecasts useful for
patients and clinicians to inform decisions. The use of
SHAP  (Shapley  Additive  explanations)  for
explainability of the model guarantees not only the
accuracy of the predictions but also their interpretability
so that users can perceive the reasons behind variations
in glucose levels.

The program effectively processes different tasks
ranging from data cleaning to missing value
management, model optimization, and result
visualization. Performance measures such as Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE)
reflect the model's precision in forecasting glucose
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