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 Abstract 

 
This study proposes a deep learning approach for malware 
classification, utilizing both byte-level and opcode features. The 
dataset comprises the byte files and opcode sequences, which are 
preprocessing, features are extracted, and integration with 
corresponding class labels. Byte files are analysed for size 
distribution, address removal, and unigram bag-of-words 

representation, while opcode features are extracted separately. 
SMOTE is used to tackle the challenge of class imbalance An LSTM 
neural network is employed to categorized the malware into distinct 
families by using the extracted features. This model is designed to 
differentiate between various malware families, including Ramnit 
(Trojan), Lollipop (Adware), Vundo (Trojan), Simda (Backdoor). 
Finally, This model is trained with categorical cross entropy loss 
and optimized using the Adam optimizer is utilized to enhanced and 

improved the accuracy across the different malware types. The 
proposed methodology achieves a test accuracy of 86.5%, delivers 
with strong classification results as precision (87.8%), recall 
(91.2%), and F1-score (85.0%). The confusion matrix analysis 
indicates minimal misclassifications among malware families, 
demonstrating the model’s robustness. Performance metrics used to 
validate and confirm the model's effectiveness in generalization, 
demonstrated y analyzing training and validation accuracy and loss 

curves showing the stable convergence. 

 
Keywords: IOT, Fi l e s i ze based,  Byte value,  Dataset ,  
preprocess ing data ,  Malware detection, Benign,  Opcode 
Category, Feature Extraction, LSTM classification, LSTM model, 
SMOTE, Test, Train, Evaluation, and Accuracy. 
 

 

1. INTRODUCTION 

Role of IoT: IoT (Internet of Things) malware detection refers to 

identifying and classifying malicious software specifically targeting 

IoT devices, including smart home gadgets, industrial control 

systems, and wearable technology. Given the growing number of 

IoT devices, Cybercriminals often target these systems due to their 

vulnerabilities is due to their limited security capability and 

frequent lack of regular updates. The methodology of extracting 

meaningful features from bytecode and opcode sequences can be 

applied to IoT malware binaries [14]. This includes analysing 

unique patterns in IoT firmware files and identifying common 

attack signatures. Unlike traditional malware, IoT malware often 

focuses on remote control, botnet formation (e.g., Mirai), and 

(DDoS) attacks 

 

 

The model can be trained on IoT-specific malware 

datasets to enhance detection. The trained model can be 

optimized for real-time detection and deployed on IoT gateways 

or edge devices, providing an additional security layer without 

relying on cloud-based detection. 

Malware detection and classification are crucial to 

mitigating these risks. Traditional signature-based detection 
methods often struggle to identify emerging and evolving 
threats, as they rely on known patterns and previously 
encountered malware signatures. This limitation makes the 
application of machine learning and deep learning techniques 
essential for effectively detecting and classifying new and 
sophisticated malware variants. These advanced methods can 

learn complex patterns from data, enabling them to generalize 
beyond known signatures and identify previously unseen 
threats. In the context of IoT malware, deep learning models—
especially those leveraging opcode and bytecode features—
offer a dynamic and scalable approach to enhance security 
across diverse IoT environments. 

The proposed system is designed for IoT detecting and 
classifying malware according to opcode categories. 

Explanation of opcodes (operation codes) as low-level 
instructions executed by the CPU [15].  

The role of opcode categories in reflecting malware 
behavior, including arithmetic, logic, control, and data transfer 
operations. Previous studies on opcode usage in malware 
classification. The classification of opcode sequences into 
categories that highlight malware behavior patterns. Impact of 

opcode categories on the representation of malware behavior. 
This study focuses on building a robust deep learning model for 
malware classification using LSTM networks. The dataset 
consists of byte files and assembly opcode features extracted 
from malware binaries.  

The project leverages feature engineering techniques, data 
preprocessing, and advanced machine learning methodologies 
to improve accuracy of malware detection. The dataset is 

acquired from malware samples, containing byte files and 
opcode features. Preprocessing steps include removing 
unwanted data, normalizing numerical values, and handling 
missing 
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values. The IoT malware in binary form is transformed into a series 
of opcodes, with every opcode assigned to a category based on its 
functionality. Features are extracted utilizing common n-grams, 

18,856 maximum sub- patterns, and corresponding entropy values. 
The IoT malware dataset is analysed using various techniques, 
including file details and organization during packing. We provided a 
detailed explanation of the feature creation by using the opcode 
categories to effectively represent the characteristics of IoT malware.  

The features were visualized, so common patterns and 
differences were observed Extract meaningful features from byte 
files using custom-built bag-of-words techniques and opcode 

unigram representations to better represent malware characteristics. 
Since malware datasets often exhibit class imbalance, the Synthetic 
Minority Over-sampling Technique SMOTE is used to balance the 
dataset and improve model generalization. LSTM network, a type of 
Recurrent Neural Network (RNN), for malware classification. 
LSTM Layers is used to process sequential data (byte/opcode 
sequences) and capture long-term dependencies in malware patterns. 
Design and train an LSTM deep learning models for malware 

classification. This model processes sequences of extracted features 
to classify malware into different categories. Evaluate The trained 
model evaluated using metrics like accuracy,confusion matrices, and 
loss functions to ensure effective malware detection. Save the trained 
model for potential deployment and explore improvements, such as 
hyperparameter tuning and integrating additional deep learning 
architectures. By implementing deep learning techniques for 
malware classification, this project seeks to enhance the accuracy 

and effectiveness of detection methods new and sophisticated 
malware, thereby enhancing cybersecurity Défense mechanisms. 
Confusion Matrix evaluates classification performance by 
visualizing true vs. predicted labels [16]. 

Summary: This study addresses these challenges by 
applying deep learning techniques to detect and classify IoT 
malware. By analyzing byte-level and opcode-level features 
extracted from malware binaries, the proposed system can identify 

patterns specific to IoT-targeting threats. The model is designed to 
be lightweight enough for deployment on IoT edge devices or 
gateways, allowing for real-time local threat detection without 
depending on cloud infrastructure. This makes it a practical and 
scalable solution for enhancing IoT security. 

 

2. RELATED WORK 

 
Lee, Hyun Jong, Soin Kim, Dong Heon Baek, Dong 

Hoon Kim, and Doo sung Hwang et.al.,[1] proposed that “Robust 

IoT Malware Detection and Classification Using Opcode Category 

Features on Machine Learning” states that IoT malware samples 

and benign software samples are collected from sources like IoT 

malware repositories and real-world IoT applications. The main 

idea is to analyse the opcode sequences in binary executables, 

instead of using raw opcodes, opcode categories are used to extract 

meaningful patterns. Opcode category frequency distributions are 

used as feature vectors. Statistical methods and normalization 

techniques are implemented to optimize the extracted opcode 

features. The algorithms are tested utilizing evaluation measures 

such as accuracy, precision, recall,F1 score, and ROC AUC help in 

analysing the model’s performance.  

 

The method relies on static analysis, meaning 

obfuscation techniques like polymorphic and metamorphic 

malware can evade detection. Extracting opcode category features 

from large IoT malware datasets can be computationally 

expensive. Since the approach is based on known opcode patterns, 

it may not be very effective against novel, unseen malware 

variants. Performance may degrade when applied to new datasets 

or different IoT environments due to variations in compiled 

binaries. 

 

 

 

X. Jiang et. al.,[2] have proposed that a An 
experimental analysis of industrial security vulnerabilities 
IoT devices." States that this paper mainly aimed at 

identifying and analyzing the security vulnerabilities in 
Industrial IoT devices through experimental testing. The 
various IoT devices are chosen based on their popularity, 
usage in critical infrastructure, and known security 
concerns. The devices include industrial sensors, 
controllers (PLC/SCADA), smart gateways, and edge 
computing devices. The attack surface of each IoT device 
is mapped, identifying all possible entry points for attacks 

(e.g., network interfaces, APIs, firmware, web 
applications,  and  hardware  ports).Static  analysis 
,dynamic analysis and Fuzz testing is used for 
vulnerability assessment process. Exploits are executed in 
a controlled lab environment to assess their impact. 
Security patches, configuration changes, and best 
practices are proposed to mitigate identified 
vulnerabilities. The effectiveness of security measures is 
evaluated post-mitigation finally repeat the penetration 

tests are conducted to verify if vulnerabilities persist. 
Limited Device Coverage ,Controlled Lab Environment 
Ethical and Legal Constraints ,rapidly Evolving Threat 
Landscape: Device-Specific Exploits are the limitations. 

 
K. Albulayhi, et.al.,[3] have proposed that IoT 

intrusion detection using machine learning with a novel 
high performing feature selection method “states that this 
paper focuses on enhancing IoT intrusion detection 
systems (IDS) using machine learning (ML) and an 
optimized feature selection method to improve detection 
accuracy and efficiency. dataset collected, data cleaning 
process then Feature encoding by categorical features are 
converted into numerical values. Normalization like 

Feature values are scaled to improve ML model 
performance. A new feature selection method is proposed 
to identify the most relevant features for intrusion 
detection. The process involves Filter Methods, Wrapper 
Methods, Hybrid Approach. The selected features aim to 
reduce dimensionality while maintaining high 
classification accuracy. Dataset Bias, Performance may 
degrade when applied to new IoT environments with 
different network traffic patterns. Feature selection and 

ML model training may require high computational 
power, especially for deep learning approaches and 
scalability are the limitations. 

J. Paik, et.al., [4] proposed that “Malware 
classification using a byte granularity feature based on 
structural entropy” states that This paper presents a 
malware classification approach using structural entropy 
at the byte level to capture malware characteristics more 
effectively A dataset of malware samples is gathered from 
sources and the samples are categorized based on malware 

families (e.g., trojans, worms, ransomware). Benign 
executable files are also collected for comparison Entropy 
measures randomness in a system; malware often has 
distinguishable entropy patterns in different sections of 
the binary. The binary file is divided into fixed-size byte 
segments Malware often contains compressed or 
encrypted sections, leading to high entropy in specific 
regions. This entropy distribution is used as a feature for 
classification. The extracted entropy sequences are 

transformed into feature vectors. he trained models are 
tested on a separate dataset using metrics like Accuracy, 
Precision, Recall, F1-score,Confusion Matrix, 
Obfuscation & Packing Techniques, Loss of Contextual 
Information, Computational Overhead, Generalization to 
Unknown Malware Dataset Bias .The classification 
model's accuracy depends on the diversity of the dataset 
used for training 
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S. Moon, Y. Kim, H. Lee, D. Kim, D. Hwang et.al.,[5] 

proposed that “Evolved IoT malware detection using opcode 

category sequence through machine learning’’ states that This 

paper proposes an enhanced IoT malware detection approach 

using opcode category sequences instead of raw opcodes, 

making detection more robust and efficient. A dataset of IoT 

malware binaries is gathered from public repositories the dataset 

is preprocessed to remove duplicate and corrupted files. The 

malware binaries are disassembled using tools like IDA Pro, 

Radare2.Instead of using raw opcodes (which vary across 

architectures), opcodes are grouped into functional categories 

such as Arithmetic operations (add, sub, mul)and logical 

operations. This transformation generalizes the feature set, 

making the model more adaptable across different CPU 

architectures. The ordered sequence of opcode categories is 

extracted from each binary n-gram modelling is used to capture 

local patterns within the sequence. TF-IDF (Term Frequency-

Inverse Document Frequency) is applied to opcode sequences to 

prioritize important pattern. The models are evaluated using 

accuracy, precision, recall, and F1- score. Obfuscation and 

Evasion Techniques, Architecture Dependence, Computational 

Overhead ,Limited Generalization to Unknown Malware ,Lack 

of Behavioural Context are the limitations[12]. 

Ahsan Nazira, Jingsha Hea, Nafei Zhua, Saima Siraj 

Qureshia, Siraj Uddin Qureshia, Faheem Ullaha, Ahsan 

Wajahata, Muhammad Salman 

Pathanb,c,et,al.,[6]”proposed that deep learning-based novel 

hybrid CNN-LSTM architecture for efficient detection of threats 

in the IoT ecosystem” states that This paper presents an Integrated 

a deep learning methodology that leverages a combination of 

CNN and LSTM for enhanced performance for identifying 

threats in IoT in IoT environments efficiently. The dataset 

includes both benign and malicious network traffic, covering 

various attack types as Denial of Service (DoS) attacks ,Man-in- 

the-Middle (MitM) attacks, Botnets and malware infections. 

Data Preprocessing & Feature Engineering Extracting relevant 

features such as packet size, protocol type, source/destination IP, 

and flow duration. CNN for Spatial Feature Extraction. The CNN 

extracts spatial patterns from network traffic data .It captures 

correlations between different traffic features using 

convolutional layers. The LSTM component models sequential 

dependencies in network traffic data. It detects patterns over 

time, making it effective for identifying slow and stealthy 

attacks. Model Training & Optimization by using loss Function 

Categorical Cross-Entropy for multi-class classification. This 

model is evaluated using key metrics as Accuracy, Precision, 

Recall, and F1-score and Confusion Matrix. The limitations of 

this approach is High Computational Cost, Data Dependence & 

Generalization Potential Overfitting Difficulty in Real- Time 

Deployment, Limited Interpretability The CNN- LSTM hybrid 

model effectively detects IoT threats by effectively capturing 

both spatial and temporal features in network traffic 

          Maran, Piragash, Timothy Tzen Vun Yap, Ji Jian Chin, 
Hu Ng, Vik Tor Goh, and Thiam Yong Kuek.et.,al[7] 

proposed that "Comparison of machine learning models for 
IoT malware classification “states that This paper evaluates 
different machine learning (ML) models for classifying IoT 
malware, analysing their effectiveness based on feature 
selection, model performance, and detection accuracy. IoT 
malware samples are collected from sources like VirusTotal, 
IoTPOT, and MalwareBazaar. Benign IoT applications are 
also included for balanced classification. Features are 
extracted from malware binaries and network traffic. The two 

main types of features are considered as Static Features 
Dynamic Features [13] .Dimensionality reduction is applied 
to select the most relevant features. Principal Component 
Analysis (PCA), Mutual Information, and Recursive Feature 

Elimination (RFE) are utilized to optimize performance. 
Models are trained using training datasets and validated 
using a hold-out test set or cross- validation (e.g., k-fold 

validation).Evaluation metrics include Accuracy, 
Precision, Recall, and F1-score,False Positive Rate 
(FPR)Limitations of the Approach are Dataset Bias 
,Computational Cost, Feature Dependence, 
Generalization Issues, Class Imbalance. This study 
provides insights into the strengths and weaknesses of 
different ML models for IoT malware classification. 
XGBoost and deep learning models offer high accuracy, 

but traditional models like Random Forest provide a better 
trade-off between efficiency and accuracy 
 

Riaz, Sharjeel, Shahzad Latif, Syed Muhammad Usman, 

Syed Sajid Ullah, Abeer D. Algarni, Amanullah Yasin, 

Aamir Anwar, Hela Elmannai, and Saddam Hussain 

at.,al[8] "Malware detection in internet of things (IoT) 

devices using deep learning” states that This paper 

presents a deep learning-based approach for detecting 

malware in IoT devices, leveraging neural networks to 

analyze malware behaviors and patterns. IoT malware and 

benign samples are collected from repositories like 

VirusTotal, IoTPOT, MalwareBazaar, and IoT-23 dataset. 

The dataset is pre-processed to balance benign and 

malicious samples to avoid classification bias. Feature 

extraction is performed using static analysis, dynamic 

analysis, or network traffic analysis. Data Preprocessing 

Normalization & Encoding: Features are normalized to a 

fixed scale (e.g., Min-Max Scaling).One-Hot Encoding 

Categorical features (e.g., API calls, opcodes) are 

converted into vector representations and Feature 

Reduction. CNNs are used to extract spatial patterns from 

feature matrices (e.g., opcode sequences or system call 

logs).LSTM networks process time-series data, making 

them effective for analysing sequential patterns in 

malware behaviour. Model Training & Optimization, 

Performance Evaluation, then the Metrics Used to find out 

the Accuracy, Precision, Recall, and F1-score, False 

Positive Rate (FPR).The Limitations of the Approach 

are Computational Cos, Dataset Bias & Generalization Issues 

, Obfuscation & Evasion Techniques, Real-Time 

Detection Challenges, Interpretability & Explainability 

Mehrban, Ali, and Pegah Ahadian.et al[9] proposed 

that" Malware detection in iot systems using machine 

learning techniques" states that a hybrid a deep learning model 

that combines CNN and LSTM for enhanced feature 

extraction and sequence learning to enhance malicious 

software detection in Internet of Things IoT environments. 

The researchers compiled a dataset comprising both benign 

and malicious IoT software samples. Before training the 

model, the dataset was preprocessed through various steps 

such as normalization and encoding to ensure compatibility 

with the deep learning models. These steps aimed to 

standardize the data and convert categorical variables into 

numerical formats suitable for analysis. Employed to derive 

spatial features from the input data. Capturing local patterns 

within the malware samples utilized to recognize temporal 

relationships and sequential trends in the data, which are 

crucial to comprehend the behavior of malicious software 

over time. The hybrid model was trained using a K-fold 

cross-validation technique to ensure robustness and mitigate 

overfitting. Performance was evaluated based on accuracy, 

with the proposed model achieving a 95.5% accuracy rate, 

outperforming existing methods. Computational Complexity, 

Dataset Limitations, Feature Extraction Dependency and 

Real- Time Detection Challenges are the limitations. 
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3. PROPOSED METHODOLOGY 

 
The proposed approach leverages Deep Learning techniques, 
particularly a (LSTM) neural network, to efficiently malware 
detection and malware classification. The system processes raw 

.bytes files and .asm opcode sequences used to extract relevant 
features that represent malware behaviour. A custom feature 
engineering approach is implemented by including unigram 
frequency analysis of hexadecimal bytes and opcode sequences. 
To address class imbalance issues, SMOTE (Synthetic Minority 
Over-sampling Technique) is used to enhance underrepresented 
malware families, ensuring the model learns from a well-
balanced dataset. The extracted features are then normalized and 

converted into structured numerical input, optimizing them 
suitable for deep learning-based classification. 

 
The LSTM-based model is designed to identify the 

sequential patterns in malware binaries, enabling it to distinguish 
between different malware families with high precision The 
architecture comprises an LSTM layer featuring with 128 

components which is succeeded by a dropout A tier (0.5) to 
prevent overfitting, and dense layers with ReLU activation to 
capture hierarchical patterns effectively. The final classification 
is achieved and performed using a SoftMax activation function, 
predicting one of the nine malware families. The training process 
of the model utilizes the Adam optimizer and categorical cross 
entropy loss for attaining a good accuracy with 81.5%.This 
approach underscores the efficiency of utilizing the deep learning 

for identifying the malware offered the scalable and robust 
solution for cybersecurity applications. 

 
The proposed model key procedures: 

(1) Feature Extraction 
(2) Preprocessing of Data 
(3) Build and LSTM model 
(4) LSTM based Deep Learning Model for classification 
(5) Evaluation Metrics 

 
 

Architecture diagram 

                
Figure 1.1 System Architecture 

 
The system architecture diagram will explain stuffs like 

how the modules are being connected, how the data is 
transferring within them, how the modules are placed. Figure 1.1 

explains the hierarchy order of each module used in this project. 
The system architecture will also be used while debugging the 
project. If any kind of error occurred during the compilation of 
the project or while during the run time of the project, it would 
be easy to point out the error raising module if we use the system 
architecture of a project. Figure 1.3 explains about the Data Flow 
diagram of our research.This makes the debugging part to be 
easier and more adequate. This contains all the glimpse or an 
overview of the modules which are used in this project. 

 

      3.1 Dataset  

     A Malware Dataset is a compilation of data samples associated 
with malicious software (malware). It usually contains the traits, 
behaviours, and attributes of various malware types, which can 
be utilized for research, machine learning, or cybersecurity 
analysis. The malware dataset is sourced from the Microsoft 

Malware Classification Challenge (BIG 2015), hosted on Kaggle.  

The dataset contains ~1,00,000 malware samples.  

Figure 1.2 Malware dataset 

Each malware has two files .bytes file which has 
raw hexadecimal representation and .asm file has 
assembly code (disassembled from the executable). The 
malware dataset Figure 1.2 consists of malware samples 

in the form of disassembled bytecode (.bytes files) and 
assembly (.asm files), along with labels specifying the 
malware family. The dataset includes trainLabels.csv 
contains the ID of each malware sample and its 
corresponding Class (1-9) in Table 1.1.In Byte Files 
(.bytes) files contain the hexadecimal representation of 
executable files, without headers. The first column is the 
memory address, which is typically removed during 

preprocessing. In Assembly Files (.asm), These contain 
the disassembled assembly code of the malware samples. 

               

 

 
Figure 1.3 Data Flow diagram 

 

Table 1.1 Malware ID and class 

 

3.2 Feature extraction 

Feature extraction entails involves converting raw data 
into a structured set of meaningful and relevant features, 
facilitating machine learning and data analysis tasks and 
useful features, enabling machine learning and data analysis 
tasks. It reduces data dimensionality while preserving 

essential information. 
 

Figure 1.4 Opcode 40 Feature extraction 
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3.2.1 File Size Based 

In File Size-Based Feature Extraction, The size of each 
.bytes file is extracted and stored as a feature. The os.stat() function 
gets the file size. The size is converted into MB and stored in a 

Data Frame. Malware families often have distinct file sizes based 
on their functionality. 

3.2.2 Byte Value Frequency 

In Byte Value Frequency (Bag of Words Representation), 
Counts of each hexadecimal byte (00 to FF) in the .bytes file. 
Count of unknown bytes (??), which may represent missing or 

obfuscated values. First Initialize a 257- column matrix which 
is 256 columns for byte values (00- FF).and 1 column for ?? 
(unknown bytes),then Iterate through .bytes files: Open and 
read each line, next by removing the memory addresses, Count 
the occurrences of each hex value (00-FF) . Finally Store in 
feature_matrix. At last Save the features to result.csv. Byte 
frequency analysis helps detect patterns that are unique to 
certain malware families 

3.2.3 Opcode Feature Extraction 

An opcode is a component of a machine instruction that 
defines the specific operation to be executed. (e.g., MOV, 
PUSH, ADD). By extracting and analysing opcode 
sequences, security researchers can detect malicious 
behaviors, obfuscation techniques, and unique signatures of 
malware. The first steps is reading the opcode unigram 
features from asm_opcode_unigram_40_features.csv,then 
each row contains frequencies of top 40 opcodes extracted 

from assembly code shown in Figure 1.4 Finally Merging the 
opcode features with trainLabels.csv to associate each sample 
with a class. 

 

 

                        Table 1.2 Malware Size and class 

3.3 Preprocessing of Data 

The preprocessing steps in the code involve multiple 
stages to prepare data for training an LSTM-based malware 
classification model. The first step is normalizing the data 
,The byte frequency data is merged with the class labels. 
Table 1.2 consists of each feature (except ID and Class) is 

normalized using Min-Max Scaling. Table 1.3 explains the 
short brief for the types of Feature Normalization. 

It improves the model convergence with gradient-based 
optimization performs better when features are on the similar 
scale and finally it enhances distance-Based models with 

algorithms like k-NN and K-Means clustering rely on 
Euclidean distance, which is affected by different feature 
scales. It helps with model convergence, especially for deep 
learning models. The second step is by splitting data into 
training and testing datasets. The dataset are split into X_train 
and X_test whereas maintaining the class distribution using 
stratified sampling. The third step is by handling Class 
Imbalance and Data Balancing using SMOTE technology. 

SMOTE is a widely used technique for addressing class 
imbalance in datasets. It helps improve model performance 
by generating synthetic samples for the minority class instead 
of simply duplicating existing and it identifies the minority 
class in an imbalanced dataset. Then selects the k-nearest 
neighbors for each sample in the minority class. It generates 
synthetic data points along the line between the original data 
point and its neighbors. At last it balances the dataset by 
increasing the sample count in the minority class. Data are 

again splitted to X_train and  X_test, followed by 
SMOTE resampling finally the dataset is reshaped to align 
with the LSTM model format: (samples, timesteps, 

features) where timesteps is the number of extracted 
features.  

 

 

Table 1.3 Types of Feature Normalization 
 

 

3.4 LSTM Classification and analysis 

LSTM is a specialized form of Recurrent Neural Network 
designed to handle sequential data while effectively 
overcoming the vanishing the problem .It is widely used in 

time-series forecasting, NLP, and malware classification 
where sequential dependencies exist. An LSTM model is 
composed of several layers that process the input data step 
by step. The First layer is Input Layer which is used to 
defines the structure of input data. The Second layer is LSTM 
Layer which captured the sequential patterns in the data. The 
third layer is dense layers which is fully connected layers 
responsible for classifying data. Each layer plays a vital role 

in malware classification by leveraging opcode and byte 
sequence features. 

3.4.1 Building the LSTM model 

The LSTM layer is essential in the model's 
architecture, helping it learn patterns in sequential data 
LSTM Cell Architecture. The dataset is reshaped into 3D 

format ([samples, timesteps, features]), required for LSTM 
models. Each LSTM cell comprise four main components 

: the Forget gate, which decides what information to be 
discarded; the Input gate, which determines selects and 
incorporates new information; the memory state update, 
which refreshes the memory with essential data and the 

output control gate,which generates the specific final result. 

3.4.2 Training & Testing 

The training dataset consists of data used to fit and 
train the model to recognize patterns and learn the features. 

This dataset is fully accessible to the model throughout 
training. The test data collection, on the other hand, is a 
separate subset utilized to assess the model’s performance, 
ensuring an accurate assessment of its effectiveness on 
unseen data. Table 1.4 explains clearly about the LSTM 
hyper parameter. By training the LSTM model, the 
categorical cross-entropy loss function and     Adam 
optimizer are utilized to optimize performance.           

Categorical cross-entropy is widely used the loss function for 
multi-class classification, and it encourages the model to 
assign higher probabilities to the correct class labels. It is 
particularly effective when combined with SoftMax 
activation in the output layer. Adam Optimizer (Adaptive 
Moment Estimation) is which Combines Momentum & 
RMSprop that Uses both past gradients (momentum) and 
adaptive learning rates for efficient training. It faster 

Convergence ,adapts learning rate dynamically for each 
weight and robust to Noisy Gradients which works well with 
high-dimensional data like malware. To assess the model’s 
performance the classification accuracy metric is utilized, 
which was trained for 300 epochs with a batch size of 32. 
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4. Result and Discussion 

4.1 Evaluation Metrics 

It evaluates the LSTM-based malware classification model 
using several metrics. Here's how the evaluation is done by 
test loss and accuracy Set. Once the training is done, the 
model will be evaluated on the testing using loss, which 

quantifies how it is predicted class probabilities align with the 
true class labels. Accuracy is which produced the percentage 
of correctly classified samples. This provides an overall 
measure of model performance. This model makes the 
predictions on the training data by probability distributions 
over the classes. np.argmax() converts probability 
distributions into discrete class labels by selecting the highest 
probability. 

False Positive Rate(FPR) Metric: It evaluates the ratio of 
compromised states that are incorrectly recognized as normal, 
providing an understanding of the system’s misclassification 

rate. A lower value indicates the signals enhanced 
performance. It is determined using the formula FPR=FP/N 
where FP represents the count of incorrectly identified the 
positive cases, and N is the overall count of abnormal vectors 
[9]. 

                                         𝐹𝑃𝑅 =
𝐹𝑃

𝑁
   (6) 

 

False Rejection Rate(FFR) Metric: It measures the 
frequency of intrusion detection system incorrectly identifies 
the legitimate states as intrusions, resulting in false alarms 

that limit network access for authorized users. It is computed 
using the formula FRR=FNP , where FN denotes the count of 
incorrectly identified negative cases, and P is the overall 
count of positive data [9]. 

                                                𝐹𝑅𝑅 =
𝐹𝑁

𝑃
 (7) 

 

Accuracy Metric: This metric indicates the system’s 

accuracy in accurately the identifying the both intrusion and 

non intrusion states. It is computed using the formula  

ACC=true  results/total  records  ACC  - 

\frac{\text results}}{\text{total records}} ACC=true result 

all record, where higher values indicates the better 

performance[9]. 

                                         𝐴𝐶𝐶 =
𝑡𝑟𝑢𝑒 𝑟𝑒𝑠𝑢𝑙𝑡

𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑟𝑑
 (8) 

      

Precision Metric: Precision is an essential 

performance measure for assessing the accuracy of 

intrusion detection algorithms derived using the formula 

Precision=TP/TP+FP, it indicates how accuracy the system 

distinguishes real intrusions from all detected threats. A 

higher precision values signifies a lower occurrence of false 

positive [9].  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

 

In this scenario, TP denotes the number of positive cases correctly 
detected, Meanwhile, FP refers to the count of instances incorrectly 
classified as positive. 

Recall Metric: It is determined using the following formula [9]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

  

Hyper 

parameter 

Description Recommended values 

LSTM 
units 

Number of memory 
cells 

32, 64, 128,256 

Return 
sequences 

Whether tom return 
sequence outputs 

True(multiple LSTM 
layers), false(final 
LSTM) 

Batch size Samples per training 
batch 

16,32,64 

Dropout 
Rate 

Prevents overfitting 0.2-0.5 

Activation Function for neuron 
activation 

ReLU(hidden layers), 
Softmax (output layer) 

Optimizer Controls learning 
rate adjustments 

Adam(0.001) 

Loss 
function 

Measures error Categorical Cross 
entropy 

Epochs Number of training 
cycles 

20-100(with early 
stopping) 

        Table 1.4 LSTM hyper parameter with description and 
values 
 

 

 

Figure 1.5 LSTM hyper parameter with batch size 

 

S.No Precision Recall F1 Score Support 

1 0.98 0.95 0.96 1233 

2 0.97 0.97 0.97 1982 

3 0.93 0.99 0.96 2354 

4 0.99 0.95 0.97 380 

5 1.00 0.91 0.95 34 

6 0.98 0.94 0.96 601 

7 1.00 0.94 0.97 318 

8 0.99 0.97 0.98 982 

9 0.99 0.96 0.97 810 

Table 1.5 classification report 

4.2 Performance Metrics 

Precision evaluates the accuracy of positive predictions. Recall 
measures the proportion of actual positives correctly 
identified.F1 Score is used to balance precision and recall 
through their harmonic mean. Support is used to calculate the 
number of instances per class, Hyperparameter tuning entails 
selecting key parameters such as the number of LSTM units, 
learning rate, batch size and epochs. The process starts by 
defining a range of possible values for each hyperparameter. A 
population (swarm) of particles is then randomly initialized 

with positions and velocities within the search space. The 
fitness of each particle is assessed based on the validation 
accuracy of the LSTM model. 

Train the LSTM model on the training data using the optimal 
hyper parameters. Then, assess its performance Here, TP 

signifies the number of positive cases accurately identified, 
While FN represents the number of cases incorrectly identified 
as negative. 
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 F-measure Metric: This metric is derived using the               
following formula (11), serves as a balance between recall and                
precision [9]: 

               

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

 
 

 
on the test data evaluation through key metrics like          

accuracy, precision, recall, and F1-score 

 

 
 Figure 1.6 explains the total count and Malware       

       Classification 

 

 
 This Figure 1.7 showcase about the Size and class of  

          Malware 

 

    This Figure 1.8 showcase about the accuracy 
 
A confusion matrix is utilized to evaluate classification 

performance across all malware categories in Figure 1.9 

 

 
 

Figure 1.9 Confusion Matrix for Predicated Label 
 

 

5. Conclusion 

The proposed system effectively leverages deep learning 
techniques, particularly Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), to 
enhance the detection and classification of IoT malware. 
Then by automatically deriving insights from raw data, 
opcode sequences and their entropy values, the system 
minimizes the need for human intervention in feature 
extraction, thus improving scalability and adaptability. The 
inclusion of Long Short-Term Memory (LSTM) networks 
further enhances the model’s ability to handle long-range 

dependencies, ensuring more accurate malware detection. 
The integration of CNNs and RNNs offers a robust solution 
for IoT malware analysis, addressing challenges such as 
feature extraction, gradient issues, and detection accuracy, 
making it an important advancement in cybersecurity. 

A key contribution of this research is the use of LSTM 

networks to handle the sequential nature of opcode and 

bytecode data. LSTM networks enable the model to capture 
long-term dependencies and sequential patterns in malware 
behavior, enhancing its ability to distinguish between 
various types of malware. The integration of CNNs further 
strengthens the model by efficiently extracting local features 
from the malware binary data, which is crucial for 
differentiating between malware families. 

6. Future Work 

This future work presents a parameter-efficient fine-tuning 
approach for malware detection using a pre-trained GPT-2 
model. The system leverages Low-Rank Adaptation (LoRA) 
to enhance GPT-2 for binary sequence classification while 
reducing the number of trainable parameters. The GPT-2 
tokenizer processes opcode sequences extracted from 
executables, mapping them into a structured format for 

classification. The dataset, provided in CSV format, is pre- 
processed and tokenized before being used for training. The 
Trainer API from Hugging Face facilitates fine-tuning, 
incorporating epoch-based evaluation and checkpoint 
saving. The trained model is then used for inference, 
classifying opcode sequences as malware or benign based on 
their patterns. This implementation demonstrates how 
transformer-based language models can be efficiently 

adapted for cybersecurity applications with minimal 
computational overhead. 

By incorporating pre-trained transformer models such as 
GPT-2, adapted via LoRA, this future work aims to push the 
boundaries of modern malware detection systems.  
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The fusion of natural language processing (NLP) and 
cybersecurity presents a promising frontier, where models can 
learn semantic and syntactic relationships in malware code 

similarly to how they understand human language. The result is 
a scalable, interpretable, and high-performing system designed 
to meet the demands of evolving threats in IoT and beyond. 
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