Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)

DVD Part Number: CFP25K25-DVD; ISBN: 979-8-3315-1210-1

LSTM-Based Malware Classification Using Bytecode and
Opcode Features for 10T Security

M. Subhameena , A.Rajesh,
Department of CSE, Department of CSE,
VISTAS, VISTAS,

Chennai-600117, TamilNadu, India
subhameena.m@gmail.com

Chennai-600117, Tamil Nadu, India,
arajesh.se@vistas.ac.in

Thilakavathy P, A.Banushri
Department of CSE, Department of CSE,
VISTAS, VISTAS,

Chennai-600117, TamilNadu, India
thilakavathy.se@vistas.ac.in

Abstract

This study proposes a deep learning approach for malware
classification, utilizing both byte-level and opcode features. The
dataset comprises the byte files and opcode sequences, which are
preprocessing, features are extracted, and integration with
corresponding class labels. Byte files are analysed for size
distribution, address removal, and unigram bag-of-words
representation, while opcode features are extracted separately.
SMOTE is used to tackle the challenge of class imbalance An LSTM
neural network is employed to categorized the malware into distinct
families by using the extracted features. This model is designed to
differentiate between various malware families, including Ramnit
(Trojan), Lollipop (Adware), Vundo (Trojan), Simda (Backdoor).
Finally, This model is trained with categorical cross entropy loss
and optimized using the Adam optimizer is utilized to enhanced and
improved the accuracy across the different malware types. The
proposed methodology achieves a test accuracy of 86.5%, delivers
with strong classification results as precision (87.8%), recall
(91.2%), and F1-score (85.0%). The confusion matrix analysis
indicates minimal misclassifications among malware families,
demonstrating the model’s robustness. Performance metrics used to
validate and confirm the model's effectiveness in generalization,
demonstrated y analyzing training and validation accuracy and loss
curves showing the stable convergence.

Keywords: 10T, File size based, Byte value, Dataset,
preprocessing data, Malware detection, Benign, Opcode
Category, Feature Extraction, LSTM classification, LSTM model,
SMOTE, Test, Train, Evaluation, and Accuracy.

1. INTRODUCTION

Role of 10T: 10T (Internet of Things) malware detection refers to
identifying and classifying malicious software specifically targeting
loT devices, including smart home gadgets, industrial control
systems, and wearable technology. Given the growing number of
10T devices, Cybercriminals often target these systems due to their
vulnerabilities is due to their limited security capability and
frequent lack of regular updates. The methodology of extracting
meaningful features from bytecode and opcode sequences can be
applied to loT malware binaries [14]. This includes analysing
unique patterns in loT firmware files and identifying common
attack signatures. Unlike traditional malware, 10T malware often
focuses on remote control, botnet formation (e.g., Mirai), and
(DDoS) attacks

A Packialatha
Department of CSE,
VISTAS,
Chennai-600117, TamilNadu, India,
Packialatha.se@vistas.ac.in

Chennai-600117, TamilNadu, India
Banushri.se@vistas.ac.in

The model can be trained on loT-specific malware
datasets to enhance detection. The trained model can be
optimized for real-time detection and deployed on loT gateways
or edge devices, providing an additional security layer without
relying on cloud-based detection.

Malware detection and classification are crucial to
mitigating these risks. Traditional signature-based detection
methods often struggle to identify emerging and evolving
threats, as they rely on known patterns and previously
encountered malware signatures. This limitation makes the
application of machine learning and deep learning techniques
essential for effectively detecting and classifying new and
sophisticated malware variants. These advanced methods can
learn complex patterns from data, enabling them to generalize
beyond known signatures and identify previously unseen
threats. In the context of 1oT malware, deep learning models—
especially those leveraging opcode and bytecode features—
offer a dynamic and scalable approach to enhance security
across diverse loT environments.

The proposed system is designed for loT detecting and
classifying malware according to opcode categories.
Explanation of opcodes (operation codes) as low-level
instructions executed by the CPU [15].

The role of opcode categories in reflecting malware
behavior, including arithmetic, logic, control, and data transfer
operations. Previous studies on opcode usage in malware
classification. The classification of opcode sequences into
categories that highlight malware behavior patterns. Impact of
opcode categories on the representation of malware behavior.
This study focuses on building a robust deep learning model for
malware classification using LSTM networks. The dataset
consists of byte files and assembly opcode features extracted
from malware binaries.

The project leverages feature engineering techniques, data
preprocessing, and advanced machine learning methodologies
to improve accuracy of malware detection. The dataset is
acquired from malware samples, containing byte files and
opcode features. Preprocessing steps include removing
unwanted data, normalizing numerical values, and handling
missing

979-8-3315-1211-8/25/$31.00 ©2025 IEEE 265

file:///C:/Users/subha/OneDrive/Desktop/New%20IEEE/subhameena.m@gmail.com
mailto:arajesh.se@vistas.ac.in
mailto:Packialatha.se@vistas.ac.in
mailto:thilakavathy.se@vistas.ac.in
mailto:Banushri.se@vistas.ac.in

Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)

DVD Part Number: CFP25K25-DVD; ISBN: 979-8-3315-1210-1

values. The loT malware in binary form is transformed into a series
of opcodes, with every opcode assigned to a category based on its
functionality. Features are extracted utilizing common n-grams,
18,856 maximum sub- patterns, and corresponding entropy values.
The IoT malware dataset is analysed using various techniques,
including file details and organization during packing. We provided a
detailed explanation of the feature creation by using the opcode
categories to effectively represent the characteristics of loT malware.

The features were visualized, so common patterns and
differences were observed Extract meaningful features from byte
files using custom-built bag-of-words techniques and opcode
unigram representations to better represent malware characteristics.
Since malware datasets often exhibit class imbalance, the Synthetic
Minority Over-sampling Technique SMOTE is used to balance the
dataset and improve model generalization. LSTM network, a type of
Recurrent Neural Network (RNN), for malware classification.
LSTM Layers is used to process sequential data (byte/opcode
sequences) and capture long-term dependencies in malware patterns.
Design and train an LSTM deep learning models for malware
classification. This model processes sequences of extracted features
to classify malware into different categories. Evaluate The trained
model evaluated using metrics like accuracy,confusion matrices, and
loss functions to ensure effective malware detection. Save the trained
model for potential deployment and explore improvements, such as
hyperparameter tuning and integrating additional deep learning
architectures. By implementing deep learning techniques for
malware classification, this project seeks to enhance the accuracy
and effectiveness of detection methods new and sophisticated
malware, thereby enhancing cybersecurity Défense mechanisms.
Confusion Matrix evaluates classification performance by
visualizing true vs. predicted labels [16].

Summary: This study addresses these challenges by
applying deep learning techniques to detect and classify loT
malware. By analyzing byte-level and opcode-level features
extracted from malware binaries, the proposed system can identify
patterns specific to loT-targeting threats. The model is designed to
be lightweight enough for deployment on loT edge devices or
gateways, allowing for real-time local threat detection without
depending on cloud infrastructure. This makes it a practical and
scalable solution for enhancing loT security.

2. RELATED WORK

Lee, Hyun Jong, Soin Kim, Dong Heon Baek, Dong
Hoon Kim, and Doo sung Hwang et.al.,[1] proposed that “Robust
loT Malware Detection and Classification Using Opcode Category
Features on Machine Learning” states that IoT malware samples
and benign software samples are collected from sources like l1oT
malware repositories and real-world loT applications. The main
idea is to analyse the opcode sequences in binary executables,
instead of using raw opcodes, opcode categories are used to extract
meaningful patterns. Opcode category frequency distributions are
used as feature vectors. Statistical methods and normalization
techniques are implemented to optimize the extracted opcode
features. The algorithms are tested utilizing evaluation measures
such as accuracy, precision, recall,F1 score, and ROC AUC help in
analysing the model’s performance.

The method relies on static analysis, meaning
obfuscation techniques like polymorphic and metamorphic
malware can evade detection. Extracting opcode category features
from large loT malware datasets can be computationally
expensive. Since the approach is based on known opcode patterns,
it may not be very effective against novel, unseen malware
variants. Performance may degrade when applied to new datasets
or different IoT environments due to variations in compiled
binaries.

X. Jiang et. al,[2] have proposed that a An
experimental analysis of industrial security vulnerabilities
loT devices." States that this paper mainly aimed at
identifying and analyzing the security vulnerabilities in
Industrial 10T devices through experimental testing. The
various 10T devices are chosen based on their popularity,
usage in critical infrastructure, and known security
concerns. The devices include industrial sensors,
controllers (PLC/SCADA), smart gateways, and edge
computing devices. The attack surface of each 10T device
is mapped, identifying all possible entry points for attacks
(e.g., network interfaces, APIs, firmware, web
applications, and hardware ports).Static analysis
,dynamic analysis and Fuzz testing is used for
vulnerability assessment process. Exploits are executed in
a controlled lab environment to assess their impact.
Security patches, configuration changes, and best
practices are proposed to mitigate identified
vulnerabilities. The effectiveness of security measures is
evaluated post-mitigation finally repeat the penetration
tests are conducted to verify if vulnerabilities persist.
Limited Device Coverage ,Controlled Lab Environment
Ethical and Legal Constraints ,rapidly Evolving Threat
Landscape: Device-Specific Exploits are the limitations.

K. Albulayhi, et.al.[3] have proposed that loT
intrusion detection using machine learning with a novel
high performing feature selection method “states that this
paper focuses on enhancing IoT intrusion detection
systems (IDS) using machine learning (ML) and an
optimized feature selection method to improve detection
accuracy and efficiency. dataset collected, data cleaning
process then Feature encoding by categorical features are
converted into numerical values. Normalization like
Feature values are scaled to improve ML model
performance. A new feature selection method is proposed
to identify the most relevant features for intrusion
detection. The process involves Filter Methods, Wrapper
Methods, Hybrid Approach. The selected features aim to
reduce dimensionality while maintaining high
classification accuracy. Dataset Bias, Performance may
degrade when applied to new loT environments with
different network traffic patterns. Feature selection and
ML model training may require high computational
power, especially for deep learning approaches and
scalability are the limitations.

J. Paik, etal, [4] proposed that “Malware
classification using a byte granularity feature based on
structural entropy” states that This paper presents a
malware classification approach using structural entropy
at the byte level to capture malware characteristics more
effectively A dataset of malware samples is gathered from
sources and the samples are categorized based on malware
families (e.g., trojans, worms, ransomware). Benign
executable files are also collected for comparison Entropy
measures randomness in a system; malware often has
distinguishable entropy patterns in different sections of
the binary. The binary file is divided into fixed-size byte
segments Malware often contains compressed or
encrypted sections, leading to high entropy in specific
regions. This entropy distribution is used as a feature for
classification. The extracted entropy sequences are
transformed into feature vectors. he trained models are
tested on a separate dataset using metrics like Accuracy,
Precision, Recall, F1-score,Confusion Matrix,
Obfuscation & Packing Techniques, Loss of Contextual
Information, Computational Overhead, Generalization to
Unknown Malware Dataset Bias .The classification
model's accuracy depends on the diversity of the dataset
used for training

979-8-3315-1211-8/25/$31.00 ©2025 IEEE 266

Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)

DVD Part Number: CFP25K25-DVD; ISBN: 979-8-3315-1210-1

S. Moon, Y. Kim, H. Lee, D. Kim, D. Hwang et.al.,[5]
proposed that “Evolved IoT malware detection using opcode
category sequence through machine learning’” states that This
paper proposes an enhanced loT malware detection approach
using opcode category sequences instead of raw opcodes,
making detection more robust and efficient. A dataset of loT
malware binaries is gathered from public repositories the dataset
is preprocessed to remove duplicate and corrupted files. The
malware binaries are disassembled using tools like IDA Pro,
Radare2.Instead of using raw opcodes (which vary across
architectures), opcodes are grouped into functional categories
such as Arithmetic operations (add, sub, mul)and logical
operations. This transformation generalizes the feature set,
making the model more adaptable across different CPU
architectures. The ordered sequence of opcode categories is
extracted from each binary n-gram modelling is used to capture
local patterns within the sequence. TF-IDF (Term Frequency-
Inverse Document Frequency) is applied to opcode sequences to
prioritize important pattern. The models are evaluated using
accuracy, precision, recall, and F1- score. Obfuscation and
Evasion Techniques, Architecture Dependence, Computational
Overhead ,Limited Generalization to Unknown Malware ,Lack
of Behavioural Context are the limitations[12].

Ahsan Nazira, Jingsha Hea, Nafei Zhua, Saima Siraj
Qureshia, Siraj Uddin Qureshia, Faheem Ullaha, Ahsan
Wajahata, Muhammad Salman
Pathanb,c,et,al.,[6]proposed that deep learning-based novel
hybrid CNN-LSTM architecture for efficient detection of threats
inthe 10T ecosystem” states that This paper presents an Integrated
a deep learning methodology that leverages a combination of
CNN and LSTM for enhanced performance for identifying
threats in 10T in loT environments efficiently. The dataset
includes both benign and malicious network traffic, covering
various attack types as Denial of Service (DoS) attacks ,Man-in-
the-Middle (MitM) attacks, Botnets and malware infections.
Data Preprocessing & Feature Engineering Extracting relevant
features such as packet size, protocol type, source/destination IP,
and flow duration. CNN for Spatial Feature Extraction. The CNN
extracts spatial patterns from network traffic data .It captures
correlations between different traffic features using
convolutional layers. The LSTM component models sequential
dependencies in network traffic data. It detects patterns over
time, making it effective for identifying slow and stealthy
attacks. Model Training & Optimization by using loss Function
Categorical Cross-Entropy for multi-class classification. This
model is evaluated using key metrics as Accuracy, Precision,
Recall, and F1-score and Confusion Matrix. The limitations of
this approach is High Computational Cost, Data Dependence &
Generalization Potential Overfitting Difficulty in Real- Time
Deployment, Limited Interpretability The CNN- LSTM hybrid
model effectively detects loT threats by effectively capturing
both spatial and temporal features in network traffic

Maran, Piragash, Timothy Tzen Vun Yap, Ji Jian Chin,
Hu Ng, Vik Tor Goh, and Thiam Yong Kuek.et.al[7]
proposed that "Comparison of machine learning models for
IoT malware classification “states that This paper evaluates
different machine learning (ML) models for classifying loT
malware, analysing their effectiveness based on feature
selection, model performance, and detection accuracy. loT
malware samples are collected from sources like VirusTotal,
I0TPOT, and MalwareBazaar. Benign loT applications are
also included for balanced classification. Features are
extracted from malware binaries and network traffic. The two
main types of features are considered as Static Features
Dynamic Features [13] .Dimensionality reduction is applied
to select the most relevant features. Principal Component
Analysis (PCA), Mutual Information, and Recursive Feature

Elimination (RFE) are utilized to optimize performance.
Models are trained using training datasets and validated
using a hold-out test set or cross- validation (e.g., k-fold
validation).Evaluation ~ metrics include Accuracy,
Precision, Recall, and F1-score,False Positive Rate
(FPR)Limitations of the Approach are Dataset Bias
,Computational Cost, Feature Dependence,
Generalization Issues, Class Imbalance. This study
provides insights into the strengths and weaknesses of
different ML models for IoT malware classification.
XGBoost and deep learning models offer high accuracy,
but traditional models like Random Forest provide a better
trade-off between efficiency and accuracy

Riaz, Sharjeel, Shahzad Latif, Syed Muhammad Usman,
Syed Sajid Ullah, Abeer D. Algarni, Amanullah Yasin,
Aamir Anwar, Hela Elmannai, and Saddam Hussain
at.,al[8] "Malware detection in internet of things (IoT)
devices using deep learning” states that This paper
presents a deep learning-based approach for detecting
malware in loT devices, leveraging neural networks to
analyze malware behaviors and patterns. loT malware and
benign samples are collected from repositories like
VirusTotal, loTPOT, MalwareBazaar, and 10T-23 dataset.
The dataset is pre-processed to balance benign and
malicious samples to avoid classification bias. Feature
extraction is performed using static analysis, dynamic
analysis, or network traffic analysis. Data Preprocessing
Normalization & Encoding: Features are normalized to a
fixed scale (e.g., Min-Max Scaling).One-Hot Encoding
Categorical features (e.g., API calls, opcodes) are
converted into vector representations and Feature
Reduction. CNNs are used to extract spatial patterns from
feature matrices (e.g., opcode sequences or system call
logs).LSTM networks process time-series data, making
them effective for analysing sequential patterns in
malware behaviour. Model Training & Optimization,
Performance Evaluation, then the Metrics Used to find out
the Accuracy, Precision, Recall, and F1-score, False

Positive Rate (FPR).The Limitations of the Approach
are Computational Cos, Dataset Bias & Generalization Issues

, Obfuscation & Evasion Techniques, Real-Time
Detection Challenges, Interpretability & Explainability

Mehrban, Ali, and Pegah Ahadian.et al[9] proposed
that" Malware detection in iot systems using machine
learning techniques" states that a hybrid a deep learning model
that combines CNN and LSTM for enhanced feature
extraction and sequence learning to enhance malicious
software detection in Internet of Things loT environments.
The researchers compiled a dataset comprising both benign
and malicious loT software samples. Before training the
model, the dataset was preprocessed through various steps
such as normalization and encoding to ensure compatibility
with the deep learning models. These steps aimed to
standardize the data and convert categorical variables into
numerical formats suitable for analysis. Employed to derive
spatial features from the input data. Capturing local patterns
within the malware samples utilized to recognize temporal
relationships and sequential trends in the data, which are
crucial to comprehend the behavior of malicious software
over time. The hybrid model was trained using a K-fold
cross-validation technique to ensure robustness and mitigate
overfitting. Performance was evaluated based on accuracy,
with the proposed model achieving a 95.5% accuracy rate,
outperforming existing methods. Computational Complexity,
Dataset Limitations, Feature Extraction Dependency and
Real- Time Detection Challenges are the limitations.

979-8-3315-1211-8/25/$31.00 ©2025 IEEE 267

Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)

DVD Part Number: CFP25K25-DVD; ISBN: 979-8-3315-1210-1

3. PROPOSED METHODOLOGY

The proposed approach leverages Deep Learning techniques,
particularly a (LSTM) neural network, to efficiently malware
detection and malware classification. The system processes raw
.bytes files and .asm opcode sequences used to extract relevant
features that represent malware behaviour. A custom feature
engineering approach is implemented by including unigram
frequency analysis of hexadecimal bytes and opcode sequences.
To address class imbalance issues, SMOTE (Synthetic Minority
Over-sampling Technique) is used to enhance underrepresented
malware families, ensuring the model learns from a well-
balanced dataset. The extracted features are then normalized and
converted into structured numerical input, optimizing them
suitable for deep learning-based classification.

The LSTM-based model is designed to identify the
sequential patterns in malware binaries, enabling it to distinguish
between different malware families with high precision The
architecture comprises an LSTM layer featuring with 128
components which is succeeded by a dropout A tier (0.5) to
prevent overfitting, and dense layers with ReLU activation to
capture hierarchical patterns effectively. The final classification
is achieved and performed using a SoftMax activation function,
predicting one of the nine malware families. The training process
of the model utilizes the Adam optimizer and categorical cross
entropy loss for attaining a good accuracy with 81.5%.This
approach underscores the efficiency of utilizing the deep learning
for identifying the malware offered the scalable and robust
solution for cybersecurity applications.

The proposed model key procedures:

(1) Feature Extraction

(2) Preprocessing of Data

(3) Build and LSTM model

(4) LSTM based Deep Learning Model for classification
(5) Evaluation Metrics

Architecture diagram

‘ Dataset H Feature Extraction H Data Preprocessing ‘

v

Build and Tram
*| using LSTM Model

Evaluation LSTM Based
o I
Classification

Malware
Family

Figure 1.1 System Architecture

The system architecture diagram will explain stuffs like
how the modules are being connected, how the data is

The dataset contains ~1,00,000 malware samples.

Figure 1.2 Malware dataset

Each malware has two files .bytes file which has
raw hexadecimal representation and .asm file has
assembly code (disassembled from the executable). The
malware dataset Figure 1.2 consists of malware samples
in the form of disassembled bytecode (.bytes files) and
assembly (.asm files), along with labels specifying the
malware family. The dataset includes trainLabels.csv
contains the ID of each malware sample and its
corresponding Class (1-9) in Table 1.1.In Byte Files
(-bytes) files contain the hexadecimal representation of
executable files, without headers. The first column is the
memory address, which is typically removed during
preprocessing. In Assembly Files (.asm), These contain
the disassembled assembly code of the malware samples.

Dataset Opcode Sequence Preprocessing Train Test
extraction Split

4

Dezp
Leaming
LSTM Model
Training
Malware -
Detected
Verify Test Data with
Malware Trained Model Evaluating the
Not | Results
Detected
Figure 1.3 Data Flow diagram
1D Class
0A32eTdBKayjCWhZqDOQ|2

3c0e2212a22a67c8b083 3

8dc28f4826df79ale80f 1

Table 1.1 Malware ID and class

3.2 Feature extraction

Feature extraction entails involves converting raw data
into a structured set of meaningful and relevant features,
facilitating machine learning and data analysis tasks and
useful features, enabling machine learning and data analysis
tasks. It reduces data dimensionality while preserving
essential information.

transferring within them, how the modules are placed. Figure 1.1
explains the hierarchy order of each module used in this project.
The system architecture will also be used while debugging the
project. If any kind of error occurred during the compilation of
the project or while during the run time of the project, it would
be easy to point out the error raising module if we use the system
architecture of a project. Figure 1.3 explains about the Data Flow
diagram of our research.This makes the debugging part to be
easier and more adequate. This contains all the glimpse or an R P T o e et
overview of the modules which are used in this project. . B

Wi 4 4L colum

10 and cob cmp ot U e B b Be . b ael AN O Mied Wb et xehg o Ol

3.1 Dataset ety

A Malware Dataset is a compilation of data samples associated v . :
with malicious software (malware). It usually contains the traits,
behaviours, and attributes of various malware types, which can
be utilized for research, machine learning, or cybersecurity
analysis. The malware dataset is sourced from the Microsoft
Malware Classification Challenge (BIG 2015), hosted on Kaggle.

Figure 1.4 Opcode 40 Feature extraction

979-8-3315-1211-8/25/$31.00 ©2025 |IEEE 268

Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)

DVD Part Number: CFP25K25-DVD; ISBN: 979-8-3315-1210-1

3.2.1 File Size Based

In File Size-Based Feature Extraction, The size of each

.bytes file is extracted and stored as a feature. The os.stat() function
gets the file size. The size is converted into MB and stored in a
Data Frame. Malware families often have distinct file sizes based

on their functionality.
3.2.2 Byte Value Frequency

In Byte Value Frequency (Bag of Words Representation),
Counts of each hexadecimal byte (00 to FF) in the .bytes file.
Count of unknown bytes (??), which may represent missing or
obfuscated values. First Initialize a 257- column matrix which
is 256 columns for byte values (00- FF).and 1 column for ??
(unknown bytes),then Iterate through .bytes files: Open and
read each line, next by removing the memory addresses, Count
the occurrences of each hex value (00-FF) . Finally Store in
feature_matrix. At last Save the features to result.csv. Byte
frequency analysis helps detect patterns that are unique to
certain malware families

3.2.3 Opcode Feature Extraction

An opcode is a component of a machine instruction that
defines the specific operation to be executed. (e.g., MOV,
PUSH, ADD). By extracting and analysing opcode
sequences, security researchers can detect malicious
behaviors, obfuscation techniques, and unique signatures of
malware. The first steps is reading the opcode unigram
features from asm_opcode_unigram_40_features.csv,then
each row contains frequencies of top 40 opcodes extracted
from assembly code shown in Figure 1.4 Finally Merging the
opcode features with trainLabels.csv to associate each sample
with a class.

SERIAL NO D SIZE CLASS
0 0A32¢TdBKayjCWhZqDOQ 3.509625 2
1 OACDbRSM3ZhBJajygTuf 4.617676 7
2 0AguvpOCcaf2myVDYFGb 0.992920 8
3 OaklgwhWHYm1dzsNgBFx 5.087897 2
4 0aKIHIMRxLmv34QGhEJP 1.016846 8

Table 1.2 Malware Size and class
3.3 Preprocessing of Data

The preprocessing steps in the code involve multiple
stages to prepare data for training an LSTM-based malware
classification model. The first step is normalizing the data
,The byte frequency data is merged with the class labels.
Table 1.2 consists of each feature (except ID and Class) is
normalized using Min-Max Scaling. Table 1.3 explains the
short brief for the types of Feature Normalization.

It improves the model convergence with gradient-based
optimization performs better when features are on the similar
scale and finally it enhances distance-Based models with
algorithms like k-NN and K-Means clustering rely on
Euclidean distance, which is affected by different feature
scales. It helps with model convergence, especially for deep
learning models. The second step is by splitting data into
training and testing datasets. The dataset are split into X_train
and X_test whereas maintaining the class distribution using
stratified sampling. The third step is by handling Class
Imbalance and Data Balancing using SMOTE technology.
SMOTE is a widely used technique for addressing class
imbalance in datasets. It helps improve model performance
by generating synthetic samples for the minority class instead
of simply duplicating existing and it identifies the minority
class in an imbalanced dataset. Then selects the k-nearest
neighbors for each sample in the minority class. It generates
synthetic data points along the line between the original data
point and its neighbors. At last it balances the dataset by
increasing the sample count in the minority class. Data are

again splitted to X_train and X_test, followed by
SMOTE resampling finally the dataset is reshaped to align
with the LSTM model format: (samples, timesteps,
features) where timesteps is the number of extracted
features.

Normalization Type When to Use

Min-Max Scaling When feature ranges are known and no extreme outliers exist
Z-Score (Standardization) When data follows a normal distribution

Log Transformation When data is skewed with large variations.

L2 Normalization When working with high-dimensional sparse data (e.g, NLP, TF-IDF).

Table 1.3 Types of Feature Normalization

3.4 LSTM Classification and analysis

LSTM is a specialized form of Recurrent Neural Network
designed to handle sequential data while effectively
overcoming the vanishing the problem .1t is widely used in
time-series forecasting, NLP, and malware classification
where sequential dependencies exist. An LSTM maodel is
composed of several layers that process the input data step
by step. The First layer is Input Layer which is used to
defines the structure of input data. The Second layer is LSTM
Layer which captured the sequential patterns in the data. The
third layer is dense layers which is fully connected layers
responsible for classifying data. Each layer plays a vital role
in malware classification by leveraging opcode and byte
sequence features.

3.4.1 Building the LSTM model

The LSTM layer is essential in the model's
architecture, helping it learn patterns in sequential data
LSTM Cell Architecture. The dataset is reshaped into 3D
format ([samples, timesteps, features]), required for LSTM
models. Each LSTM cell comprise four main components

: the Forget gate, which decides what information to be
discarded; the Input gate, which determines selects and
incorporates new information; the memory state update,
which refreshes the memory with essential data and the
output control gate,which generates the specific final result.

3.4.2 Training & Testing

The training dataset consists of data used to fit and
train the model to recognize patterns and learn the features.
This dataset is fully accessible to the model throughout
training. The test data collection, on the other hand, is a
separate subset utilized to assess the model’s performance,
ensuring an accurate assessment of its effectiveness on
unseen data. Table 1.4 explains clearly about the LSTM
hyper parameter. By training the LSTM model, the
categorical cross-entropy loss function and Adam
optimizer are utilized to optimize performance.
Categorical cross-entropy is widely used the loss function for
multi-class classification, and it encourages the model to
assign higher probabilities to the correct class labels. It is
particularly effective when combined with SoftMax
activation in the output layer. Adam Optimizer (Adaptive
Moment Estimation) is which Combines Momentum &
RMSprop that Uses both past gradients (momentum) and
adaptive learning rates for efficient training. It faster
Convergence ,adapts learning rate dynamically for each
weight and robust to Noisy Gradients which works well with
high-dimensional data like malware. To assess the model’s
performance the classification accuracy metric is utilized,
which was trained for 300 epochs with a batch size of 32.

979-8-3315-1211-8/25/$31.00 ©2025 IEEE 269

Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)

DVD Part Number: CFP25K25-DVD; ISBN: 979-8-3315-1210-1

4. Result and Discussion
4.1 Evaluation Metrics

It evaluates the LSTM-based malware classification model
using several metrics. Here's how the evaluation is done by
test loss and accuracy Set. Once the training is done, the
model will be evaluated on the testing using loss, which
quantifies how it is predicted class probabilities align with the
true class labels. Accuracy is which produced the percentage
of correctly classified samples. This provides an overall
measure of model performance. This model makes the
predictions on the training data by probability distributions
over the classes. np.argmax() converts probability
distributions into discrete class labels by selecting the highest
probability.

False Positive Rate(FPR) Metric: It evaluates the ratio of
compromised states that are incorrectly recognized as normal,
providing an understanding of the system’s misclassification
rate. A lower value indicates the signals enhanced
performance. It is determined using the formula FPR=FP/N
where FP represents the count of incorrectly identified the
positive cases, and N is the overall count of abnormal vectors

[9].
FP
FPR =— (6)

False Rejection Rate(FFR) Metric: It measures the
frequency of intrusion detection system incorrectly identifies
the legitimate states as intrusions, resulting in false alarms
that limit network access for authorized users. It is computed
using the formula FRR=FNP , where FN denotes the count of
incorrectly identified negative cases, and P is the overall
count of positive data [9].

FRR == (7)

Accuracy Metric: This metric indicates the system’s
accuracy in accurately the identifying the both intrusion and
non intrusion states. It is computed using the formula
ACC-=true results/total records ACC -

\frac{\text results}}{\text{total records}} ACC=true result
all record, where higher values indicates the better
performance[9].

ACC =

true result ()
all record

Precision Metric: Precision is an essential
performance measure for assessing the accuracy of
intrusion detection algorithms derived using the formula
Precision=TP/TP+FP, it indicates how accuracy the system
distinguishes real intrusions from all detected threats. A
higher precision values signifies a lower occurrence of false
positive [9].

Precision = i 9
recision = TP T FP 9

In this scenario, TP denotes the number of positive cases correctly
detected, Meanwhile, FP refers to the count of instances incorrectly

classified as positive.

Recall Metric: It is determined using the following formula [9]:

R Il = i 10
ecall =1y 19

Hyper Description Recommended values
parameter
LSTM Number of memory 32, 64, 128,256
units cells
Return Whether tom return True(multiple LSTM
sequences | sequence outputs layers), false(final
LSTM)
Batch size | Samples per training | 16,32,64
batch
Dropout Prevents overfitting 0.2-0.5
Rate
Activation | Function for neuron | ReLU(hidden layers),
activation Softmax (output layer)

Optimizer | Controls learning
rate adjustments

Adam(0.001)

Loss Measures error Categorical Cross

function entropy

Epochs Number of training 20-100(with early
cycles stopping)

Table 1.4 LSTM hyper parameter with description and
values

Epoch 1/300

649/649 —————————— 300s 462ms/step - accuracy: ©.1255 - loss:
Epoch 2/300
649/649 ————————————————— 296s 455ms/step - accuracy: ©.1454 - loss:
Epoch 3/300
649/649 ————— 288s 444ms/step - accuracy: ©.1655 - loss:
Epoch 4/300
649/649 —————————————————— 29@s 446ms/step - accuracy: ©.1746 - loss:
Epoch 5/30@
649/649 ————————————————— 288s 444ms/step - accuracy: ©.1894 - loss:
Epoch 6/300
649/649 ——————————— 324s 448ms/step - accuracy: ©.2051 - loss:
Epoch 7/300
649/649 ————————————————— 320s 445ms/step - accuracy: ©.2152 - loss:
Epoch 8/300
649/649 ————————————————— 289s 445ms/step - accuracy: ©.2213 - loss:
Epoch 9/300
649/649 ——————— 3215 444ms/step - accuracy: ©.2201 - loss:

Epoch 10/300

Figure 1.5 LSTM hyper parameter with batch size

S.No | Precision Recall F1 Score | Support
1 0.98 0.95 0.96 1233

2 0.97 0.97 0.97 1982

3 0.93 0.99 0.96 2354

4 0.99 0.95 0.97 380

5 1.00 0.91 0.95 34

6 0.98 0.94 0.96 601

7 1.00 0.94 0.97 318

8 0.99 0.97 0.98 982

9 0.99 0.96 0.97 810

Table 1.5 classification report
4.2 Performance Metrics

Precision evaluates the accuracy of positive predictions. Recall
measures the proportion of actual positives correctly
identified.F1 Score is used to balance precision and recall
through their harmonic mean. Support is used to calculate the
number of instances per class, Hyperparameter tuning entails
selecting key parameters such as the number of LSTM units,
learning rate, batch size and epochs. The process starts by
defining a range of possible values for each hyperparameter. A
population (swarm) of particles is then randomly initialized
with positions and velocities within the search space. The
fitness of each particle is assessed based on the validation
accuracy of the LSTM model.

Train the LSTM model on the training data using the optimal
hyper parameters. Then, assess its performance Here, TP
signifies the number of positive cases accurately identified,
While FN represents the number of cases incorrectly identified
as negative.

979-8-3315-1211-8/25/$31.00 ©2025 IEEE 270

Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)
DVD Part Number: CFP25K25-DVD; ISBN: 979-8-3315-1210-1

F-measure Metric: This metric is derived using the OUE34]: <sklearn.metrics. plot.confusion_matrix.Confusiontatrixoispley at Ox13a12867730)
following formula (11), serves as a balance between recall and
precision [9]:

2000

Recall = —F— (10
ecall = 75—y (10)

1500

True label

1000

on the test data evaluation through key metrics like
accuracy, precision, recall, and F1-score

Predicted label

) Figure 1.9 Confusion Matrix for Predicated Label

5. Conclusion

*°°: ii' ﬂwﬁ’__‘ j_ The proposed system effectively I_everages deep learning
I T T B techniques, particularly Convolutional Neural Networks

' (CNNs) and Recurrent Neural Networks (RNNs), to
Figure 1.6 explains the total count and Malware enhance the detection and ClaSSification Of loT maIWare.
Classification Then by automatically deriving insights from raw data,
opcode sequences and their entropy values, the system

minimizes the need for human intervention in feature

boxplot of .bytes file sizes extraction, thus improving scalability and adaptability. The

inclusion of Long Short-Term Memory (LSTM) networks
further enhances the model’s ability to handle long-range
dependencies, ensuring more accurate malware detection.
The integration of CNNs and RNNs offers a robust solution
for 1oT malware analysis, addressing challenges such as

, —— feature extraction, gradient issues, and detection accuracy,
J |j making it an important advancement in cybersecurity.
j ——

.

A key contribution of this research is the use of LSTM
networks to handle the sequential nature of opcode and
bytecode data. LSTM networks enable the model to capture
long-term dependencies and sequential patterns in malware
behavior, enhancing its ability to distinguish between
This Figure 1.7 showcase about the Size and class of various types of malware. The integration of CNNs further

Malware strengthens the model by efficiently extracting local features
from the malware binary data, which is crucial for
differentiating between malware families.

zi“

1 2

Class

model accuracy

= 6. Future Work

°
L

\

This future work presents a parameter-efficient fine-tuning
approach for malware detection using a pre-trained GPT-2
model. The system leverages Low-Rank Adaptation (LORA)
to enhance GPT-2 for binary sequence classification while
reducing the number of trainable parameters. The GPT-2
tokenizer processes opcode sequences extracted from
executables, mapping them into a structured format for

accuracy
° °
s 4

°
&

°
Y

¢ 2 Vo 2 classification. The dataset, provided in CSV format, is pre-

o processed and tokenized before being used for training. The

This Figure 1.8 showcase about the accuracy Trainer APl from Hugging Face facilitates fine-tuning,

. o . incorporating epoch-based evaluation and checkpoint

A confusion matrix is utilized to evaluate classification saving. The trained model is then used for inference,
performance across all malware categories in Figure 1.9 classifying opcode sequences as malware or benign based on

their patterns. This implementation demonstrates how
transformer-based language models can be efficiently
adapted for cybersecurity applications with minimal
computational overhead.

By incorporating pre-trained transformer models such as
GPT-2, adapted via LoRA, this future work aims to push the
boundaries of modern malware detection systems.

979-8-3315-1211-8/25/$31.00 ©2025 IEEE 271

Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)
DVD Part Number: CFP25K25-DVD; ISBN: 979-8-3315-1210-1

The fusion of natural language processing (NLP) and
cybersecurity presents a promising frontier, where models can
learn semantic and syntactic relationships in malware code
similarly to how they understand human language. The result is
a scalable, interpretable, and high-performing system designed
to meet the demands of evolving threats in 10T and beyond.

(1]

(2]

(3]

(4]

B3]

(6]

[7]

(8]

(9]

References

Ngo, Quoc-Dung, Huy-Trung Nguyen, Van-Hoang Le,
and Doan-Hieu Nguyen. "A survey of IoT malware and
detection methods based on static features." ICT
express 6, no. 4 (2020): 280-286.

Jiang, Xingbin, Michele Lora, and Sudipta
Chattopadhyay. "An experimental analysis of security
vulnerabilities in industrial 10T devices." ACM
Transactions on Internet Technology (TOIT) 20, no. 2
(2020): 1-24.

Albulayhi, Khalid, Qasem Abu Al-Haija, Suliman A.
Alsuhibany, Ananth A. Jillepalli, Mohammad
Ashrafuzzaman, and Frederick T. Sheldon. "loT
intrusion detection using machine learning with a novel
high performing feature selection method.” Applied
Sciences 12, no. 10 (2022): 5015.

Paik, Joon-Young, Rize Jin, and Eun-Sun Cho.
"Malware classification using a byte-granularity feature
based on structural entropy." Computational
Intelligence 38,no. 4 (2022): 1536-1558.

Moon, Sunghyun, Youngho Kim, Hyunjong Lee,
Donghoon Kim, and Doosung Hwang. "Evolved loT
malware detection using opcode category sequence
through machine learning." In 2022 International
Conference on Computer Communications and
Networks (ICCCN), pp. 1-7. IEEE, 2022.

Nazir, Ahsan, Jingsha He, Nafei Zhu, Saima Siraj
Qureshi, Siraj Uddin Qureshi, Faheem Ullah, Ahsan
Wajahat, and Muhammad Salman Pathan. "A deep
learning-based novel hybrid CNN-LSTM architecture
for efficient detection of threats in the loT ecosystem."
Ain Shams Engineering Journal 15, no. 7 (2024):
102777.

Maran, Piragash, Timothy Tzen Vun Yap, Ji Jian Chin,
Hu Ng, Vik Tor Goh, and Thiam Yong Kuek.
"Comparison of machine learning models for loT
malware classification." In International Conference on
Computer, Information Technology and Intelligent
Computing (CITIC 2022), pp. 15-28. Atlantis Press,
2022.

Riaz, Sharjeel, Shahzad Latif, Syed Muhammad
Usman, Syed Sajid Ullah, Abeer D. Algarni, Amanullah
Yasin, Aamir Anwar, Hela Elmannai, and Saddam
Hussain. "Malware detection in internet of things (loT)
devices using deep learning." Sensors 22, no. 23
(2022): 9305.

Mehrban, Ali, and Pegah Ahadian. "Malware detection
in iot systems using machine learning techniques."
arXiv preprint arXiv:2312.17683 (2023).

[10] Akhtar, Muhammad Shoaib, and Tao Feng. "Detection

of malware by deep learning as CNN-LSTM machine
learning techniques in real time." Symmetry 14, no. 11
(2022): 2308.

[11] Ngo, Quoc-Dung, Huy-Trung Nguyen, Van-Hoang
Le, and Doan-Hieu Nguyen. "A survey of loT
malware and detection methods based on static
features." ICT express 6, no. 4 (2020): 280-286.

[12] Anand, Abhishek, Jyoti Prakash Singh, Rida Sohail
Khan, Anjali Kumari, and Divya Mishra. "Android
Malware Detection using LSTM with Smali
Codes." (2023)

[13] Ali, Muhammad Mumtaz, Faiga Magsood, Weiyan
Hou, Zhenfei Wang, Khizar Hameed, and Qasim
Zia. "Machine Learning- Based Malware Detection
for loT Devices: Understanding the Evolving
Threat Landscape and Strategies for Protection.”
(2023)

[14] Gad, Abdallah R., Mohamed Haggag, Ahmed A.
Nashat, and Tamer M. Barakat. "A distributed
intrusion detection system using machine learning
for 10T based on ToN-loT dataset.” International
Journal of Advanced Computer Science and
Applications 13, no. 6 (2022).

[15] Li, Shudong, Qianging Zhang, Xiaobo Wu,
Weihong Han, and Zhihong Tian. "Attribution
classification method of APT malware in loT using
machine learning techniques.” Security and
Communication Networks 2021, no. 1 (2021):
9396141

[16] Darabian, Hamid, Ali Dehghantanha, Sattar
Hashemi, Sajad Homayoun, and Kim-Kwang
Raymond Choo. "An opcode-based technique for
polymorphic Internet of Things malware
detection." Concurrency and Computation: Practice
and Experience 32, no. 6 (2020): e5173.

979-8-3315-1211-8/25/$31.00 ©2025 IEEE 272

