

HEAT TRANSFER ENHANCEMENT IN MINI COMPACT HEAT EXCHANGER BY USING ALUMINA NANOFUID

V. Vijayan, S. Saravanan and A. Godwin Antony

Department of Mechanical Engineering, K. Ramakrishnan College of Technology,
Trichy, Tamil Nadu, India

M. Loganathan

Department of Mechanical Engineering, M.Kumarasamy College of Engineering,
Karur. Tamilnadu, India

S. Baskar*

Department of Automobile Engineering,
VELS Institute of Science, Technology & Advanced Studies (VISTAS), Tamil Nadu, India
*Corresponding Author

ABSTRACT

In the recent research activities, the nanofuids have involved a great deal attention since their superior report in thermal performance and many other applications. Now a days cooling process is a great challenge in most of the chemical process, Nuclear reactor, automobile radiator, micro electronics systems. To meet out this, a novel coolant (Nano fluids) was developed by Choi.S.U.S 1995 at Argonne National lab. USA. In continuation to his work, water based alumina Nano fluids was prepared and applied in shell and tube heat exchanger to analyze the heat transfer rate. The same analysis is discussed with conventional base fluid of water and alumina nanofuid also this presents the characterization of Alumina Nano particle by means of XRD and SEM.

Keywords: Nano fluids, Overall Heat Transfer, Alumina Nano particles.

Cite this Article: V. Vijayan, S. Saravanan, A. Godwin Antony, M. Loganathan and S. Baskar, Heat Transfer Enhancement in Mini Compact Heat Exchanger by using Alumina Nanofuid, International Journal of Mechanical Engineering and Technology, 10(01), 2019, pp. 564–570.

<http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=1>

1. INTRODUCTION

The water acting as conventional heat transfer fluid and engine oil, ethylene glycol are poor heat transfer fluid. Here it is a strong need to expand advanced heat transfer fluids with considerably more thermal conductivities and better heat transfer characteristics as compared to the conventional fluids which are available. When comparing the thermal conductivities of fluids, metal, non – metal, ceramics, oxide, nitride, and carbide particles, the higher thermal conductivities have in Metals in solid than other. Even Al_2O_3 are acting as good thermal conductivities.

In view of this, Choi S.U.S, Argonne National lab the USA dispersed the Al_2O_3 Nano powders in the range of 1 – 100 nm with water and named the suspended Al_2O_3 in water, Nano fluids. On testing the Al_2O_3 Nano fluids show better properties relation to these of conventional heat transfer fluid. Because the suspended Nano particles have more surface effect suitable to the surface area – to volume ratio and more stable in base fluids due to the Nano Size.

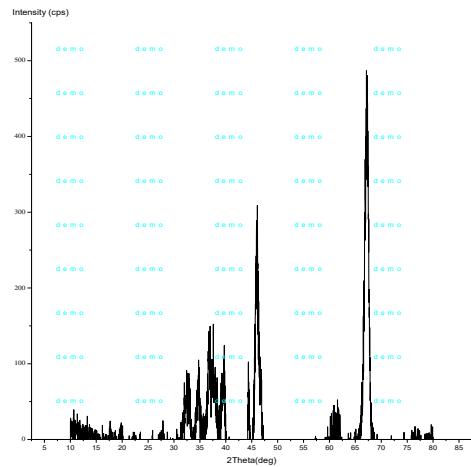
Table 1 Thremo-physical properties of liquid phase (base fluids) and solid phase (particles) at 300 K

Property	Ethylene glycol	Water	Al2O3	Cuo	Tio2
k	0.63	0.523	42.34	18	6.531
p	997	1109.04	3880	6210	4230
Cp	4170	2428	729	540	711.62
Molecular weight	18	62	101	143.09	79.9

In most of Nano fluids applications the mechanism of effective thermal conductivities, is still under debate and has more uncertainty. While applying Nano fluids the short comings of sedimentation, stability and aggrementation of Nano particles in Nano fluids is not clear even now and how to overcome them.

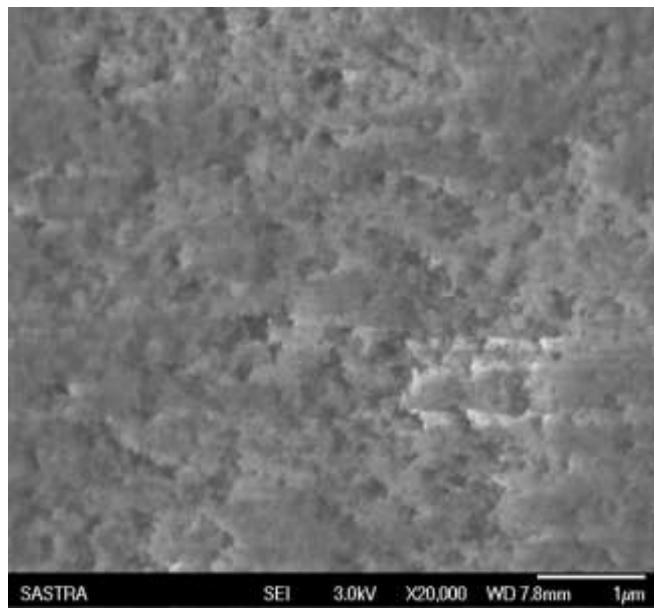
Several research group proposed different concepts regarding enhancement in Heat transfer using Nano fluids. Lee et al 1 studied the thermal conductivity enhancement in Nano fluids using Al_2O_3 Nano particle with water by experimentation. Xuan and Li 2 studied the thermal conductivity enhancement of Al_2O_3 Nano fluids of different volume fraction.

The major parameter that affect the effective thermal conductivity are volume fraction or particles concentration, shape of the particles temperature of the Nano fluids , pH value of Nano fluids, viscosity, density and fluids preparation method, reported by many research groups.


K.P.Kumar et al [4] reported and proposed that the Sisal Nano fluids can be applied in shell and coil Heat Exchanger for augmenting the effective Heat Transfer and concludes that the Sisal / Silicon particles can be replaced by some particles such as oxide, Nitride, carbide Nano particles of Metals.

The main objective of the experimental work is to analyze the overall heat transfer coefficient of Al_2O_3 water based Nano fluids and water and at different at different temperature of hot working medium, when Nanofluids passes through the shell and coil Heat Exchanger. In analysis effective thermal conductivity of nanofluids is taken into account and pH value, Nano fluid layer thicknesses are not considered.

2. PREPERATION AND CHARACTERIZATION OF NANO FLUIDS

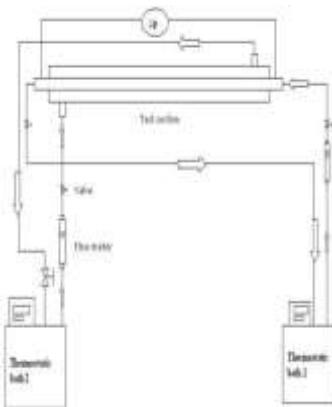

Al_2O_3 Nano powder was supplied by Alfa Aeasar, USA. The particles is to 40-50nm and on delivery under atmosphere conditions, there was no agglomerations. The Nano particles were analyzed by XRD to study the Al_2O_3 Nano particles were BCC and showed the crystal size

1.72nm. Scanning Electron Microscope (SEM) showed the surface temperature of the Nano Particles

Figure 1 XRD pattern of Al₂O₃ nano particle

2.1. SEM IMAGE OF Al₂O₃ NANO PARTICLES

Figure 2 SEM image


It is assumed that the Nano particle sizes are uniform no sedimentation, No agglomerations, No additive during preparation of nanofluids, pH value maintained Uniform and well dispersion of Al₂O₃ Nano particle.

The dispersion of Al₂O₃ Nano particles was done by mixing the required volume in water using, initially by vigorous mechanical making and then by ultrasonic agitator about 6 hours. After dispersion, no sedimentation is observed.

3. EXPERIMENTAL SETUP

The Al_2O_3 Nano fluids is passed through the double pipe heat exchanger of brass with 10mm D and GI with 20mm D with one pass and the Hot working medium is filled with ordinary water. J type thermocouples are placed to measures the temperatures of the two medium.

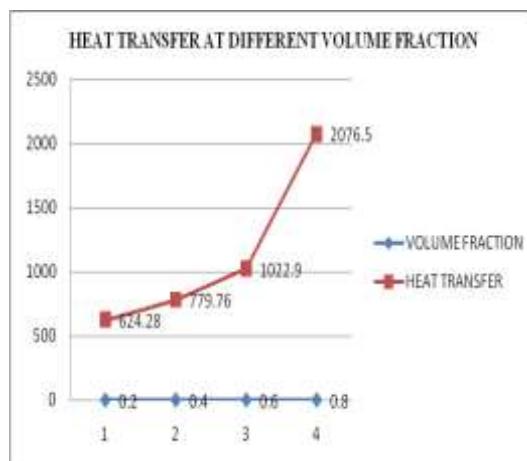
Heater is immersed to raise the temperature of base fluid and agitator is provided to gain the uniform heating of the water.

Figure 3 Experimental setup

4. MEASUREMENT OF HEAT TRANSFER FOR NANO FLUIDS

$$Q = \pi N u k L (\Delta T)$$

$$Nu = 1.86 (Re Pr D/L)^{1/3} (\mu/\mu_w)^{0.14}$$


$$Re = \rho v D / \mu$$

$$Pr = C_p \mu / k$$

The following table shows the heat transfer rate of Nano fluids at different volume fraction and water at 40deg C for 1000ml.

Table 2 Heat transfer rate of Nano fluid

Medium	Heat Transfer in Watts
Water	86.431
0.2(6.85g)	621.39
0.4(16.8g)	778.81
0.6(22.8g)	1020.81
0.85(31.13g)	2074.65

5. CONCLUSION AND FUTURE WORK

From the above experimental it is concluded that overall heat transfer of Nano fluids improves over the water as a coolant at different volume fraction at different temperature of the hot working medium. Further work is required to explain the theoretical correlations pressure drop of Nano fluid, erosion of tube walls, overall heat transfer co – efficient of different volume fraction, various PH values of Nano fluids at various temperatures of Nano fluids, various sizes of the Nano particles at different Nano particles and different base fluids.

ACKNOWLEDGMENT

It is my pleasure to express sincere thanks to Mr. R. Krishnamurthy for giving continuous encouragement.

REFERENCES

- [1] Huaqing Xie, Hohyun Lee, Wonjin Youn, and Mansoo Choi, "Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities", Journal of applied physics , Vol. 94(2003), pp. 8.
- [2] D. Andrew, Sommers, L.Kirk, Yerkes, "Experimental investigation into the convective heat transfer and system-level effects of Al₂O₃ –propanol nano fluid", journal of Nano part, Vol.12(2010), pp. 1003-1014.
- [3] Tessy Theres Baby, Sundara Ramprabhu, "Enhanced convective heat transfer using graphene dispersed nano fluids", Jornal of Nano scale research letters, Vol.6, (2011), pp.123-126.
- [4] Dongsheng Wen, Yulong Ding, "Formulation of nanofluids for natural convective heat transfer applications" International Journal of Heat and Fluid Flow, Vol. 26, (2005), pp. 855-864.
- [5] Yulong Ding, Hajar Alias, Dongsheng Wen, Richard A. williams, "Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)", International journal of heat and mass transfer, Vol.49, (2006), pp. 240-250.
- [6] Ying Yang, Eric A. Grulke, Z George Zhang, "Temperature effects on the Rheological properties of carbon nanotube-in-oil dispersions" Physicochem. Eng. Aspects, Vol.45, (2007), pp 216-224.
- [7] Yulong Ding and Chunqing Tan, "Rheological behaviour of nanofluids" New Journal of Physics Vol. 9, (2007), pp. 143-156.
- [8] S. Baskar, M. Chandrasekaran, T. Vinod Kumar, P. Vivek & S. Ramasubramanian, "Experimental Studies on Flow and Heat Transfer Characteristics of Secondary Refrigerant Based CNT Nanofluids for Cooling Applications", International Journal of Ambient Energy, ISSN: 0143-0750 (Print) 2162-8246 (Online) Journal homepage: <http://www.tandfonline.com/loi/taen20>, DOI: 10.1080/01430750.2018.1456970.
- [9] S. Baskar, M. Chandrasekaran, T. Vinod Kumar, P. Vivek & L. Karikalan, "Experimental Studies on Convective Heat Transfer Coefficient of Water/Ethylene Glycol-Carbon Nano Tube Nanofluids", International Journal of Ambient Energy, ISSN: 0143-0750 (Print) 2162-8246 (Online) Journal homepage: <http://www.tandfonline.com/loi/taen20>, 16 Mar 2018, DOI: 10.1080/01430750.2018.1451381.
- [10] Baskar S, Karikalan L, "Performance Study and Characteristic on a Domestic Refrigeration System with Additive of Zirconium Oxide (ZrO₂) Nano-Particle as Nano-Lubricant", International Journal for Research in Applied Science & Engineering Technology (IJRASET), ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue X, October 2017- Available at www.ijraset.com.

- [11] S.Jacob, L.Karikalan, S.Baskar and S.Venugopal, "Performance Analysis of Automobile Radiator Using Nano Fluid and Water Mixture as Coolant", International Journal of Modern Trends in Engineering and Research (IJMTER) Volume: 5, Issue: 03, [March–2018] ISSN (Online):2349–9745; ISSN (Print):2393-8161.
- [12] S.Jacob, L.Karikalan, S.Venugopal, C.Gnanavel, S.Baskar, "Thermal analysis of fatty acid in heat exchanger with the addition of Phase Change Materials" |International Journal of Recent Trends in Engineering & Research (IJRTER) | Volume 04 | Issue 03 | March- 2018 [ISSN: 2455-1457].
- [13] L.Karikalan, M.Chandrasekran, S.Ramasubramanian, S.Baskar, "Hybridization of Composites using Natural and Synthetic Fibers for Automotive Application", IJSRST | Volume 3 | Issue 7 | September-October 2017 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X.
- [14] Baskar, Karthikeyan, "Heat transfer characteristics of acetone/water mixture in a tubular heat exchanger with turbulator", International Conference on Advanced Nano-materials and Emerging Engineering Technologies (ICANMEET) 2013, pp.627 - 630, 24-26 July 2013.
- [15] Daxiong Wu, Haitao Zhua, Ligu Wang "Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity" Current Nanoscience, Vol. 5, (2009), pp. 103-112.
- [16] Arulprakasajothi, M., Dineshbabu, M., Jothishanmugam, C., & Saikrishnan, V. (2010). Convective heat transfer characteristics of nanofluids. Frontiers in Automobile and Mechanical Engineering -2010. doi:10.1109/fame.2010.5714847.
- [17] Arulprakasajothi, M., Elangovan, K., Hemachandra Reddy, K., & Suresh, S. (2015). Experimental Study of Preparation, Characterisation and Thermal Behaviour of Water-Based Nanofluids Containing Titanium Oxide Nanoparticles. Applied Mechanics and Materials, 766-767, 348–354. doi:10.4028/www.scientific.net/amm.766-767.348.
- [18] Arulprakasajothi, M., Elangovan, K., Reddy, K. H., & Suresh, S. (2015). Heat Transfer Study of Water-based Nanofluids Containing Titanium Oxide Nanoparticles. Materials Today: Proceedings, 2(4-5), 3648–3655. doi:10.1016/j.matpr.2015.07.123.
- [19] Arulprakasajothi, M., Elangovan, K., Hema Chandra Reddy, K., & Suresh, S. (2015). Experimental investigation on heat transfer effect of conical strip inserts in a circular tube under laminar flow. Frontiers in Energy, 10(2), 136–142. doi:10.1007/s11708-015-0389-z.
- [20] Arulprakasajothi, M., Elangovan, K., Chandrasekhar, U., & Suresh, S. (2018). Experimental studies of Water-Based Titanium Oxide Nanofluid in a circular Pipe under Transition Flow with Conical Strip Inserts. Heat Transfer Research, 49(5), 439–456. doi:10.1615/heattransres.2018015783.
- [21] Arulprakasajothi, M., Elangovan, K., Chandrasekhar, U., & Suresh, S. (2018). Performance study of conical strip inserts in tube heat exchanger using water based titanium oxide nanofluid. Thermal Science, 22(1 Part B), 477–485. doi:10.2298/tsci151024250a.
- [22] Arulprakasajothi, M., Chandrasekhar, U., & Yuvarajan, D. (2018). Influence of conical strip inserts in heat transfer enhancement under Transition flow. International Journal of Ambient Energy, 1–7. doi:10.1080/01430750.2018.1472651.
- [23] V.Vijayan, S.Sivachandaran, S.Saravanan and V.Sivakumar, 2018, "Environmental effect of CI engine using microalgae biofuel with nano-additives" Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, <https://doi.org/10.1080/15567036.2018.1563250>.
- [24] S. Baskar, V.Vijayan, S. Saravanan, A.V. Balan & A. Godwin Antony, 2018, "Effect of Al2O3, Aluminium Alloy and Fly Ash for Making Engine Component" International Journal of Mechanical Engineering and Technology, Vol. 9, no 12, pp. 91–96.

- [25] K. Pradeep Mohan Kumar, V. Vijayan, B. Suresh Kumar, C. M. Vivek, S. Dinesh, 2018, "Computational Analysis and Optimization of Spiral Plate Heat Exchanger" Journal of applied Fluid Mechanics, Vol. 11, special Issue, pp 121-128.
- [26] T. Avudaiappan, V. Vijayan, S. Sundara Pandiyan, M. Saravanan, S. Dinesh "Potential Flow Simulation through Lagrangian Interpolation Meshless Method Coding" Journal of applied Fluid Mechanics, Vol. 11, special Issue, pp 129-134.
- [27] R.Srinivasan, V.Vijayan, K.Sridhar, 2017, Computational Fluid Dynamic Analysis of Missile with Grid Fins, Journal of applied Fluid Mechanics, vol.10, Special Issue, pp.33-39
- [28] A.Godwin Antony, S.Aravind, S.Dinesh, K.Rajaguru & V.Vijayan 2017, "Analysis and Optimization of Performance Parameters in Computerized I.C. Engine Using Diesel Blended with Linseed Oil and Leishmaan's Solution, Mechanics and Mechanical Engineering, vol.21, no.2, pp.193-205
- [29] R.Venkatesh, V.Vijayan, 2016, Performance Evaluation of Multipurpose Solar Heating System, Mechanics and Mechanical Engineering, vol.20, no.4, pp.359-370.
- [30] Omar Mohammed Ismael, Dr. Ajeet Kumar Rai, HasanFalah Mahdi and Vivek Sachan, An Experimental Study of Heat Transfer in a Plate Heat Exchanger, International Journal of Advanced Research in Engineering and Technology (IJARET), Volume 5, Issue 4, April (2014), pp. 31-37
- [31] Aman Kumar, Arun Kumar Tiwari and Shailendra Sinha, Energetic and Exergetic Performance of Plate Heat Exchanger, International Journal of Mechanical Engineering and Technology (IJMET), 9(9), 2018, pp. 789-796
- [32] Qasim S. Mahdi and Ali Abdulridha Hussein, Enhancement of Heat Transfer In Shell and Tube Heat Exchanger with Tabulator and Nanofluid. International Journal of Mechanical Engineering and Technology, 7(3), 2016, pp. 125–138
- [33] Uttam Roy and Mrinmoy Majumder. Estimation and Analysis of Cycle Efficiency for Shell and Tube Heat Exchanger by Genetic Algorithm. International Journal of Mechanical Engineering and Technology, 8(2), 2017, pp. 93–101.