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Abstract 

Let 𝐺 = (𝑉,𝐸) be a simple graph and 𝑢, 𝑣𝑣 be any two vertices of G. Then the circular distance 

between 𝑢 and 𝑣𝑣  denoted by 𝐷𝑐(𝑢, 𝑣𝑣) and is defined by  

    𝐷𝑐(𝑢, 𝑣𝑣) = �𝐷(𝑢, 𝑣𝑣) + 𝑑(𝑢, 𝑣𝑣)      if 𝑢 ≠ 𝑣𝑣
               0                     if 𝑢 = 𝑣𝑣

 

where   𝐷(𝑢, 𝑣𝑣) and 𝑑(𝑢, 𝑣𝑣) are detour distance and distance between 𝑢 and 𝑣𝑣 respectively. Let 

𝑊 =  {𝑤1,  𝑤2, . . . ,𝑤𝑘}  ⊂  𝑉 (𝐺)  and 𝑣𝑣 ∈  𝑉 (𝐺). The representation 𝑐𝑟(𝑣𝑣/𝑊) of 𝑣𝑣 with respect to 

𝑊 is the 𝑘-tuple �𝐷𝑐(𝑣𝑣,𝑤1),𝐷𝑐(𝑣𝑣,  𝑤2), . . . ,𝐷𝑐(𝑣𝑣,𝑤𝑘)�.Then 𝑊 is called a circular resolving set if 

different vertices of 𝐺 have different representations with respect to 𝑊. A circular resolving set of 

minimum cardinality is called a 𝑐𝑑𝑖𝑚 -set for 𝐺 and the cardinality of the  𝑐𝑑𝑖𝑚 -set is known as the 

circular metric dimension of 𝐺, represented by 𝑐𝑑𝑖𝑚(𝐺). Let 𝑊 be a minimum 𝑐𝑑𝑖𝑚 -set of 𝐺. A 

subset of  𝑇 ⊆ 𝑊 is called a forcing subset of 𝑊 if 𝑊 is the unique minimum 𝑐𝑑𝑖𝑚 -set containing 𝑇.  

A forcing circular resolving subset for 𝑊 of minimum cardinality is a minimum forcing circular 

resolving subset of 𝑊. The forcing circular metric dimension of 𝑊, 𝑓𝑐𝑑𝑖𝑚(𝑊) in 𝐺 is the cardinality of 

a minimum forcing circular resolving subset of 𝑊. The forcing circular metric dimension of  ,  

𝑓𝑐𝑑𝑖𝑚(𝐺) = min {𝑓𝑐𝑑𝑖𝑚(𝑊)},where the minimum is taken over all minimum circular resolving subset 

of 𝑊. In this article forcing circular metric dimension of some standard graphs are determined.  

Keywords: circular distance, circular resolving set, circular metric dimension, forcing circular 

resolving set, forcing circular metric dimension. 

 AMS Subject Classification: 05C12 

1. Introduction and Preliminaries 

Let 𝐺 be a simple graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). The order of a graph 𝐺 is 

|𝑉(𝐺)|, its number of vertices denoted by 𝑛. The size of a graph 𝐺 is |𝐸(𝐺)|, its number of edges 
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denoted by 𝑚. For basic graph theory terminology, we refer [2,5]. The degree deg (𝑣𝑣) of a vertex 

𝑣𝑣 ∈ 𝑉(𝐺) is the number of edges incident to 𝑣𝑣. We denote by ∆(𝐺) the maximum degree of a graph 𝐺. 

The distance 𝑑(𝑢, 𝑣𝑣) between two vertices 𝑢, 𝑣𝑣 ∈ 𝑉(𝐺) is the length of a shortest path between them. 

The detour distance 𝐷(𝑢, 𝑣𝑣) between two vertices 𝑢, 𝑣𝑣 ∈ 𝑉(𝐺) is the length of a longest path between 

them. These concepts were studied in [1,6]. Let 𝐺 = (𝑉,𝐸) be a simple graph and 𝑢, 𝑣𝑣 be any two 

vertices of G. Then the circular distance between 𝑢 and 𝑣𝑣  denoted by 𝐷𝑐(𝑢, 𝑣𝑣) and is defined by  

    𝐷𝑐(𝑢, 𝑣𝑣) = �𝐷(𝑢, 𝑣𝑣) + 𝑑(𝑢, 𝑣𝑣)      if 𝑢 ≠ 𝑣𝑣
               0                     if 𝑢 = 𝑣𝑣

 

where   𝐷(𝑢, 𝑣𝑣) and 𝑑(𝑢, 𝑣𝑣) are detour distance and distance between 𝑢 and 𝑣𝑣 respectively. Let 

𝑊 =  {𝑤1,  𝑤2, . . . ,𝑤𝑘}  ⊂  𝑉 (𝐺)  and 𝑣𝑣 ∈  𝑉 (𝐺). The representation 𝑐𝑟(𝑣𝑣/𝑊) of 𝑣𝑣 with respect 

to 𝑊 is the 𝑘-tuple �𝐷𝑐(𝑣𝑣,𝑤1),𝐷𝑐(𝑣𝑣,  𝑤2), . . . ,𝐷𝑐(𝑣𝑣,𝑤𝑘)�.Then 𝑊 is called a circular resolving set 

if different vertices of 𝐺 have different representations with respect to 𝑊. A circular resolving set of 

minimum cardinality is called a 𝑐𝑑𝑖𝑚 -set for 𝐺 and the cardinality of the  𝑐𝑑𝑖𝑚 -set is known as 

the circular metric dimension of 𝐺, represented by 

𝑐𝑑𝑖𝑚(𝐺). These concepts were studied in [3,4,7,8].  In this article, we study a new circular metric 

dimension called the forcing circular metric dimension of a graph. 

2. The forcing circular metric dimension of a graph 

Definition 2.1. Let 𝑊 be a minimum 𝑐𝑑𝑖𝑚 -set of 𝐺. A subset of  𝑇 ⊆ 𝑊 is called a forcing subset of 

𝑊 if 𝑊 is the unique minimum 𝑐𝑑𝑖𝑚 -set containing 𝑇.  A forcing circular resolving subset for 𝑊 of 

minimum cardinality is a minimum forcing circular resolving subset of 𝑊. The forcing circular 

metric dimension of 𝑊, 𝑓𝑐𝑑𝑖𝑚(𝑊) in 𝐺 is the cardinality of a minimum forcing circular resolving 

subset of 𝑊. The forcing circular metric dimension of  ,  𝑓𝑐𝑑𝑖𝑚(𝐺) = min {𝑓𝑐𝑑𝑖𝑚(𝑊)},where the 

minimum is taken over all minimum circular resolving subset of 𝑊. 

Example 2.2. 

 

 

G: 
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For the graph G given in Figure 2.1, let W={𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣5, 𝑣𝑣6}. Then 

cr(𝑣𝑣1/𝑊) = (0,5,5,5,5,5) 

cr(𝑣𝑣2/𝑊) = (5,0,5,7,5,4)       

cr(𝑣𝑣3/𝑊) = (5,5,0,2,5,5) 

cr(𝑣𝑣4/𝑊) = (7,7,2,0,7,7) 

cr(𝑣𝑣5/𝑊) = (5,5,5,7,0,5) 

cr(𝑣𝑣6/𝑊) = (5,4,5,7,5,0) 

Clearly WR1R={𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3}, WR2= {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣4}, WR3= {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣5}, WR4= {𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4},  WR5= {𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣5, }, 
WR6= {𝑣𝑣1, 𝑣𝑣5, 𝑣𝑣6}, WR7= {𝑣𝑣4, 𝑣𝑣5, 𝑣𝑣6}, WR8= {𝑣𝑣1, 𝑣𝑣3, 𝑣𝑣6}, WR9= {𝑣𝑣1, 𝑣𝑣4, 𝑣𝑣6}, WR10= {𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣6},  WR11=
{𝑣𝑣3, 𝑣𝑣5, 𝑣𝑣6} ,WR12= {𝑣𝑣2, 𝑣𝑣4, 𝑣𝑣5} are the only cdim-set of G such that 𝑓𝑐𝑑𝑖𝑚(𝑊𝑖)=3, so that 𝑓𝑐𝑑𝑖𝑚(𝐺) = 3 

Observation: 2.3. For a connected graph G, 0 ≤ 𝑓𝑐𝑑𝑖𝑚(𝐺) ≤ 𝑐𝑑𝑖𝑚(𝐺). 

Theorem 2.4. For the path 𝐺 = 𝑃𝑛(𝑛 ≥ 2), 𝑓𝑐𝑑𝑖𝑚(𝐺) = 1. 

Proof. Let 𝑉(𝑃𝑛) = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛}.  Then  𝑊1 = {𝑣𝑣1}  and 𝑊2 = {𝑣𝑣𝑛} are the only two 𝑐𝑑𝑖𝑚-sets of 𝐺 

such that 𝑓𝑐𝑑𝑖𝑚(𝑊1) = 𝑓𝑐𝑑𝑖𝑚(𝑊2) = 1. Hence  𝑓𝑐𝑑𝑖𝑚(𝐺) = 1.                                                            ∎             

Theorem 2.5. For the cycle 𝐺 = 𝐶𝑛(𝑛 ≥ 3), 𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑛 − 1. 

Proof. Let (𝐶𝑛) = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛} . It is easily seen that 𝑊 = 𝑉(𝐺) − {𝑥} , where 𝑥 ∈ 𝑉(𝐺) is a 𝑐𝑑𝑖𝑚-

set of 𝐺  so that 𝑓𝑐𝑑𝑖𝑚(𝑊) = 𝑛 − 1. Since 𝑥 is arbitrary, 𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑛 − 1.                                                                                       

∎   

Theorem 2.6.  For the complete graph 𝐺 = 𝐾𝑛, 𝑛 ≥ 2,   𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑛 − 1. 

Proof. The proof is similar to the Theorem 2.5.                                           ∎                     

Theorem 2.7. Let 𝐺 be the graph obtained from 𝐾1,𝑛−1(𝑛 ≥ 3) by subdividing the end edges exactly 

once. Then 𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑛 − 2. 

Proof. It is easily seen that 𝑊 = 𝑉(𝐺) − {𝑥,𝑢} , where 𝑢 ∈ {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛−1} is a 𝑐𝑑𝑖𝑚-set of 𝐺 and so 

𝑓𝑐𝑑𝑖𝑚(𝑊) = 𝑛 − 2. Since 𝑢 is arbitrary, 𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑛 − 2.                                                                                                       

∎  

 Theorem 2.8. For the graph 𝐺 = 𝐾𝑛1 + 𝑃𝑛2 , where  𝑛1, 𝑛2 ≥ 2.   𝑓𝑐𝑑𝑖𝑚(𝐺) = 1. 

Proof. Let 𝑉�𝐾𝑛1� = {𝑢1,𝑢2, … ,𝑢𝑛1} and 𝑉�𝑃𝑛2� = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛2. Let 𝑆 = 𝑉�𝐾𝑛1� ∪ {𝑥}, where 

𝑥 ∈ 𝑉(𝑃𝑛2). Without loss of generality, let 𝑥 = 𝑢1. 𝑐𝑟(𝑢2/𝑆) =  𝑐𝑟�𝑢𝑛1/𝑆� =  Then 𝑆 is a 𝑐𝑑𝑖𝑚-set of 

𝐺 so that 𝑐𝑑𝑖𝑚(𝐺) = 𝑛1 + 1. By Theorem   𝑓𝑐𝑑𝑖𝑚(𝐺) ≤ dim(𝐺) − �𝑉�𝐾𝑛1�� = 𝑛 + 1 − 𝑛 = 1. Since 

𝑐𝑑𝑖𝑚-set of 𝐺 is not unique ,  𝑓𝑐𝑑𝑖𝑚(𝐺) = 1.                                                                                                              

∎  
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Theorem 2.9.  For the complete bipartite graph 𝐺 = 𝐾𝑟,𝑠, (1 ≤ 𝑟 ≤ 𝑠),  

 𝑓𝑐𝑑𝑖𝑚(𝐺) = �
1; 𝑟 = 1, 1 ≤ 𝑠 ≤ 2,

𝑟 + 𝑠 − 2;  𝑟 = 1, 𝑠 ≥ 3
𝑟 + 𝑠 − 1; 2 ≤ 𝑟 ≤ 𝑠

. 

Proof. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑟}  and  𝑌 = {𝑦1,𝑦2, … ,𝑦𝑠} be the two bipartite sets of 𝐺. We have the 

three cases. 

Case (i):𝑟 = 1, 1 ≤ 𝑠 ≤ 2. The result follows from Theorem 2.4. 

Case (ii): 𝑟 = 1, 𝑠 ≥ 3. 

       Let 𝑊 = 𝑉(𝐺) − {𝑥1,𝑦𝑠}. Then the circular metric representations (𝑛 − 2) tuples are as follows: 

   𝑐𝑟(𝑥1/𝑊) = (2,2,2, … ,2,2)  

 𝑐𝑟(𝑦1/𝑊) = (0,4, 4, … ,4,4)  

𝑐𝑟(𝑦2/𝑊) = (4,0,4, … ,4,4) 

. 

. 

. 
𝑐𝑟(𝑦𝑠−1/𝑊) = (4,4,4, … , 4,0)  

𝑐𝑟(𝑦𝑠/𝑊) = (4,4,4, … ,4,4).  

Since the representation are distinct, 𝑊 is a circular resolving set of 𝐺 so that  𝑐𝑑𝑖𝑚(𝐺) ≤ 𝑟 + 𝑠 − 2. 

We demonstrate that 𝑐𝑑𝑖𝑚(𝐺) = 𝑟 + 𝑠 − 2. On the other hand, imagine that, 𝑐𝑑𝑖𝑚(𝐺) ≤ 𝑟 + 𝑠 − 3.  

Then there exists a circular resolving set S' such that. |𝑆′| ≤ 𝑟 + 𝑠 − 3.  As a result, there are at least 

two end vertices 𝑢, 𝑣𝑣 ∈ 𝑉\𝑆′such that  𝑐𝑟(𝑢/𝑆′) = 𝑐𝑟(𝑣𝑣/𝑆′) = (4,4,4, … ,4,4), which is incoherent. As 

a result, 𝑐𝑑𝑖𝑚(𝐺) = 𝑟 + 𝑠 − 2. It is easily seen that 𝑊 = 𝑉(𝐺) − {𝑥,𝑢} , where 𝑢 ∈ {𝑦1,𝑦2, … ,𝑦𝑠−1} 

is a 𝑐𝑑𝑖𝑚-set of 𝐺 and so 𝑓𝑐𝑑𝑖𝑚(𝑊) = 𝑟 + 𝑠 − 2. Since 𝑢 is arbitrary, 𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑟 + 𝑠 − 2.                                                                                                        

Cases (iii): 2 ≤ 𝑟 ≤ 𝑠. 

        Let 𝑊 = 𝑉(𝐺) − {𝑦𝑠}. Then the circular metric representations (𝑟 + 𝑠 − 1) tuples are as follows:  

                     𝑐𝑟(𝑥1/𝑊) = (0, 𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, … , 𝑟 + 𝑠 − 1)  

                    𝑐𝑟(𝑥2/𝑊) = (𝑟 + 𝑠 − 1,0, 𝑟 + 𝑠 − 1, … , 𝑟 + 𝑠 − 1) 

. 

. 

. 
                            𝑐𝑟(𝑥𝑟/𝑊) = (𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, … ,0, 𝑟 + 𝑠 − 1, … , 𝑟 + 𝑠 − 1) 

                                                                                                                𝑟P

th
P place                                                                                      

𝑐𝑟(𝑦1/𝑊) = (𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, … , 𝑟 + 𝑠 − 1,0, 𝑟 + 𝑠 − 1 … , 𝑟 + 𝑠 − 1) 

                                                                                         (𝑟 + 1)P

th
P place                                                                                      

𝑐𝑟(𝑦2/𝑊) = (𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, … , 𝑟 + 𝑠 − 1,0,   𝑟 + 𝑠 − 1  … , 𝑟 + 𝑠 − 1) 

                                                                                       (𝑟 + 2)P

th
P place                                                                                      

. 

. 
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. 
𝑐𝑟(𝑦𝑠−1/𝑊) = (𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, … , 𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, … ,0) 

 

                                                                                                                  (𝑟 + 𝑠 − 1)P

th
P place                                                                                      

𝑐𝑟(𝑦𝑠/𝑊) = (𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, … , 𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, … , 𝑟 + 𝑠 − 1). 

Since the representation are distinct, 𝑊 is a circular resolving set of 𝐺 so that  𝑐𝑑𝑖𝑚(𝐺) ≤ 𝑟 +

𝑠 − 1. We demonstrate that  𝑐𝑑𝑖𝑚(𝐺) = 𝑟 + 𝑠 − 1. Consider however, that 𝑐𝑑𝑖𝑚(𝐺) ≤ 𝑟 + 𝑠 −

2. If so, a circular resolving set 𝑆′ exists such that  |𝑆′| ≤ 𝑟 + 𝑠 − 2 As a result, there are at least 

two vertices, 𝑢, 𝑣𝑣 ∈ 𝑉\𝑆′such that 𝑐𝑟(𝑢/𝑆′) = 𝑐𝑟(𝑣𝑣/𝑆′) = (𝑟 + 𝑠 − 1, 𝑟 + 𝑠 − 1, 𝑟 + 𝑠 −

1, … , 𝑟 + 𝑠 − 1), which is incoherent. As a result, 𝑐𝑑𝑖𝑚(𝐺) = 𝑟 + 𝑠 − 1. It is easily seen that 

𝑊 = 𝑉(𝐺) − {𝑦𝑠} , where 𝑦𝑠 ∈ 𝑉(𝐺) is a 𝑐𝑑𝑖𝑚-set of 𝐺  so that 𝑓𝑐𝑑𝑖𝑚(𝑊) = 𝑟 + 𝑠 − 1. Since 𝑦𝑠 

is arbitrary, 𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑟 + 𝑠 − 1.                                                                                                ∎                                                               

Theorem 2.10.  For the graph 𝐺 = 𝐶𝑛 ∘ 𝐾1, (𝑛 ≥ 4),  𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑛. 

        Proof. Let 𝑉(𝐶𝑛) = {𝑢1,𝑢2, … ,𝑢𝑛}  and  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛} be the set of end vertices of 𝐺.  Let 𝑊 =

{𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛}. Then the circular metric representations 𝑛 tuples are as follows  

𝑐𝑟(𝑣𝑣1/𝑊) = (0,𝑛 + 4,𝑛 + 4, … ,𝑛 + 4) 

𝑐𝑟(𝑣𝑣2/𝑊) = ( 𝑛 + 4,0,𝑛 + 4, … , 𝑛 + 4) 

. 
.. 

𝑐𝑟(𝑣𝑣𝑛/𝑊) = (𝑛 + 4,𝑛 + 4, …𝑛 + 4,0) 
             𝑐𝑟(𝑢1/𝑊) = (2,𝑛 + 2,𝑛 + 2,𝑛 + 2, … , 𝑛 + 2) 

𝑐𝑟(𝑢2/𝑊) = (𝑛 + 2,2,𝑛 + 2, … , 𝑛 + 2) 

 𝑐𝑟(𝑢3/𝑊) = (𝑛 + 2, 𝑛 + 2, 2, … ,𝑛 + 2) 

. 

. 
𝑐𝑟(𝑢𝑛/𝑊) = (𝑛 + 2,𝑛 + 2, … ,𝑛 + 2, 2). 

𝑊 is a circular resolving set of 𝐺 since the representations are distinct and as a result, 𝑐𝑑𝑖𝑚(𝐺) ≤ 𝑛.  

We establish that 𝑐𝑑𝑖𝑚(𝐺) = 𝑛.   Consider, however, that 𝑐𝑑𝑖𝑚(𝐺) ≤ 𝑛 − 1.  If so, a circular 

resolving set 𝑆′ exists such that |𝑆′| ≤ 𝑛 − 1.  Therefore, either two end vertices or at least two cut 

vertices of 𝐺 belongs to 𝑉\𝑆′. Allow 𝑢, 𝑣𝑣 ∈ 𝑉/𝑆′. If 𝐺′s end vertices are 𝑢 and 𝑣𝑣, then 𝑐𝑟(𝑢/𝑆′) =

𝑐𝑟(𝑣𝑣/𝑆′) = (𝑛 + 2,𝑛 + 4,𝑛 + 4, … ,𝑛 + 4). If 𝐺′s cut vertices are 𝑢 and 𝑣𝑣, then 𝑐𝑟(𝑢/𝑆′) =

𝑐𝑟(𝑣𝑣/𝑆′) = (𝑛,𝑛 + 2, 𝑛 + 2, … ,𝑛 + 2). Which is incongruous. Consequently, 𝑐𝑑𝑖𝑚(𝐺) = 𝑛.  It is 

easily seen that 𝑊 = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛}.  , where 𝑣𝑣𝑖 ∈ 𝑉(𝐺) is a 𝑐𝑑𝑖𝑚-set of 𝐺  so that 𝑓𝑐𝑑𝑖𝑚(𝑊) = 𝑛.  

Since 𝑣𝑣𝑖 is arbitrary, 𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑛.                                                                                                                                                 

∎ 

Theorem 2.11.  For the graph 𝐺 = 𝐾𝑛 ∘ 𝐾1, (𝑛 ≥ 4),  𝑓𝑐𝑑𝑖𝑚(𝐺) = 𝑛. 
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Proof. The proof is similar to the Theorem 2.10.                                                                              ∎ 

  Theorem 2.12. Let 𝐺  be the middle graph of the path 𝑃𝑛(𝑛 ≥ 3). Then 𝑓𝑐𝑑𝑖𝑚(𝐺) = 0.  

   Proof. Let 𝑉(𝑃𝑛) = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛} and 𝑢𝑖 = 𝑣𝑣𝑖𝑣𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1.  Then (𝐺) = {𝑣𝑣𝑖, 𝑢𝑗 , }(1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑛 − 1). In 𝐺, 𝑣𝑣𝑖 is adjacent to 𝑢1, 𝑣𝑣𝑛 is adjacent to 𝑢𝑛−1. 𝑣𝑣𝑖 is adjacent to 𝑢𝑖−1,𝑢𝑖 , 2 ≤ 𝑖 ≤

𝑛 − 1, 𝑢1 is adjacent to 𝑣𝑣1, 𝑣𝑣2 and 𝑢2, 𝑢𝑖 is adjacent  to 𝑢𝑖−1, 𝑢𝑖+1, 𝑣𝑣𝑖 and 𝑣𝑣𝑖+1 for2 ≤ 𝑖 ≤ 𝑛 − 2 and 

𝑢𝑛−1 is adjacent to 𝑣𝑣𝑛−2𝑣𝑣𝑛−1 and 𝑣𝑣𝑛. 

               Evidently, |𝑉(𝐺)| = 2𝑛 − 1. As a result of 𝐺 ≠ 𝑃𝑛, by Theorem 2.8, 𝑐𝑑𝑖𝑚(𝐺) ≥ 2.    Let 

𝑊 = {𝑣𝑣1, 𝑣𝑣𝑛}, 𝐶𝑟(𝑣𝑣1/𝑊) = (0, 3𝑛 − 2), 𝐶𝑟(𝑣𝑣2/𝑊) = (5,3𝑛 − 4), … ,𝐶𝑟(𝑣𝑣𝑛−1/𝑊) = (3𝑛 −

5,5),𝐶𝑟(𝑣𝑣𝑛/𝑊) = (3𝑛 − 2, 0), 𝐶𝑟(𝑢1/𝑊) = (2, 3𝑛 − 4),𝐶𝑟(𝑢2/𝑊) = (5,3𝑛 − 7), 𝐶𝑟(𝑢3/𝑊) =

(8,3𝑛 − 10), . . . ,𝐶𝑟(𝑢𝑛−1/𝑊) = (3𝑛 − 4, 2).  𝑊 is a circular resolving set of 𝐺, and since the circular 

metric representation is distinct, 𝑐𝑑𝑖𝑚(𝐺) = 2.  It is easily seen that 𝑊 = {𝑣𝑣1, 𝑣𝑣𝑛} is an unique 

𝑐𝑑𝑖𝑚-set of G so that 𝑓𝑐𝑑𝑖𝑚(𝑊) = 0 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓𝑐𝑑𝑖𝑚(𝐺) = 0                                                                      

∎  

  Theorem 2.13. Let 𝐺  be the total graph of the path 𝑃𝑛(𝑛 ≥ 4). Then 𝑓𝑐𝑑𝑖𝑚(𝐺) = 0.      

   Proof. Let 𝑉(𝑃𝑛) = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛} and 𝑢𝑖 = 𝑣𝑣𝑖𝑣𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1.  Then (𝐺) = {𝑣𝑣𝑖, 𝑢𝑗 , 1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑛 − 1}. In 𝐺, 𝑣𝑣1 is adjacent to 𝑣𝑣2 and 𝑢1;  𝑣𝑣𝑛 is adjacent to 𝑣𝑣𝑛−1 and 𝑢𝑛−1; 𝑣𝑣𝑖 is adjacent to 

𝑣𝑣𝑖−1, 𝑣𝑣𝑖+1,𝑢𝑖−1 and 𝑢𝑖; 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑢1 is adjacent to 𝑣𝑣1,𝑣𝑣2 and 𝑢2, 𝑢𝑖 is adjacent  to 𝑢𝑖−1, 𝑢𝑖+1, 𝑣𝑣𝑖 

and 𝑣𝑣𝑖+1 for 2 ≤ 𝑖 ≤ 𝑛 − 2 and 𝑢𝑛−1 is adjacent to 𝑣𝑣𝑛−2, 𝑣𝑣𝑛 and 𝑢𝑛−2.  Evidently, |𝑉(𝐺)| = 2𝑛 − 1. 

As a result of 𝐺 ≠ 𝑃𝑛, 𝑐𝑑𝑖𝑚(𝐺) ≥ 2. Let 𝑊 = {𝑣𝑣1, 𝑣𝑣𝑛}, 𝐶𝑟(𝑣𝑣1/𝑊) = (0,3𝑛 − 3),𝐶𝑟(𝑣𝑣2/𝑊) =

(2𝑛 − 1,3𝑛 − 4),𝐶𝑟(𝑣𝑣3/𝑊) = (2𝑛, 3𝑛 − 5),     … ,𝐶𝑟(𝑣𝑣𝑛−1/𝑊) = (3𝑛 − 4,2𝑛 − 1),𝐶𝑟(𝑣𝑣𝑛/𝑊) =

(3𝑛 − 3,0),𝐶𝑟(𝑢1/𝑊) = (2𝑛 − 1,   3𝑛 − 3),𝐶𝑟(𝑢2/𝑊) = (2𝑛, 3𝑛 − 4),𝐶𝑟(𝑢3/𝑊) = (2𝑛 + 1,3𝑛 −

5), …,  

  𝐶𝑟(𝑢𝑛−1/𝑊) = (3𝑛 − 4,2𝑛),𝐶𝑟(𝑢𝑛/𝑊) = (3𝑛 − 3,2𝑛 − 1).𝑊 is a circular resolving set of 𝐺, and 

since the circular metric representation is distinct, 𝑐𝑑𝑖𝑚(𝐺) = 2. It is easily seen that 𝑊 = {𝑣𝑣1, 𝑣𝑣𝑛} is 

an unique 𝑐𝑑𝑖𝑚-set of 𝐺  so that 𝑓𝑐𝑑𝑖𝑚(𝑊) = 0 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓𝑐𝑑𝑖𝑚(𝐺) =0.                                             ∎                               

 

  Conclusion 

       This article established a novel distance metric called the forcing circular metric dimension of a 

graph. We will develop this concept to incorporate more distance considerations in a subsequent 

investigation. 
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