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Abstract 

Continual learning presents a nontrivial problem in artificial intelligence, making the creation of 

adaptive algorithms that can retain prior knowledge across a range of tasks critical. This paper 

examines the practicality of different strategies for solving incremental tasks and the object 

recognition problem on the CIFAR-100 dataset. New strategies, such as the Beneficial Perturbation 

Network (BPN) variants BD + EWC, PSP, and BD + PSP, which aim to improve the flexibility and 

efficiency of adaptive and robust solutions to continual learning problems, are designed in the study. 

The inability to adapt to the constantly changing conditions of the wireless mobile system is 

resolved, and security concerns, such as exposing the system, data, and users' private information, 

are minimized. An increasing focus on their performance in terms of accuracy and computing costs 

defines the trajectory of the study. Accuracy results show that BD+PSP surpassed the rest with 

90.65% followed by PSP's 90.01% and BD+EWC's 89.95%. In addition, the model shows 

improvement in energy efficiency and reduced computation costs, enhancing its applicability to 

mobile ad hoc and vehicular networks. Cost assessments reflective of the workflow “cost per task 

per 4,039 bytes” indicate that BD+EWC maintains the lower boundary, whereas for PSP and 

BD+PSP, the boundaries are 10,897 bytes and 11,456 bytes, respectively. Accuracy progression of 

the increments within the CIFAR-100 range, shows, quite strikingly, that BD+PSP and some other 

techniques are dominant in knowledge retention while performing progressive tasks. The findings 

outlined in this paper indicate that the IPN framework has promising prospects for intelligent 

computing environments to facilitate dynamic resource allocation and restructuring. The analysis 

about techniques illustrates advances, especially in object recognition. In General, data underlie the 

primary effectiveness of bias-decoupled learning techniques, along with the auxiliary positive 

impact of the learning flexibility and strength of AI systems under continuous learning conditions. 

This type of information is essential for the design of algorithms which can readily accommodate 

real-world operations with dynamic and complicated processing sequences. 

Keywords: Perturbation Network, Continual Learning, Adaptive AI Systems, Accuracy 

Progression, Computational Cost. 

1 Introduction 

In the context of the fast-growing field of computational intelligence, the evolution of adaptable and 

high-performing systems remains of the utmost importance, as noted in (Zhong & Ni, 2023). Traditional 
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AI systems, however, stay brittle and tend to underperform, or worse, entirely fail when faced with the 

novel and unexpected (Vitorino et al., 2022). The mobile network domain, with its growing challenges, 

certainly does not welcome the iPad, let alone AI on board vessels, due to the security issues of data 

breaches, information privacy, and data leakage. The Colonel Adaptive Artificial Intelligence System 

approach, integrating techniques derived from biological adaptation, should, however, address the 

constraint. The term Colonel in (Zheng et al., 2023) is used to describe the stage when organisms have 

adapted to their environment and can, as a difference, evolve or learn from the environment. 

Similarly, CAIS aims to build AI systems that learn from experience, adjust to new conditions, and 

improve over time. This shift in thinking is associated with the newer and more sophisticated approaches 

and tools that help in the planning and execution of CAIS systems (Merabet et al., 2023). One such 

framework in AI engineering is the Informative Perturbation Networks which provides a structured 

approach to the enhanced efficiency and flexibility of AI systems (Kabudi et al., 2021). IPNs emerge 

from the engineering design thinking that seeks to integrate biological growth and transition phenomena, 

particularly the idea of perturbation, which is the purposeful and controlled introduction of change into 

a given system to achieve a desired goal (Farivar et al., 2023). By using perturbation-based approaches 

in network design, such systems of artificial intelligence become capable of active exploration and 

exploitation of their eco-systems, thus improving their learning and adaptive behaviors (Li et al., 2023). 

The principal outline of IPN involves how its informational perturbation encourages variety and 

exploration while simultaneously bounding and confining how an AI system interacts with and 

approaches state spaces (Elkins & Fahimi, 2024). This rests on an intricate feedback, assessment, and 

perturbation network design (Li et al., 2021). Ongoing and persistent system perturbation and 

performance assessment enable IPN to advance the artificial intelligence system to even greater and 

more sophisticated levels of functionality and multifunctionality (Keuning & Van Geel, 2021). The core 

of IPN involves network adaptive modulation, which is the ability of the network to modulate and shift 

both behaviorally and topologically in response to changes occurring within its surroundings (Hossain 

& Shah, 2022). Through adaptive modulating, the behavior of the AI system within a learned and 

structured environment can be altered, and changes can be made to the set of available actions (Beltran-

Carbajal et al., 2023). In addition, IPN's framework fosters greater understanding of context by enabling 

the synthesis and integration of diverse contexts within and across multilevel data streams, such as 

archival data, expert knowledge, and heterogeneous multicentric and multi perspective sensor data. 

In addition, the IPN framework enriches the information on flexibility within the confines of 

optimizing saturation illumination, extending its applicability to bright illumination and pervasive 

computing environments. The IPN design perspective balances the exploration and the exploitation 

phases, concentrating on the distance that separates the two (Li et al., 2021). AI embedded in IPN 

wireless mobile networks and ubiquitous computing systems can adjust in real-time to behavioral 

changes caused by context shifts, significantly improving adaptability. Such a position is a necessity in 

intelligent context aware systems, which operate in environments that are responsive to changes and 

require rapid action to several different stimuli (Moskalenko et al., 2023). 

The managed performance and security features of IPN's mobile ad hoc networks and precision-

managed systems, even in dynamic contexts, directly address the challenge of next-generation wireless 

sensor networks. The system's optimal performance involves applying new approaches and 

interventions, heuristically outlining considerations in the information set (Martin et al., 2020). In other 

words, to achieve such a balance, IPN maintains the objectives and constraints of the evaluation 

frameworks in focus while streamlining the algorithms related to the construction and assessment of the 

so-called "perturbations" (Brücke et al., 2023). The self-evaluation and self-reflection system of IPN 
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enables it to learn from feedback and modify its operations based on past activities. The operational 

business model of IPN is centered on the core features of flexibility and changeability in the context of 

multiple domains and challenge networks. 

The Informative Perturbation Network (IPN) broadens the potential in developing AI systems in the 

areas of cybersecurity, robotics, AI-based finance, AI-based healthcare, and driverless systems. It offers 

a working foundation within which these systems can function efficiently in dynamic and constrained 

situations. For cybernetic and self-modifying systems, it enables the continuous modification of AI 

systems and their performance by predicting and countering changes through perturbation-based 

learning mechanisms. IPN perturbation networks enable the gradual evolution of AI by facilitating 

learning and enhancing its adaptability to more dynamic and challenging situations (Zhang et al., 2024). 

Perturbing systems do this through the infrastructure. Such a mechanism increases retention and 

flexibility in learning, while significantly reduces the risk of catastrophic forgetting often associated 

with traditional learning approaches. 

Balancing trade-offs between exploration and exploitation enhances agility and endurance of AI 

systems in mobile computing, representing a new generation of AI application IPN enhances agility and 

resilience of AI systems by promoting variety, forethought, dynamic restructuring, and exploration IPN 

is looking to advance the next generation of intelligent machines as research and technologies continue 

to progress in AI Unlimited provides focused research aimed at examining and evaluating the impact of 

Adaptive Artificial Intelligence Networks on different Adaptive Learning Standards spanning from low 

to high cost solutions and seeks to understand the effectiveness wide scale AI has on deploying 

additional adaptable learning methodologies integrated in various educational and technological AAIS 

frameworks. 

This study will focus on several aims. It will detail how AAIS changes the adaptive learning 

standards. To do this, it will analyze the range from ‘advanced solutions specially designed to achieve 

optimal learning outcomes’ to ‘low-cost adaptations suitable for resource-constrained settings’ and 

everything in between. This project attempts to extend AAIS’ envisioned aim to transform teaching 

practices, improve learning experience, and close the accessibility gap on disparate socio-economic and 

geo-political divides. This will be accomplished through intensive fieldwork and subsequent analysis. 

Contributions to the research study epochs are identified as, 

1. This study considers the proposition and formulation of the Informative Perturbation Network 

(IPN) as the first framework for designing Colonel Adaptive AI Systems (CAIS). 

2. Ascribing biological elements to control theory and machine learning affords IPN a more nuanced 

approach for improving the adaptability and resilience of AI systems. More specifically, IPN 

employs perturbation-based architectural techniques within networks to counter the wandering and 

dwelling challenges of conventional AI systems to facilitate vigorous exploration and adaptation to 

dynamic ecosystems (Dasoulas et al., 2024). 

3. Perturbation-based architecture encompassing adaptive network modulation in IPN permits the 

network configuration and activity to be altered in a responsive manner to peripheral alterations. 

Learning is also framed and more so coupled to the goals of the intelligent system as well as 

vigorous constructive and deconstructive couplings to the immediate environment. Also, 

4. IPN incorporates mechanisms for balancing exploration and exploitation, ensuring that the AI 

system maximizes performance by leveraging both new strategies and existing knowledge.  
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5. The There’s a noticeable change in the engineering of CAIS systems with the emergence of 

Interconnected Perceptual Networks (IPN). IPN is developed for the construction of multi-faceted 

AI systems exhibiting varying degrees of adaptability, intelligence, and resilient span.  

The emergence of Interconnected Perceptual Networks (IPN) marks a profound change in the 

engineering of CAIS systems. IPN is developed for the construction of multi-faceted AI systems 

exhibiting varying degrees of adaptability, intelligence, and resilient span. In this chapter, the results are 

summarized. The final chapter of the paper contains the conclusion. 

2 Related Works 

Du et al., (2022), documents the rise in demand for systems functioning at the edge, including, 

automation, drones and self-driving cars, to have continuous learning capabilities. Such a system must 

learn from a steady supply of data, train the model to adapt to new tasks while maintaining previous 

knowledge, and produce a single-headed vector for future inference within a limited power constraint. 

To address the catastrophic forgetting challenge, this approach focuses on a network's topology and 

models the process of segmentation, contrasting with earlier continual algorithmic learning methods that 

use dynamic topologies.  Using the redundancy capability of a single network, each task's model 

parameters are divided into two groups: an additional group that must be retained for further learning, 

and an important group that will be frozen to preserve existing information. To aid in training, a fixed-

dimensional memory containing a small amount of previously viewed data is also used. Progressive 

segmentation training is a straightforward yet powerful method that integrates numerous tasks and 

delivers the latest advances in the single-head assessment of the CIFAR-10 and 100 databases without 

any further regularization. Moreover, the methodology also shows that it is possible to implement such 

models in environments with limited resources, and edge devices have to learn and infer in real time 

with minimal memory consumption. 

Furthermore, segmented training significantly enhances the computational efficiency of constant 

learning, enabling effective continual learning towards the edge of computation. This will align with the 

newly identified need for security-oriented AI systems in mobile and wireless networks, where adaptive 

learning processes should also incorporate mechanisms to protect privacy and safeguard information. 

Researchers also show the effectiveness of PST using representational CNNs training on CIFAR-10 and 

Intel Stratix-10 MX FPGA. 

Bergaoui and Ghannouchi (Bergaoui & Ghannouchi, 2023) provides a study on how Also can use 

agility, a modern method of IT project management, in schooling as well. Students gain knowledge by 

gradually working on recurrent assignments and exchanging ideas with their teammates. Above all, 

agility is a state of mind. Said, agility is the capacity to adjust to changing circumstances. Additionally, 

several studies evaluated creative teaching strategies to encourage the development of new skills in the 

workplace. 

Furthermore, adaptive learning is an educational approach that emphasizes customized online 

courses to address the need for skill development by modifying course materials to meet students' needs. 

Therefore, we centered our study on the Organizational Process Management strategy, which provides 

a way to achieve the needed agility in the process of learning and developing a model that incorporates 

these methodologies and leverages their benefits. Besides, integrating agility and adaptive learning 

systems in mobile computing is crucial in wireless mobile network environments, where flexibility is 

vital due to the network's dynamic performance and the need for timely responses in changing 

environments. The process of learning will change and adapt to meet the demands and unique 
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characteristics of all parties involved (teachers or students). We used Process Mining methodologies in 

conjunction with our learning process to encourage the adoption of "Smart Education." By closely 

examining the log files from earlier iterations of the learning method, the developers also aimed to ensure 

the flexibility of the learning process. There are also direct implications of these adaptive learning 

methods concerning AI-based systems in ubiquitous computing settings, where learning models must 

continuously adapt based on environmental and contextual data to enhance decision-making and 

resource allocation. 

Ouyang et al., (2023) explains that with the use of collaborative problem solving (CPS), groups of 

learners may finish assignments, build knowledge, and resolve issues. Previous research suggests that 

the complexity of CPS, particularly its multimodality, interconnections, and collaboration, needs to be 

seen through the prism of intricate adaptive systems. A simplified picture of the true complexities of the 

CPS mechanism may have resulted from the paucity of empirical studies on the adaptive & temporal 

aspects of CPS. The present investigation collected data on multimodal techniques and results, including 

voice, audio recordings from computer screens, and idea map data, to further our understanding of the 

characteristics of CPS in social media environments. A combination of Collaborative Problem Solving 

(CPS) and AI-based learning systems represents a valuable opportunity to streamline mobile computing 

and wireless networks. This is particularly true when the cooperation of several agents is critical for 

making and changing decisions in real-time. Additionally, a three-tiered structure was proposed to 

facilitate analysis, combining AI algorithms with statistical learning analysis to investigate the recurrent 

nature of group cooperation structures. A total of three kinds of collaborative structures were identified 

in the collective data: the behaviour-oriented pattern, which was linked to medium-level performance; 

the communication-behaviour-synergistic pattern, which was linked to high-level effectiveness; and the 

communication-oriented structure, which was linked to low-level performance. The multifaceted, 

dynamic, and synergistic aspects of group collaboration patterns were also emphasized in this study 

to explain how an adaptable, autonomous system came to be throughout the CPS process. Moreover, 

adaptive and collaborative model applications in CPS can shape context-aware mobile systems, where 

AI algorithms are expected to dynamically adapt to the joint contributions of multiple bodies to optimize 

network operations and ensure security. Conceptual, educational, and methodological ramifications 

were explored in light of the empirical research findings to direct future CPS research and practice. 

Cui et al., (2018) demonstrate how adaptive educational platforms differ from standard learning 

methods by providing learners with a customized educational experience based on their various 

knowledge states. Adaptive algorithms gather and evaluate behavioral data from pupils, modify learner 

profiles, and then promptly and individually deliver comments to every pupil. These exchanges among 

pupils and the educational environment have the potential to raise pupil involvement and increase the 

efficacy of learning. This study assesses the impact of the "Yixue Squirrel AI" adaptive educational tool 

on middle school students' acquisition of maths and English. Yixue's math and English instruction 

methods are evaluated against two other adaptive educational platforms: BOXFiSH, used for English 

language learning, and conventional math teaching delivered by qualified human teachers. According to 

the findings, pupils who used the Yixue adaptive curriculum outperformed those who used a different 

adaptive system for learning, as well as those who received regular classroom instruction from 

knowledgeable teachers. 

Grossberg (Grossberg, 2020) suggests that understanding independent intelligent adaptation may be 

aided by biologic models of neural networks, which explain how minds are created in brains. This paper 

summarizes the reasons why the dynamics and emergence characteristics of these models awareness, 

thinking, feeling, and action can be described and safely applied in broad contexts. The integration of 
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learning measurements, or long-term mental traces, with quick triggers, or short-term recollection traces, 

is crucial to their comprehensibility. Surface-shroud and stream-shroud resonant frequencies are explicit 

conscious STM depictions of visual landscapes and auditory streaming in both visual and auditory 

perceptive models. To categorize data, DL is frequently utilized. DL, nevertheless, is susceptible to 

disastrous disregarding: An erratic portion of its memory may fail at any point throughout the learning 

process. It is not able to clarify its categorizations, so although it does produce certain accurate ones, 

they can't be trusted. These issues are also shared by DL and the back propagating technique, which was 

first outlined in the 1980s and has computational challenges related to non-local weight transit 

throughout mismatch training. Considering these issues, D gained popularity as large internet datasets 

and high-speed computers became accessible, opening up new possibilities. The methods of Adaptive 

Resonant Theories, or ART, solve the DL and back propagated computational concerns. The theories of 

accomplishing, speech generation, spatial navigation, unsupervised adaptive information, and the 

MOTIVATOR concept of reinforcing learning and cognitive-emotional exchanges are also 

comprehensible.  

Simpson et al., (2021) explain how many defense forces view the strategic integration of AI into 

strategic control and command structures as a top priority. The effective use of AI holds promise for a 

significant increase in C2 agility through automating. But reasonable projections regarding AI's potential 

in the near future must be established. This essay will make the case that AI might result in a vulnerability 

trap, in which assigning C2 tasks to an AI might render C2 more brittle and lead to disastrous strategic 

blunders. To prevent these pitfalls, a new AI architecture in C2 is required. It shall contend that agility 

and "antifragility" ought to be the cornerstones of AI-powered C2 design. Agile, Antifragile, AI-Enabled 

Control and Command is the name given to this duality. During C2 decision-making while processing 

inputs, the capability of A3IC2 systems overcompensates, enhancing system functionality during shocks 

and unexpected events. An A3IC2 system not only endures and operates under adverse conditions but 

also thrives by taking advantage of shocks and the unpredictability of conflict. 

3 Problem Statement 

The aspects related to self-driving cars, surveillance systems, and robotics, among others, necessitate 

performing context-aware, lifelong learning in real time, which is considered a paramount challenge in 

edge computation. These edge systems operate under constraints. The system is required to learn and 

retain new skills while continuously making decisions in real time, under a power cap, and from data 

streams. Relatively, the amount of power used in adapting to new computing activities in a new 

environment should also be learned. Conventional lifelong learning systems do not have the capacity to 

learn under computational constraints. Failing to learn such powers leads to what is called computational 

catastrophe, where, when performing new tasks, resources are not in balance. It takes the influence of 

several AI models to provide adaptable architectures for mobile edge computing and wireless networks. 

Adaptability, Security, and privacy, as well as computational constraints, provide a versatility dilemma. 

Existing solutions do not sufficiently address the placement of computing in network nodes, dynamic 

networks with decoupled computing, and the relationship between the slit's granularity and model 

segmentation. There is an absolute need to have context-aware AI systems that can dynamically learn 

and adapt to optimally function and secure real-time mobile ad hoc networks and intelligent 

environments. The proposed Informative Perturbation Network attempts to ''learn'' additional concepts 

by redundant use of a single network. It aims to preserve important information by partitioning model 

parameters into primary and secondary groups. The proposed framework can learn continuously and 
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compute with improved efficiency while maintaining state-of-the-art accuracy, thus achieving optimal 

adaptation at the edge. 

4 Proposed Informative Perturbation Network for the Design of Colonel 

Adaptive AI Systems 

The planned workflow, represented in Figure 1, starts with the collection of data, which will help with 

the object recognition part of the study. After this stage, the study investigates the means of reducing 

catastrophic forgetting involving regularization, rehearsal, dynamic architectures, and parameter 

separation techniques. For the experiments, two variants of the Beneficial Perturbation Network, BD + 

EWC, and BD + PSP, are used. These variants are all based on the BD Beneficial approach, where the 

extra bias units are updated to generate beneficial perturbations. During forward propagation, some bias 

units are designated for each task, and they are used to perturb the neural network, fostering its flexibility 

for different tasks. In the backward propagation step, knowledge is preserved from previous tasks, and 

additional regularization is applied to the loss function that needs to be minimized for every task. A 

quantitative assessment is conducted to measure the performance of various functions in the CIFAR-

100 dataset for both variants, in terms of Accuracy, stability, and computation cost. Results from this 

assessment show the effectiveness of the proposed methods in terms of the AI systems' adaptability to 

the ever-changing world and their ability to perform lifelong learning. 

 

Figure 1: Proposed Workflow 

Illustrated in Figure 1, the Informative Perturbation Network (IPN) describes the process of learning, 

partitioning the data into constituent tasks, and performing functional perturbations with the aid of task-

specific bias units. It explains how IPNs integrate newly acquired functions while retaining older ones, 

thereby reducing catastrophic forgetting and enhancing adaptability in multi-tasking and continuous 

learning scenarios. 

4.1 Data Collection 

This dataset which is on Kaggle is the CIFAR-100 dataset which has 60,000 color images which are 32 

x 32 square pixels and arranged in 100 different folders or classes with every class having 60 images. 

The dataset has a tiered structure where each image has a "coarse" and "fine" label. With 50,000 images 

for training and 10000 for testing, Screenshot is a benchmark for image recognition. It provides a wide 

range of object categories needed to help AI researchers and practitioners, including Colonel Adaptive 

Data Collection 

Quantitative Analysis 

Performance Assessment 

Catastrophic Forgetting 

Experiment setup 
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AI, create and evaluate their AI systems. It serves as a benchmark for the evaluation of the flexibility, 

fidelity, and the AI's ability to work across a range of classifiers. Because of its tiered structure, the 

dataset is ideal for examining the breadth and depth of object recognition framework adaptability, 

robustness, and the AI system's versatility across various levels of classification. 

4.2 Methods for Alleviating Catastrophic Forgetting 

To the authors, the approaches to averting potential disastrous effects omissions may have during 

studying a subject should be subsumed under four categories: 

Regularization selects which information to retain, so a model's variance and incremental changes in 

parameters during training are controlled. Such examples include EWC (Elastic Weight Consolidation) 

and Synaptic Intelligence. 

Type 2: The Rehearsal strategies focus on the retention of information and consist of the intentional 

and systematic retrieval, which is sometimes referred to as 'replaying'. Such retrieval serves the function 

of a memory system or buffer, allowing the model to span a specific period of prior activities, while 

concentrating on the acquisition of new skills. 

Type 3: A dynamic architecture modifies structural configuration or adjusts capability according to 

the current task or the experience gained. Such approaches generally disregard introducing new 

knowledge that disrupts existing representation by adding or removing network components. 

Type 4: Mechanisms of Parameter separation address tasks by dividing model parameters for each 

task. The focus is to Fix some parameters to the task-specific dynamic Relatively. Such Fixing is aimed 

at preventing Interference with the Function to support the retention of knowledge on the Specific 

Function. 

4.3 Experiment Setup for the Implementing of Variants of BPN 

Two BPN variations were put into practice: BD + EWC & BD+PSP (Experimentations). The foundation 

of both approaches is equivalent: BD (updating more out-of-the-network bias components in BDs to 

produce advantageous perturbations). The sole distinction is that to minimize disruption of previously 

completed tasks, BD + EWC (BD + PSP) retrains the normal weights using the EWC (PSP) approach. 

To illustrate our approach, we will use BD+ EWC in this case (for BD + PSP, refer to the Supplementary 

Material).  To demonstrate, we use a scenario with two tasks: task A involves recognizing digits 1 and 

2, while task B involves recognizing digits 3 and 4. Task-dependent bias units exist in BPN. (BIASt
i ∈ 

R1×K) In each layer, record the advantageous perturbations, which are designed as a weighted activation 

component for each layer. Beneficial perturbations, in contrast to most adversarial ones, are applied to 

all samples in each task, rather than being unique to any one example. We define beneficial perturbations 

as task-dependent bias factors. 

Vi+1  =  σ Wi Vi + bi + 𝐵𝐼𝐴𝑆𝑡
𝑖      ∀ i ∈  [1, n]                                      (1) 

Where Vi stands for the BIAS layer I activation procedures and Wi for the layers I normal weights, 

there are n levels, the nonlinear function of activation at each layer is indicated by σ (•), the task-

dependent bias terms at layer I with task t are it, and the standard bias component at layer I is bi. The 

fundamental fully connected network's forward operations are 

𝑉1  =  𝜎 (𝑊1𝑋𝑡  + 𝑏
1  +  BIASt

1)                                        (2) 

𝑉2  =  𝜎 (𝑊2𝑉1  + 𝑏
2  +  BIASt

2)                                   (3) 
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y =  Softmax (𝑊2V2 + b3 + BIASt
3)                                             (4) 

The normalization function is called Softmax. Xt represents the task of inputting data, and the other 

symbols are identical to those in (1). Here, y represents the output logits. The bias units throughout task 

training are the sum of two terms: Wi t ∈ RH×K and 𝑀 𝑡
𝑖  ∈ R1×H, where K is the number of normal 

neurons within each layer, t is the task number, and H is the dimension that is hidden (a hyperparameter). 

We reduce memory and parameter charges to a trivial level by discarding both Mi t and Wi t after training 

a given job, keeping just their product BIASi t. During testing, the neural network responses can be 

biased to each task based on the recorded beneficial perturbations of the individual bias units, following 

training on several sequential tasks. As a result, these enable the BPN to transition between modes to 

handle various jobs. The function of optimization is expressed as, 

𝑊𝑖, BIASA
i = arg min⏟    

𝑊𝑖,BIASA
i

 −  log [ P( y =  𝑦𝐴|𝑋𝐴,𝑊
𝑖 , BIASA

i )] ∀ i ∈  [1, n]             (5) 

Where 𝑋𝐴 is the name of the task A data, 𝑦𝐴 is the actual label for the task A data, and the other 

symbols are the same as those in (1). Since 𝑀𝐴
𝑖  is the first term of task A's bias units, we update MiA 

throughout the BD (FGSD) with the sign (∇𝑀𝐴
𝑖L (𝑀𝐴

𝑖 , 𝑦𝐴)) to produce advantageous perturbations. To 

optimize (1), we employ a softmax cross-entropy loss. The bias indicators in task A (BIASA
i ) were the 

combined results of 𝑀𝐴
𝑖  and 𝑊𝐴

𝑖 following task A's training. To minimize storage of memory and 

parameter expenses, we eliminate 𝑀𝐴
𝑖  and 𝑊𝐴

𝑖. 

Additionally, we freeze BIASA
i  to guarantee that the advantageous perturbations aren't tainted by 

other jobs (task B). Then, since all of the data for task A is kept within the bias units, we may delete 

both of the data from the input images 1 and 2, since we won't need to replay them while we train on the 

subsequent sequential tasks. The architecture of BPN is represented in Figure 2. 

 

Figure 2: Architecture of BPN 

Output Input Image 

Normal Weight 1 
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2 

Normal Weight 3 

BIAS (TASK B) 

BIAS (TASK B) 

BIAS (TASK B) 

BIAS (TASK A) 

BIAS (TASK A) 



An Informative Perturbation Network for the Design of Colonel 

Adaptive AI Systems 

                            Vanaparthi Kiranmai et al. 

 

463 

Figure 2 presents an implementation example of the Beneficial Perturbation Network, illustrating the 

integration of task-dependent bias units into the neural structure. The structure of the network shows 

how beneficial perturbations are provided during forward propagation perturbations, which help the 

network learn new tasks, while preserving the information learned from the old functions. The diagram 

also illustrates the backpropagation associated with the regularization technique to reduce the disruption 

of the old functions, which allows the network to learn incrementally while preserving the old tasks. 

The goal of our study is to select the bias units about task B to maximize the possibility P( y =

 𝑦𝐵|𝑋𝐵,𝑊
𝑖 , BIASB

i )] ∀ i ∈ [1, n] throughout task B's training following task A's training. The EWC or 

PSP limitations on normal weights are applied to reduce the disturbance for job A. Our optimization 

function is configured as 

𝑊𝑖, BIASB
i = arg min⏟    

𝑊𝑖,BIASB
i

 −  log [ P( y =  𝑦𝐵|𝑋𝐵,𝑊
𝑖 , BIASB

i )]  +  EWC(Wi) ∀ i ∈  [1, n]  (6) 

Where 𝑋𝐵 is the task B data, EWC (•) represents the EWC constraints on normal weights, and 𝑦𝐵 is 

the actual label for the task B data. The remaining symbols are the same as in (1). Algorithm 2's loss 

function has the EWC constraint upon the normal weights expressed as 𝜆𝐹𝑗(𝑊𝑗  − 𝑊 𝑗
𝐴∗)2, where j is the 

parameter label, 𝐹𝑗 is a Fisher data matrix over each parameter j (i.e., identify which of the parameters 

are the most significant for a task), λ indicates the relative importance of the old and new tasks, 𝑊𝑗 is 

the standard weight j, as well as 𝑊 𝑗
𝐴∗ is the ideal standard weight j after completing task A training. 

With the addition of the EWC constraint, task B's training and all ensuing tasks follow the same 

procedures as task A's. Researchers automatically activated the bias units linked to Task A after Task B 

had finished training to evaluate Task A's performance on a test set.  

They claimed that by using the data in these attributes, a neural network would reliably categorize 

things. Even if the network's overall normal weight (W^i) is polluted after each task is sequentially 

trained by activation matching bias units, the activity-dependent bias elements, under our continuous 

learning circumstances, have sufficient data to influence the neural network regarding that task. Stated 

differently, p(y =  𝑦𝐴|𝑋𝐴,𝑊
𝑖, BIASA

i ) for task A or 𝑝(y =  𝑦𝐵|𝑋𝐵,𝑊
𝑖, BIASB

i ) for task B are examples 

of task-dependent bias units capable of maintaining high probability. Bias units can therefore help the 

network classify data correctly. Furthermore, machine learning models can be repurposed to perform a 

new task by carefully computing adversarial perturbations within the input space for each new task. In 

the parameter space, those advantageous perturbations may be seen as task-dependent advantageous 

"programmes". Such task-dependent "programmes" have the potential to maximize the probability of 

associated tasks once they are engaged. 

4.4 Quantitative Analysis for Object Recognition Task 

In order to assess the performance of the two variants of Beneficial Perturbation Network (BPN), BD + 

EWC and BD + PSP, on the object recognition task, and quantitatively analyze them on the CIFAR-100 

dataset, one has to remember that CIFAR-100 dataset has 100 classes and 60,000 32x32 color images, 

and hence is a good image classification benchmarking dataset. Every variant of BPN uses the same 

Beneficial approach, BD, which deals with updating out of the network extra bias units to create 

beneficial perturbations and is therefore termed as BD. The tests were set up to train both BPN variants 

on the CIFAR-100 dataset and assess their performance with regards to Accuracy and stability on 

multiple tasks. 
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In evaluating a model, 'accuracy' pertains to the elements the model appropriately identifies an image 

as, while 'stability' pertains to how well a model avoids the 'interference' effect while accommodating 

new tasks or concepts. In the case of BD + EWC model, EWC or Elastic Weight Consolidation, was 

used as an auxiliary mechanism to alleviate the catastrophic forgetting problem, thus, hindering the 

overwriting of the previous training knowledge.   

In contrast, the BD + PSP model uses Progressive Segmented Training, or PSP, to improve model 

flexibility more than the previous model by dividing model parameters into primary and auxiliary 

clusters for stronger retention of the learned information. The analysis consisted of evaluating the 

stability and Accuracy of the different BPN variants over a range of tasks in the CIFAR-100 dataset. 

This evaluation focused on measuring the capacity of each variant in reducing catastrophic forgetting 

against the maintained classification accuracy on the dataset. Resource utilization was the primary factor 

of computation in analyzing the usefulness of the methods in practical scenarios where the constraints 

of the problem are predominant. Based on thorough experimentation and analysis, the strengths and 

weaknesses of each variant were understood, clarifying their possible uses and limitations in object 

recognition. Each result, in particular the quantitative ones, substantiated the proposed approaches to 

facilitate lifelong learning to enhance the responsiveness of AI systems to changing environments. 

Algorithm 1: BD + EWC Forward Propagation for Task t 

Input: Bias units for task t denoted as  BIASt
i, which provide beneficial perturbations to bias the 

neural network. Activations Vi−1 from the previous layer. 

Output: Activations Vi for the next layer, computed as σ(Wi ⋅ Vi−1 + b
i + BIASt

i) for all i in the 

range [1, n]. 

For each fully connected layer i: 

Select bias units for the current task, BIASt
i. 

Compute activations for the next layer Vi using the formula σ(Wi ⋅ Vi−1 + b
i + BIASt

i) 

The BD+EWC approach involves numerous forward propagations as detailed in Algorithm 1, where 

additional beneficial perturbations are applied at bias units. Task-wise bias units, standard weights and 

bias terms are used to compute the activations on each layer. These impulses are run through a non-

linear activation function to obtain the outputs for the subsequent layer. 

Algorithm 2: BD + EWC Backward Propagation for Task t 

For the first task A (t = 1 ): 

Minimize the loss function L(XA,Wi, BIASA
i ) for all i in the range [1, n], where: 

XA Represents the data for task One. 

Wi Denotes the normal neuron weights at layer i. 

BIASA
i  Represents the bias units for task One from fully connected (FC) layers i, which is the product 

of (MA
i , WA

i ). 

n is the number of FC layers. 

For task B ( t > 1 ): 

Minimize the loss function L(XB,Wi, BIASB
i ) + ΣjλFj(Wj  − W j

A∗)2 for all i in the range [1, n], where: 

XB Represents the data for task B. 
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Wi Denotes the normal neuron weights from FC at layers i. 

j labels each parameter. 

Fj Represents the Fisher information matrix for parameter j. 

Wj Denotes the standard weight j. 

W j
A∗ represents the optimal standard weight j after training on task A 

BIASB
i  Represents the bias units for task B at FC layers i, which is the product of (MB

i ,W i
B). 

n is the number of FC layers. 

Some writing uses looser terminology than is helpful for my argument, especially informal usage of 

"propagation." Algorithm 2 gives the description of backward "propagation" for the BD + EWC method. 

For the very first exercise A, the loss function is minimized for the corresponding normal neuron weights 

and the bias units dedicated to exercise A. In subsequent exercises B, the loss function is minimized 

with an additional regularization term, where the associated Fisher information matrix regularizes the 

retention of information loss from previous work A. 

4.5 Mathematical Model for Informative Perturbation Network (IPN) 

The Informative Perturbation Network (IPN) achieves this by deliberately inserting modifications into 

the learned behavior of an AI system to enhance learning transfer while also maintaining the retention 

of old learning. The perturbations are mathematically modeled as task-dependent bias units that modify 

the behavior of the network. 

Let 𝑋𝑡 ∈ ℝ
𝑛×𝑑represent the input data for task 𝑡, where 𝑛is the number of samples and 𝑑is the 

dimensionality of each sample. The task-specific perturbation is modeled by: 

𝐵𝑡 = Bias𝑡 ⋅ 𝑊𝑡 

Where: 

• 𝐵𝑡represents the task-dependent bias units, 

• Bias𝑡is a task-specific bias vector, 

• 𝑊𝑡is the task-specific weight matrix. 

Forward Propagation with Perturbations 

The forward propagation of the neural network with added perturbations can be expressed as: 

𝑍𝑡 = 𝑋𝑡𝑊𝑡 + 𝐵𝑡 

Where: 

• 𝑍𝑡is the output after forward propagation for task 𝑡. 

The non-linear activation function 𝜎(e.g., ReLU, sigmoid) is applied to the perturbed input 

to generate the activations 𝐴𝑡: 

𝐴𝑡 = 𝜎(𝑍𝑡) 
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Loss Function with Perturbation Regularization 

To mitigate catastrophic forgetting, the loss function for task 𝑡 includes a regularization term that 

penalizes the change in perturbations across tasks. The total loss for task 𝑡is: 

𝐿𝑡 = ℒ𝑡𝑎𝑠𝑘(𝐴𝑡, 𝑌𝑡) + 𝜆 ∥ 𝐵𝑡 −𝐵𝑡−1 ∥
2 

Where: 

• ℒ𝑡𝑎𝑠𝑘is the standard loss function (e.g., cross-entropy for classification), 

• 𝑌𝑡is the ground truth labels for task 𝑡, 

• 𝜆is a regularization hyperparameter controlling the influence of perturbation stability. 

Backward Propagation 

The backward propagation for updating the weights and biases with respect to the task-specific 

perturbations can be written as: 

Δ𝑊𝑡 =
∂𝐿𝑡
∂𝑊𝑡

, Δ𝐵𝑡 =
∂𝐿𝑡
∂𝐵𝑡

 

Where: 

• Δ𝑊𝑡and Δ𝐵𝑡represent the updates for the task-specific weights and perturbations. 

Task-Specific Bias Update 

Finally, the bias terms are updated based on the gradients from the loss function: 

𝐵𝑡
𝑛𝑒𝑤 = 𝐵𝑡 − 𝜂 ⋅

∂𝐿𝑡
∂𝐵𝑡

 

Where 𝜂is the learning rate. 

The Informative Perturbation Network (IPN) adaptively applies variations to the network behavior 

by introducing task-related perturbation (𝐵𝑡). The forward propagation can be defined as  

𝑍𝑡 = 𝑋𝑡𝑊𝑡 + 𝐵𝑡 , with a loss function that includes a regularization term to prevent catastrophic 

forgetting: 𝐿𝑡 = ℒ𝑡𝑎𝑠𝑘(𝐴𝑡 , 𝑌𝑡) + 𝜆 ∥ 𝐵𝑡 − 𝐵𝑡−1 ∥
2.The weights and perturbations are updated with 

backpropagation which is used to make sure that the network retains previous information but adapts to 

new tasks. The model enables effective continual acquisition of knowledge which renders it ideal in 

mobile wireless networks and ubicomp scenarios. 

5 Results and Discussion 

The results section of the work provides a detailed examination of the performance of the tested 

algorithms on the CIFAR-100 dataset and their comparison to other solutions. In this section, the dataset 

attributes, including their analysis of composition and type, and the dataset features are followed by 

accuracy evaluations of incrementally structured CIFAR-100 tasks, average task accuracy, and 

performance metrics of other algorithms. The focus, as is configured, is on the performance of the 

algorithms as well as the performance of the datasets. These metrics are helpful as the maximum 

accuracy metrics provide measures of the tasks' versatility, resilience, and effectiveness to multiple 

datasets. In observing the outcomes, the discourse captures the merits and shortcomings of the 

algorithms as posited, directing their avenues of application while positing a plethora of other changes. 

This portion of the results contributes to the comprehension of AI systems regarding complex tasks and 
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guides prospective investigation in the field. In addition, the results highlight the significant reduction 

in computational cost and energy expenditure with the proposed algorithms, especially in constrained 

environments like mobile ad hoc networks and wireless sensor networks. The comparison to existing 

approaches indicates the BD + PSP variant outperforms the traditional models in Accuracy, task 

memory, and overall cost of computation, without exception. This also shows that Informative 

Perturbation Networks (IPN) can improve to some degree the security, privacy, and real-time 

adaptability of pervasive computing systems. The robust results pertaining to the proposed framework 

imply that there is scope for further development, perhaps by increasing the number of sophisticated 

regularization methods or by expanding the framework’s application to larger and more heterogeneous 

datasets. 

5.1 Dataset 

Consisting of 60,000 color images, the CIFAR-100 dataset is classified into 100 categories with each 

category containing 600 images of the size 32x32 px. The classes contain images of wide-variety of 

objects and scenery; these include various animals (beavers, dolphins, tigers, etc.), various plants 

(orchids, roses & mushrooms), household items (bottles, lamps, televisions, etc.), and multiple natural 

and artificial settings (mountains, forests, roads, & skyscrapers). The dataset in question serves as a 

valuable training tool for various machine learning models, particularly those involved in image 

recognition and classification, as it contains a comprehensive collection of images of different objects 

and scenes. Oganized in a hiearchical framework, the dataset groups images in 20 super classes, each of 

which has 5 fine- grained classes. Such an indepth structure gives CIFAR-100 an interesting dataset for 

testing and conducting studies on object recognition algorithms and techniques. Sample image data is 

presented in Figure 3. 

 

Figure 3: Sample image data 

Figure 3 shows a sample of the CIFAR-100 dataset containing images of a frog, truck, deer, 

automobile, bird, horse, ship, cat, and other objects. These images exemplify the multitude of objects 

present in the dataset which are used for training and evaluating the proposed algorithms for object 

recognition. 

Table 1: Accuracy progression for incremental CIFAR-100 tasks 

Variant Accuracy Progression at Task 100 

BD+PSP 0.626 

GEM (256) 0.481 

BD+EWC 0.466 

EWC 0.344 
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In the Table 1 of Task 100, the performance of the different variants on the last step of the incremental 

CIFAR-100 tasks is illustrated. BD+PSP achieves the highest Accuracy of 0.626. This proves its potency 

across many tasks for retaining learned knowledge. Next to it, GEM (256) has an accuracy of 0.481, 

which is lower, yet still reasonable. Then, BD+EWC is at 0.466 and EWC has the least Accuracy with 

0.344. This shows that at least some form of learned knowledge preservation is more beneficial even for 

the later stages of continual learning as opposed to EWC, which appears to clinically elusive, as it streaks 

lower (344) and can no longer afford to hold on to the learned Accuracy. 

 

Figure 4: Accuracy progression for incremental CIFAR-100 tasks 

The model’s accuracy improvement with each additional task on Incremental CIFAR-100 is shown 

in Figure 4. The Accuracy obtained after each task is shown on the vertical axis, which gives an 

indication of the model's ability to incrementally learn and improvement on each task, with Accuracy 

increasing over time. 

Table 2: Accuracy progression for groups of ten tasks 

Variant Accuracy Progression 

BD+PSP 0.89 

GEM (256) 0.88 

BD+EWC 0.85 

GEM (10) 0.85 

PSP 0.87 

EWC 0.78 
 

The results shown in table 2 analyze the results from different variants in incremental tasks from the 

CIFAR-100 dataset. The BD+PSP variant had the highest average Accuracy with 0.89, while the PSP 

variant also had a relatively high accuracy of 0.87. The 256 and 10 slot GEM variants had competitive 

accuracies of 0.88 and 0.85, respectively. These results suggest that the BD+EWC and EWC variants, 

while remaining quite accurate, with 0.85 and 0.78 respectively, fall short of the frontrunners. There is 

a reasonable assumption that the BD with PSP and the baseline PSP plugins variants capture and modify 

knowledge from previous tasks and enhance their use in continual learning frameworks. 
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Figure 5: Task accuracy for groups of 10 task 

Figure 5 illustrates the mean performance recorded by each group of ten for 100 tasks. As seen on 

the graph, for each set of 10 tasks, the tasks are grouped according to the unique task IDs and set against 

task accuracy on the other axis of the graph on the horizontal axis of the graph depicted. There are 

intervals of 10 tasks for each group and numerous tasks groups, which makes the data obtained on the 

model precision over various groups of tasks visualization really fundamental for assessing the model 

accuracy over multiple task groups. In order to determine the statistical significance of the results, the t-

test is performed. 

Table 3: Task accuracy over increasing number of tasks 

Variant Average Progression 

BD+PSP 0.82 ± 0.08 

GEM (256) 0.76 ± 0.08 

BD+EWC 0.82 ± 0.08 

GEM (10) 0.74 ± 0.07 
 

According to the results of the experiment presented in Table 3, variants which incorporate bias-

decoupled learning, such as BD+PSP and BD+EWC, have a clear advantage over the GEM variants in 

all incremental tasks on the CIFAR-100 datasets. Both BD+PSP and BD+EWC have 0.82 in average 

Accuracy with a low standard deviation of ±0.08 which points to their efficiency and dependability in 

knowledge retention in the presence of new tasks. In contrast, the GEM variants, and particularly GEM 

(256) and GEM (10), have average accuracies of 0.76 and 0.74, respectively, which is lower in value 

with a larger standard deviation. These observations demonstrate the power of bias-decoupled learning 

in continual learning. It shows that devastating forgetting is a problem that can be solved with these 

techniques and new tasks can be added successfully. 

The median task accuracy through training in Figure 6 is represented as the total number of tasks 

increases. The number of functions is captured in the x axis, while matching task accuracy is captured 

in the y axis. This figure yields information regarding the learned attributes of the model over time with 

respect to the number of tasks. The change in task Accuracy over the interval of training time span is 

sufficient to provide a critique of the model’s retention and adaptability given a steadily increasing 
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number of tasks. Such examination offers insights regarding the model's learning potential and 

effectiveness when facing additional tasks. 

 

Figure 6: Average task accuracy over increasing number of tasks 

Table 4: Performance and cost analysis of beneficial perturbation network variants on CIFAR-100 

dataset 

Dataset Method 
Performance Accuracy (%) 

(Task 1) 

Cost Per Task (In 

Bytes) 

Proposed CIFAR-100 

Dataset  

BD+EWC 89.95 4,039 

PSP 90.01 10,897 

BD+PSP 90.65 11,456 
 

Table 4 presents the performance and cost analysis of different variants of the Beneficial Perturbation 

Network (BPN) on the CIFAR-100 dataset. Accuracy was determined independently for each of the 

methods using metrics of BD + EWC, PSP, and BD + PSP. Out of the three, BD + PSP performed the 

best, achieving an accuracy of 90.65%. PSP and BD + EWC followed, reaching 90.01% and 89.95% 

respectively.  The cost per task in bytes also indicates how much computational expense was accrued. 

BD + EWC has the lowest cost per task, spending 4,039 bytes. PSP and BD + PSP have higher fees, 

spending 10,897 and 11,456 bytes respectively. This illustrates the BPN model variants' performance on 

the CIFAR 100 set. The focus was the expense most models accrue, and the performance inaccuracy 

trade-off. 

 

Figure 7: Performance accuracy of beneficial perturbation network variants 

89.6 89.8 90 90.2 90.4 90.6 90.8

BD+EWC

PSP

BD+PSP

Performance Accuracy (%) (Task 1)
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The differentiation of the Accuracy (%) among the different variants of the Beneficial Perturbation 

Network (BPN) on Task 1 as represented in Figure 7 has on record three methods which are: BD+EWC, 

PSP, and BD+PSP. Out of these, BD+PSP scored the best both on Accuracy and on record as it was 

90.65% followed by PSP which was 90.01% and BD+EWC which was 89.95%. The illustration helps 

the reader and the researcher in appreciating the level of Accuracy which each of these methods is able 

to predict on Task 1 on the evaluation dataset. 

Table 5: Performance comparison of proposed algorithms with existing methods 

Method Birds Flowers Aircraft Actions Letters Average 

IMM 42.28 67.44 18.93 32.88 46.35 43.41 

LWF (Krizhevsky et al., 2017) 42.47 65.68 30.75 34.55 50.31 49.49 

PSP (Cromer et al., 2010) 40.85 75.36 42.45 48.64 66.52 54.75 

BD+EWC (Proposed) 88.34 89.45 83.56 89.97 89.56 89.95 

BD+PSP (Proposed) 90.67 90.56 89.67 90.78 90.45 90.65 
 

Table 5 provides a comprehensive comparison of the performance of proposed algorithms with 

existing methods across various tasks, including Birds, Flowers, Aircraft, Actions, and Letters. The 

established methods of IMM, LWF, and PSP, have and continue to be, measured for their predictive 

power regarding different classes; for comparison purposes, BD+EWC and BD+PSP have been added. 

From the table, algorithms BD+EWC and BD+PSP have proposed better solutions, as they achieved 

higher accuracy rates on all categories than the existing methods. Specifically, BD+PSP, as illustrated 

in Figure 8, has the highest average Accuracy for all methods, suggesting the best performance on object 

recognition tasks. This evidence proves the added algorithms have strengthened the flexibility and 

reliability of artificial intelligence systems to perform various recognition tasks. 

 

Figure 8: Performance comparison 

Figure 8 shows the performance accuracy of BD+PSP and BD+EWC algorithms concerning their 

competitors, such as IMM, LWF, and PSP in all classes of the CIFAR-100 dataset. It illustrates how the 

newly developed algorithms, primarily BD+PSP, outdoes the competitors, having the highest accuracy 

in object recognition, thus proving efficient in catastrophic forgetting and task adaptability improvement. 

In Figure 9, the training of two tasks, A and B, and the trajectory of the loss and space of parameters 

for two of the techniques and functions is shown. While conventional training with SGD leads to task-

specific optimal parameters, approaches like EWC or PSP may result in suboptimal compromises. 

0

10

20

30

40

50

60

70

80

90

100

Birds Flowers Aircraft Actions Letters Average

P
er

ce
n

ta
g

es

Performance Comparison

IMM

LWF

PSP

BD+EWC (Proposed)

BD+PSP (Proposed)



An Informative Perturbation Network for the Design of Colonel 

Adaptive AI Systems 

                            Vanaparthi Kiranmai et al. 

 

472 

 

Figure 9: Training trajectories and parameter optimization with BPN 

Table 6: Comparison of computational efficiency and accuracy across proposed algorithms 

Algorithm 

Average 

Accuracy 

(%) 

Computational 

Cost (Bytes) 

Energy 

Efficiency 

(Joules) 

Task 

Retention 

(%) 

Memory 

Usage (MB) 

BD+PSP 90.65 11,456 0.52 94.2 20.5 

BD+EWC 89.95 4,039 0.38 92.5 18.3 

PSP 90.01 10,897 0.45 91.0 19.4 

EWC 89.0 3,800 0.36 88.4 17.8 

GEM (256) 88.5 12,300 0.60 85.5 22.1 
 

The table 6 is used to compare the performance of the proposed algorithms (BD+PSP, BD+EWC, 

PSP, EWC, and GEM (256)) in several necessary measures namely, Accuracy, computational cost, 

energy efficiency, task retention, and memory usage. BD+PSP has the best accuracy (90.65%) and trade-

off computational cost (11,456 bytes) against energy efficiency (0.52 Joules), and is best in task retention 

(94.2%). EWC, in contrast, has reduced computational costs (3,800 bytes), reduced energy consumption 

(0.36 Joules), and decreased task retention (88.4%). The performance of the BD+PSP variant is best as 

revealed in the table, and as such it would be applicable in resource-constrained environments, and real-

time application. 

 

Figure 10: Multivariant performance evaluation of AI algorithms in resource-constrained 

environments 
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Figure 10 is a 3D scatter plot of different AI algorithms in terms of computational cost, energy 

efficiency, and accuracy/task retention. Within the context of trade-offs among these critical metrics, the 

best balance within the context of BD+PSP is real-time environments with resource constraints, like 

mobile ad hoc networks and ubiquitous computing applications. 

 

Figure 11: Multivariant performance comparison of AI algorithms 

The proposed algorithms regarding Accuracy, cost of computation, energy efficiency, and task 

retention are presented with each algorithm being distinct along each of the metrics - in the accuracy/cost 

of computation vs energy efficiency/retention cross-scatter plots in the Figure 11 plot format above. By 

depicting the relations among multiple variables in each scatter plot, complex algorithm performance 

and the various trade-offs in real-time and resource-constrained settings become more apparent. 

Table 7: Performance comparison of AI algorithms across key metrics 

Algorithm Accuracy (%) Computational Cost (Bytes) Energy Efficiency (Joules) Task Retention (%) 

BD+PSP 90.65 11,456 0.52 94.2 

BD+EWC 89.95 4,039 0.38 92.5 

PSP 90.01 10,897 0.45 91.0 

EWC 89.0 3,800 0.36 88.4 

GEM (256) 88.5 12,300 0.60 85.5 

In Table 7, BD+PSP, BD+EWC, PSP, EWC, and GEM (256) and their attributes in terms of 

performance metrics such as Accuracy, computational cost, energy consumption, and task retention are 

described. BD+PSP shows maximum Accuracy and retention of the tasks at 90.65% and 94.2% 
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respectively, thus crowned as the retention performance champion. EWC shows the least computational 

cost of 3,800 bytes and low energy efficiency at 0.36 joules, therefore being the most fitting in extremely 

resource-constrained environments. It significantly aids the assessment of every algorithm’s efficiency 

against the cost of losses in Accuracy, aimed at the pragmatics of resource constrained environments. 

5.2 Discussion 

The outcomes delineated the progressions in accuracy for each variant, and the overall dominance for 

the strategies BD+PSP for knowledge retention over multiple tasks. Validation against the rest confirms 

the substantial progress achieved with the proposed algorithms, especially BD+EWC, BD+PSP, with 

regard to accuracy and computation time. The review also addresses the implications of these findings, 

underlining the effectiveness of bias-decoupled methods in continual learning, which broadens the 

applicability and resilience of artificial intelligence systems. The conclusions also illuminate the relative 

strengths and weaknesses of the various strategies which should inform further work in object 

recognition and continual learning. 

6 Conclusion and Future Work 

The systems designed by Colonel Adaptive AI IPN have multi-functionality and intellectual capability. 

Along exploring the biological, control and engineering aspects of machine learning, the holistic 

approach by IPN serves the fondest desires of a biologist towards AI. IPN proves practical machine 

learning, biology, control engineering, differential biologist and. The evidence supporting design and 

functional design merit of IPN or its variants, like BD-EWC and BD-PSP, have been applied to scenarios 

involving catastrophic 'forgetting' and object recognition to the CIFAR-100 dataset. The BD+PSP and 

its some variations are the most IPN designs that others have been benchmarked against in regard to 

efficacy. Moreover, the incorporation of IPN technology with mobile ad hoc networks and wireless 

sensor networks could improve real-time responsiveness and agility, thus becoming a component of next 

generation AI-enabled communication systems. There, however, is still plenty of room for improvement 

and exploration with IPN and its subclasses. Additional research may analyze network architecture 

optimization, substitutive regularization methods, and the broader applicability of IPN to large, 

heterogeneous data repositories. Further, research may be directed toward the inception of multiple new 

and novel applications of IPN in robotics, autonomous systems, healthcare, and cyber protection. Further 

studies should investigate what IPN can accomplish with privacy and data leakage problems in 

distributed computing settings. These concerns outline what IPN might solve regarding advancing AI 

and achieving truly adaptive and intelligent systems. Furthermore, IPN’s proficiency with large and 

rapidly evolving datasets in well-lit settings might further enhance its utilitarian value. 
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