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Abstract—Fusarium wilt, induced by pathogenic fungus, 

represents a substantial risk to world agriculture, impacting 

several plant species. Timely identification and precise 

classification of this disease are essential for optimal care and 

control. This research introduces an automated classification 

method using the VGG16 deep learning architecture to detect 

Fusarium wilt in plants. It collected an extensive dataset of 

images of healthy and diseased plant leaves. The VGG16 

model, recognized for its depth and feature extraction 

proficiency, was fine-tuned and trained on this dataset. The 

model's efficacy was assessed using accuracy, precision, recall, 

and F1 score. The results indicated that the VGG16 

architecture attained superior classification accuracy, 

improving conventional approaches. The proposed method 

enhances the detection process and offers a dependable 

instrument for farmers and agronomists to assess crop health. 

This method underscores the promise of deep learning 

methods in agricultural applications, facilitating future disease 

control and precision agriculture studies. Future efforts will 

concentrate on increasing the dataset and including real-time 

monitoring functionalities in the system. 

Keywords— Fusarium wilt, Plant disease, Deep learning, 

VGG16 architecture, Image classification, Automated detection 

I. INTRODUCTION  

The flexibility of bananas as both a fruit and a vegetable 
contribute to their unmistakable worldwide appeal [1]. 
However, whole plantations may be devastated by fungal 
diseases, the most notable of which are Fusarium wilt and 
Black Sigatoka, which pose a danger to banana production 
output. Using a comparative comparison of several 
algorithms, this paper presents a deep learning-based 
technique for automating the identification of these 
disorders. Phalaenopsis plants are at risk of infection from 
the fungus Fusarium wilt. Yellowing and withering leaves 
are indications of the illness, which may eventually kill 
plants and even spread to nearby healthy plants [2]. This 
research aims to find an effective and non-destructive way to 
identify fusarium wilt using hyperspectral imaging and deep 
learning models. Using a 2D-CNN model as its foundation, it 
aims to capitalize on any correlations and patterns within 
spectral bands. This study aims to evaluate the hyperspectral 
data's spectral discriminability and categorize tomato plants 

as either healthy or affected by Fusarium wilt [3]. Using 
statistical and machine-learning techniques, in-situ 
reflectance data were taken from a tomato-growing area in 
Tukur, Karnataka, India, and utilized to distinguish between 
healthy and sick plants. 

The research forecasts ten cases of Fusarium wilt using 
convolutional neural networks (CNNs) and SVMs. High 
accuracies are shown by the models' performance measures, 
indicating their flexibility to varied class distributions [4]. 
The results light the challenges of agricultural disease 
diagnosis and provide solutions to the problem of Fusarium 
wilt management, which in turn allow more effective tactics 
for the early identification and control of this disease. 
Phalaenopsis is a very valuable agricultural commodity in 
Taiwan. But fusarium wilt causes yellowing, weakening, 
water loss, and death of Phalaenopsis leaves [5]. This study 
introduces a new technique to identify fusarium wilt on the 
base of Phalaenopsis stems. The hyperspectral datasets used 
to construct the detection models are derived from two 
distinct samples of Phalaenopsis: the healthy and the sick.  

The pros and cons of using traditional fungicides to 
manage Fusarium illnesses in crop production are discussed 
[6]. Fusarium and other phytopathogens are among the most 
troublesome pests and illnesses that affect the environment. 
Even though some manufacturers are switching to greener 
methods, others are sticking with chemical management 
because of its effectiveness. The goal of this research was to 
find a way to identify Fusarium oxysporum f. sp. cubense 
(Foc). This fungus causes Fusarium wilt using image 
processing methods and neural networks [7]. To categorize 
microscope images of clean and Focinfected (microconidia 
present) soil, ResNet-50 was used. Preventing the fungus 
from infecting whole farms and endangering the worldwide 
banana crop depends on detecting it before it reaches a plant. 
An approach to evaluate the quality of Phalaenopsis via 
hyperspectral imaging methods. Fusarium wilt is a common 
infection in Phalaenopsis [8]. The k-means clustering 
approach determined that the Phalaenopsis stem reflection 
spectrum changes.  
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II. RELATED WORKS 

Self-organizing maps (SOM) and case-based reasoning 
(CBR) are used to create a hybrid intelligent prediction 
technique for CFW [9]. This technique classifies cases using 
a trained SOM network and finds a similar case set using a 
proposed case similarity metric, unlike conventional similar 
case retrieval. This method's optimum dissimilarity threshold 
R is determined using CFW prediction trials. Comprehensive 
investigation demonstrates that this hybrid forecast approach 
may give solid reasoning data for CFW prediction and aid 
CFW preventive and treatment decisions. It can quickly and 
automatically identify when Phalaenopsis plants have 
Fusarium wilt [10]. Created a PHMID, a compact handheld 
multispectral imaging device, which utilizes six LEDs to 
represent six different spectral bands. This design makes it 
more user-friendly for field applications. The Spectral Angle 
Mapper (SAM) and the Automatic Target Generation 
Process (ATGP) are used to extract the target signal from a 
high-spectral image. 

The soilborne fungus Fusarium oxysporum f. sp. cubense 
(Fus) causes banana wilt. Once within a plant, Foc assaults 
its vascular system [11]. When Foc is prevalent in the plant 
and plantation, infected plants exhibit symptoms late and 
typically die. Once found, Foc should be quarantined and 
burned within 7.5 meters, resulting in the loss of a few crops 
or whole plantations. Early FOC detection may avoid 
damage. Three microscopy approaches are used to create and 
analyze CNNs that recognize the microconidia, a fungus 
framework, in microscope images. Integrated deep neural 
networks (DNN) with hyperspectral imaging methods to 
identify Fusarium wilt in Phalaenopsis [12]. A spectral angle 
mapper (SAM) and limited energy minimization (CEM) 
were used to minimize climatic regions. Band priority (BP), 
band decorrelation (BD), and Harsanyi-Farrand-Chang 
(HFC) are three band selection (BS) approaches that were 
used to get effective bands. 

Identification and treatment are key to improving banana 
crop health. Insects and illnesses may reduce banana yields, 
among other issues [13]. It investigates how detection and 
treatment methods may improve banana crop management. 
Using machine learning, image processing, and deep 
learning, Fusarium Wilt, Yellow Sigatoka, and Black 
Sigatoka may be accurately detected. Detection and 
personalized treatments may boost crop yield, minimize 
pesticide use, and preserve banana output. To ensure high-
quality and productive crops, it is crucial to identify and 
control plant diseases [14]. The assessment criteria of a 
classification system that can detect 10 different tomato 
diseases. The classifications include tomato spotted wilt 
virus, powdery mildew, early blight, late blight, septoria, 
plant spot, microbial spot, fusarium in wilt, bacterial wilt, 
grey mold, and mosaic virus. 

Cotton is a major Indian cash crop, and cotton 
productivity decreases annually due to illness. Pest insects 
and pathogens produce plant diseases, which may reduce 
output if not managed [15]. It describes a cotton leaf disease 
detection and soil quality monitoring system. SVM-based 
regression approach is proposed to identify and classify five 
cotton leaf diseases: Bacterial Blight, Alternaria, Grey 
Mildew, Cereospra, and Fusarium wilt. Farmers will get 
illness names and cures via the Android app after 
identification. This study used deep learning algorithms to 
classify cotton leaf diseases, with the VGG16 model fine-

tuned being the most effective at identifying bacterial blight, 
curl virus, fusarium wilt, and healthy leaf states [16]. This 
research proposes an autonomous, accurate, scalable CNN-
based illness diagnosis system that avoids human mistakes 
and labor. The VGG16 model, created for enormous image 
recognition tasks, was fine-tuned to classify cotton leaf 
diseases using a large dataset of high-resolution leaf images.  

A method based on deep learning is created to identify 
typical cotton illnesses such as curl virus, fusarium wilt, and 
bacterial blight [17]. The research indicated that both the 
MobileNet and Vision Transformer models achieved 
excellent accuracy but that MobileNet generally 
outperformed Vision Transformer. Findings from the 
research point to the potential of deep learning-based 
methods to increase cotton crop yields while decreasing 
pesticide use. Further study is required to go into more 
extensive datasets and practical uses. The prediction of three 
important cotton leaf diseases, curl virus, bacterial blight, 
and fusarium wilt, is investigated in this work using transfer 
learning methods [18]. The study's overarching goal is to 
provide farmers with the tools to detect these illnesses early 
and intervene effectively. The model, built on the VGG16 
architecture, achieves an average accuracy. However, more 
study is required to make the model more practical and easier 
to understand for real-world applications. 

Strawberry plants need laboratory isolation for non-
specific foliar symptoms caused by soil-borne fungal 
pathogen Fusarium wilt. Agriculture relies on early plant 
disease detection to find resistant cultivars and optimize 
pesticide usage [19]. Remote sensing and ML algorithms 
increase agricultural disease detection and classification. 
Using hyperspectral imagery and ML models successfully 
estimates Fusarium wilt severity in strawberry plants without 
visual symptoms. The global threat of Fusarium wilt to 
chickpea production is real. Early detection is key to 
controlling this condition. Using a fresh dataset, pre-trained 
CNN models classified chickpea leaf disease severity. 
DenseNet-201 performed tests with accuracy, outperforming 
other models [20]. This implies that pre-trained models can 
assess chickpea Fusarium wilt severity, reducing production 
disturbance. It emphasizes early diagnosis and management 
of this severe illness. 

III. PROPOSED SYSTEM 

Data gathering is the initial stage in creating the 
automated method for classifying Fusarium wilt. An 
extensive and varied dataset is necessary for efficient model 
training. This collection includes images of healthy and 
diseased plant leaves from various settings and 
circumstances. To guarantee that the model learns to identify 
the illness in various situations, it is crucial to include a 
variety of Fusarium wilt-affected plant species. The quality 
and diversity of the images strongly impact the model's 
capacity to generalize and correctly categorize novel, unseen 
data. 

Following collection, the dataset is prepared through 
several procedures to improve image quality and prepare for 
the deep learning model. This involves scaling every image 
to the same size, usually 224 by 224 pixels, to comply with 
the VGG16 architecture's input specifications. To enable 
quicker convergence during training, pixel values are 
normalized to fall between [0, 1]. Furthermore, the training 
dataset is artificially expanded via data augmentation 
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methods, including rotation, flipping, zooming, and 
brightness modifications. This lowers the possibility of 
overfitting and increases the resilience of the model. 

The VGG16 architecture was chosen for this 
classification job because of its efficacy in image 
categorization. With 16 layers, including many convolutional 
and max-pooling layers, VGG16 is a CNN renowned for its 
depth. This design is especially well-suited for identifying 
visual patterns linked to Fusarium wilt as it enables the 
extraction of hierarchical characteristics from images. The 
system can identify between healthy and sick plant leaves 
with excellent accuracy using the potent feature extraction 
capabilities of VGG16. 

Transfer learning is used to improve the VGG16 model's 
performance. A pre-trained version of the VGG16 model is 
used for this, having previously been trained on the 
ImageNet dataset, which has millions of images in various 
categories. The system gains from the learned feature 
representations, including edges and textures, that are 
relevant to the current job by beginning with this pre-trained 
model. New layers created especially for Fusarium wilt 
classification—including fully linked layers and a softmax 
output layer for final predictions—replace the network's top 
layers initially intended for ImageNet classification. 

The Fusarium wilt dataset is then used to train the 
modified VGG16 model. The model must first learn to 
correlate the retrieved characteristics with their respective 
labels to determine whether an image shows a healthy or 
diseased plant. A categorical cross-entropy loss function is 
used in the training phase to measure the discrepancy 
between the predicted and real labels. An optimizer, such as 
Adam or Stochastic Gradient Descent (SGD), modifies the 
model's weights based on the determined gradients. The 
dataset is split into batches to guarantee effective learning 
and training, which spans many epochs. If hyperparameters 

need to be adjusted, continuous training and monitoring aid 
in this process. 

After training, a different validation dataset that wasn't 
used for training is used to assess the model's performance. 
Evaluation measures, including accuracy, precision, recall, 
and F1 score, are calculated to evaluate the model's efficacy. 
Precision shows the proportion of projected infected cases 
that are true positives, while accuracy gauges the 
classifications' overall correctness. The F1 score offers a 
compromise between accuracy and recall, whereas recall 
evaluates the model's capacity to detect every real instance of 
infection. This comprehensive assessment guarantees the 
model's dependability and deployment readiness. 

After a successful assessment, the trained model is 
implemented as a component of an application or web 
service. Farmers and agronomists may submit images of 
plant leaves for real-time categorization with this 
deployment. By giving users immediate input on the plant's 
health, the technology helps them combat Fusarium wilt 
promptly. The technology is essential for crop protection and 
increasing agricultural output since it provides a useful and 
easily accessible disease-detection tool. 

An application's user-friendly interface is created to 
improve the user experience. Without requiring a great deal 
of technical expertise, users may easily submit images and 
get categorization results due to this interface. The system 
may provide additional data on Fusarium wilt management 
techniques and classification results, assisting users in 
making well-informed decisions on crop health. The 
automatic categorization system enables users to monitor and 
control plant diseases efficiently by fusing advanced 
machine-learning algorithms with an easy-to-use interface. 
Figure 1 presents a block diagram outlining the system's flow 
of processes. 

 

 

Fig. 1. Fusarium Wilt Classification Workflow 

Figure 2 shows the VGG16 architecture, which has 13 
convolutional layers, and 5 max-pooling layers specifically 
designed for image classification. It analyses input images by 
feature extraction and then employs flattening and fully 
linked layers. The terminal output layer employs softmax 
activation to categorize images as healthy or diseased, 

enabling precise plant disease identification. VGG16 acts as 
an effective feature extractor, detecting complex patterns in 
leaf images. Transfer learning facilitates precise 
classification of Fusarium wilt by using existing knowledge 
and adapting it for plant disease detection.  

 

 

Fig. 2. VGG16 Architecture for Automated Fusarium Wilt Classification in Plants 
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IV. RESULTS AND DISCUSSIONS 

Significant insights and results were obtained from the 
automated Fusarium wilt classification system using the 
VGG16 architecture, proving the usefulness of deep learning 
techniques in identifying agricultural diseases. This part 
presents the main findings from the model assessment 
together with their practical implications for plant health 
monitoring applications. 

A. Model Performance Metrics 

The VGG16 model was evaluated using a validation 
dataset, which includes images not included in the training 
process after the training and assessment stages were 
finished. To assess the model's effectiveness, several 
performance measures were computed: 

1) Accuracy: The model's remarkable 95.25% accuracy 
rate was attained. This high degree of accuracy highlights 
the promise of deep learning in agricultural applications by 
demonstrating that the VGG16 architecture can successfully 
differentiate between healthy and diseased plant leaves. 

2) Precision and Recall: The model's reported 
precision and recall were 94.04% and 96.45%, respectively. 
These metrics imply that the model is effective in reducing 
false positives and detecting diseased leaves. Strong recall 
indicates that the model accurately identifies most real 
infected instances in the validation set. However, high 
accuracy suggests that when the model predicts an image as 
infected, it is likely correct. 

3) F1 Score: The F1 score, which balances recall and 
accuracy, was 95.24%. This score further shows the model's 
dependability, which qualifies it as a useful instrument for 
real-world field applications. 

B. Analysis of Confusion Matrix 

A confusion matrix was created to analyse the model's 
predictions more thoroughly. The number of false positives, 
false negatives, true positives, and true negatives was shown 
in the matrix. The vast majority of the healthy leaves (true 
negatives) and sick leaves (true positives) were accurately 
categorized by the algorithm. Both false negatives (infected 
leaves mistakenly classed as healthy) and false positives 
(healthy leaves mistakenly classified as infected) were rare. 
The low number of misclassifications suggests that the 
model's predictions are solid and trustworthy. 

C. Analysis of the Findings 

Fusarium wilt in plants may be effectively classified 
using the VGG16 architecture, as shown by the findings 
obtained. The model's favorable precision and recall rates, 
along with its high accuracy, indicate that deep learning may 
significantly enhance agriculture's ability to identify diseases. 
This is particularly crucial given the growing danger that 
plant diseases pose to the world's food security. The VGG16 
model's deep architecture allows it to learn complex features 
from the training images, which is a significant benefit. 
Traditional image processing methods often struggle to 
capture the subtle differences between healthy and sick 
leaves, but the model can perform well due to hierarchical 
feature extraction. Additionally, compared to building a 
model from scratch, transfer learning, which involves fine-
tuning an existing model on a particular dataset, significantly 
reduces training time and boosts performance.  

Transfer learning using VGG16 was selected due to 
limited data availability, expedited convergence, reduced 
overfitting, and the capacity to use pre-trained robust 
features, making it more efficient than developing a 
complicated model from inception. The collection includes a 
variety of plant species, different leaf development stages, 
and several environmental circumstances.  Images collected 
in the field and data augmentation methods provide 
substantial diversity, enhancing model generalization and 
classification robustness. 

The method addresses significant intra-class variability 
and inter-class similarity by using VGG16 for deep feature 
extraction to identify nuanced patterns. Data augmentation 
increases variability, but fine-tuning enables the model to 
discern small distinctions, enhancing class discrimination 
and minimizing misclassification. The system uses 
preprocessing, data augmentation, and VGG16 effective 
feature extraction to address blur, light, shadows, and clutter, 
ensuring dependable classification under field conditions. 
VGG16 is optimized for edge deployment via pruning, 
quantization, model distillation, and TensorFlow Lite 
translation to minimize size, enhance inference speed, and 
provide efficient performance on resource-limited field 
devices. 

D. Practical Implications 

For farmers, agronomists, and agricultural researchers, 
the effective use of this automated categorization system has 
important ramifications. The method facilitates prompt 
interventions by offering a dependable instrument for early 
Fusarium wilt diagnosis, which may lower crop losses and 
increase productivity. Farmers may make educated 
judgments about managing pests and diseases by using 
online services or mobile apps to submit images of their 
crops and get immediate feedback on plant health. 
Furthermore, incorporating these deep learning models into 
farming methods may result in the creation of precision 
agriculture methods, which allocate resources more 
effectively according to the particular health condition of 
crops. Using fewer chemical treatments increases output and 
encourages sustainable agricultural methods. 

Table 1 presents the attributes of a subset of images from 
the collection. This information is crucial for understanding 
the dataset's structure and provenance. 

TABLE I.  MAGE DATA CHARACTERISTICS 

Image ID Image Size (px) File Format Class 

001 224 x 224 JPEG Healthy 

002 224 x 224 JPEG Infected 

003 224 x 224 JPEG Healthy 

004 224 x 224 JPEG Infected 

005 224 x 224 JPEG Healthy 

 

Table 2 presents a comprehensive overview of the 
model's classification outcomes on the validation dataset. It 
counts true positives, true negatives, false positives, and false 
negatives, enabling a comprehensive evaluation of the 
model's efficacy in differentiating between healthy and sick 
plant leaves. 
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TABLE II.  CONFUSION MATRIX 

Actual / Predicted Healthy Infected 

Healthy 193 7 

Infected 12 188 

 
Figure 3 shows a comparison of performance metrics for 

healthy and infected classes, demonstrating balanced and 
elevated performance across all metrics, hence confirming 
dependable categorization of both healthy and Fusarium-
infected plant leaves. 
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Fig. 3. Precision, Recall, and F1-Score Comparison: Healthy vs Infected 

Leaves 

Table 3 highlights the preprocessing settings used for the 
images in the dataset before training the VGG16 model. The 
specifications include the dimensions for image resizing, 
normalization parameters, used data augmentation strategies, 
training batch size, epoch count, learning rate, and the 
chosen optimizer for model training. 

TABLE III.  IMAGE PREPROCESSING PARAMETERS 

Parameter Value 

Resize Dimensions 224 x 224 px 

Normalization Range [0, 1] 

Data Augmentation 
Techniques 

Rotation, Flipping, Zooming, 
Brightness Adjustment 

Batch Size 32 

Number of Epochs 50 

Learning Rate 0.001 

Optimizer Adam 

 

Figure 4 shows the VGG16 model's training and 
validation accuracy across 50 epochs. The training accuracy 
progressively rises, indicating effective learning. The 
validation accuracy increases, indicating that the model 
generalizes well to novel data, with both measures stabilizing 
in the training stage. 
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Fig. 4. VGG16 Model Accuracy Progression  

Figure 5 depicts the training and validation loss 
throughout 50 epochs. The training loss steadily declines, 
indicating that the model is acquiring knowledge 
proficiently. The validation loss decreases, indicating that the 
model effectively generalizes to the validation dataset. A 
reduced loss value is preferable since it indicates superior 
model performance. 
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Fig. 5. Loss in VGG16 Model Training 

Figure 6 illustrates the distribution of classes within the 
dataset using a pie chart. The dataset is balanced, including 
an equal number of healthy and sick leaf samples. This 
equilibrium is essential for efficient training, preventing the 
model from exhibiting bias towards one class, hence 
enhancing classification accuracy. 

Class Distribution Overview

50%50%

Healthy Leaves

Infected Leaves

 

Fig. 6. Class Proportions of Healthy and Infected Leaves 

The system can be enhanced with the integration of IoT 
sensors, real-time image acquisition, cloud computing, 
smartphone notifications, and continuous model retraining 
using new data. The dependability of the system can be 
ensured by using high-quality datasets, doing frequent model 
validation, employing cross-validation methods, calibrating 
sensors, implementing robust preprocessing, and performing 
consistent field testing across diverse situations. The 
performance of the system can be enhanced via data 
augmentation, hyperparameter optimization, advanced 
architectures, ensemble methodologies, and continuous 
training with varied, high-quality image datasets. 

E. Future Work 

Despite the encouraging outcomes, there is still room for 
development and more study. To improve the robustness of 
the model, future research should focus on expanding the 
dataset to include other plant species and different climatic 
circumstances. Furthermore, investigating other ensemble 
techniques or deep learning architectures could provide even 
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better results. Users in the field may get a quicker response if 
real-time image processing features are included and the 
system is integrated with IoT devices. 

V. CONCLUSIONS 

The VGG16 architecture-based automated Fusarium wilt 
classification system has shown great promise for improving 
plant disease diagnosis. The model demonstrated its efficacy 
in differentiating between healthy and diseased plant leaves 
with an amazing accuracy of 95.25% and high precision and 
recall rates. Rapid feature extraction from the images was 
made possible by the effective training and enhanced overall 
performance of the transfer learning technique used with the 
pre-trained VGG16 model. The findings highlight the 
importance of using deep learning methods in agriculture, 
giving agronomists and farmers a reliable instrument for 
early disease diagnosis. This system encourages sustainable 
farming practices through better resource management and 
supports prompt actions to reduce crop losses. The balanced 
dataset and efficient data augmentation techniques enhanced 
the model's robustness, which guarantees that it generalizes 
well to new data. Future research should focus on improving 
the model, adding real-time analytic capabilities, and 
growing the dataset. This method marks a substantial 
breakthrough in precision agriculture, opening the door to 
more intelligent agricultural practices and increased food 
security. 
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