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Abstract— Autonomous vehicles (AVs) must navigate 

challenging and unexpected circumstances while guaranteeing 

security and competence. Prescribed rule-based classifications 

strive to handle the large unpredictability of virtual driving 

situations. In the proposed work, a novel hybrid architecture 

enables autonomous vehicles to make human-like choices in 

unexpected scenarios by using a combination of deep learning 

and data-driven planning techniques. The framework combines 

VOLOv7-based perception, multimodal transformers for fusing 

LiDAR, radar, and camera data, and a dual-policy approach 

using DAgger and Decision Transformer to obtain both sensitive 

and deliberate decision-making behaviors. An ensemble voting 

mechanism combines policy outputs to improve reliability. The 

proposed work is trained and evaluated using the Waymo Open 

Dataset and CARLA simulator. The proposed work attains a 

collision rate of 3.4%, route completion of 97.2%, and an 

average intervention frequency of 0.4. 

Keywords— Autonomous Vehicles, Deep Learning, Decision-

Making, Reinforcement Learning, Imitation Learning, Human-

like Reasoning 

I. INTRODUCTION 

Autonomous vehicles (AVs) have the potential to 

modernize transit by refining security, effectiveness, and user-

friendliness. However, one of the most important challenges 

in attaining complete independence lies in allowing vehicles 

to make difficult, concurrent decisions in unexpected 

situations [1]. Current progressions in artificial intelligence, 

mainly deep learning, give auspicious solutions by letting 

AVs acquire massive amounts of driving data. By studying 

ideas in human behaviour, neural networks can foresee 

suitable answers to unique circumstances, imitating the 

perception of skilled drivers [2].  

Techniques such as deep reinforcement learning (DRL) 
[3] and imitation learning (IL) [4] allow AVs to refine their 
decision-making policies through constant interaction with 
virtual and real-world surroundings. The proposed paper 
evaluates how deep learning can improve AV decision-
making by merging understanding, forecasting, and analysis 
into a combined framework. A hybrid model is proposed that 

influences both imitation learning and reinforcement. The 
experiments indicate that this approach outdoes conventional 
methods in managing difficult situations while retaining 
safety and competence. 

II. RELATED WORK 

Study of autonomous driving has grown considerably over 

the former period, with various prototypes proposed to 

discourse the concerns of understanding, development, and 

management [5]. Traditional approaches depend on 

architectures that distinguish understanding, translation, 

forecasting, and decision-making. These systems normally 

use handmade rules and required reasoning for development 

and management, such as finite state mechanisms and 

behaviour trees [6]. While these approaches provide high 

clarity and consistency in comprehensible situations, they are 

unstable when subject to sudden or exceptional circumstances 

that drop excepting predefined rules. 

However, end-to-end learning methods have gained 

traction for their potential to directly map sensor inputs to 

driving movements using deep neural networks. 

Revolutionary work introduced a convolutional neural 

network (CNN) [7] trained to forecast navigation angles from 

camera images using supervised learning. Regardless of 

auspicious results in precise conditions, such models often 

suffer from poor generality, a deficit of clarity, and 

incompetence to purpose about long-term moments. 

Furthermore, they struggle in situations where labelled data is 

uncommon or unclear, such as close-shave instances or 

uncommon road behaviours. 

Addressing these contests, recent research has gradually 

looked at learning-based decision-making structures [8] that 

integrate imitation learning (IL) with reinforcement learning 

(RL) [9]. Imitation learning [10], mainly behaviour cloning 

and inverse reinforcement learning [11], allows models to 

study strategies by sensible expert evidence, apprehending 

human-like driving patterns. However, these models are 

subject to covariate shift, where small errors meld over time, 

forcing the agent into unfamiliar states. Reinforcement 
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learning permits agents to analyze and learn optimum 

behaviours through trial-and-error connections with an 

environment. Techniques such as Deep Q-Networks (DQN) 

[12], Proximal Policy Optimization (PPO) [13], and Soft 

Actor-Critic (SAC) [14] have shown achievement in virtual 

driving tasks. However, pure RL methods need wide-ranging 

surveys and often struggle with sample efficiency and safety 

in real-world distribution. 

Hybrid methods have recently developed as a robust plan 
for attaining both effective learning and potent decision-
making. Methods such as DAgger (Dataset Aggregation) [15] 
address covariate shifts in imitation learning by iteratively 
gathering remedial expert data. Others modify policies using 
IL and improve them with RL in the model, allowing safe 
examination of precarious situations. In spite of this 
development, many existing methods still drop the ball in 
recreating the adaptable, environment-conscious decision-
making demonstrated by human drivers. The proposed work 
is developed on these basics by proposing a deep learning-
based framework to model human-like reasoning more 
efficiently. Using large-scale real-world datasets and high-
integrity models, the outline aims to improve decision-making 
in unexpected situations pushing AV competences closer to 
human-level understanding. 

III. METHODOLOGY 

This section summarizes the proposed framework aimed 

at representing man-like perception in autonomous vehicles 

by incorporating deep neural networks (DNNs), imitation 

learning (IL), and reinforcement learning (RL). The 

methodology consists of four key stages: (1) perception 

through YOLOv7, (2) sensor fusion and scene appreciative is 

using a multimodal transformer, (3) policy learning through a 

combination of imitation learning and Decision Transformers, 

and (4) robustness improvement using ensemble methods. 

This architecture is intended to simplify across diverse, 

unforeseen situations by learning both spatial and temporal 

patterns from expert exhibits and simulated connections. Fig.1 

shows the architecture of the proposed method. 

 
Fig.1. Multimodal Deep Learning Architecture 

 

A. Data Collection and Preprocessing 

The Waymo Open Dataset [16] serves as a real-world 

resource, contributing corresponding multi-sensor data 

(cameras, LiDAR, Radar), useful observations, and skilled 

driving routes across various civic environments. For creating 

hazardous driving circumstances that are durable to detain in 

real life, the CARLA simulator allows full control over 

conservational variables, traffic representatives, and sensor 

formations, making it perfect for collecting cooperating data 

using algorithms like Dagger [17] and for training Decision 

Transformers in long-horizon tasks. Proficient policies are 

resultant either from human drivers in the Waymo dataset or 

scripted agents in CARLA [18], providing ground truth 

actions for imitation learning. Observations, including object 

detection labels, routes, and control signals, are produced 

automatically in replication and used directly or improved 

through manual labelling tools in real-world data. This hybrid 

data collection approach guarantees complete attention both 

routine and rare situations, allowing vigorous training of 

observation, development, and decision modules. 

Preprocessing LiDAR data starts with sensor calibration 

and synchronization, where basic and outermost parameters 

are used to align data from multiple sensors into one frame. 

This process confirms spatial and temporal reliability across 

diverse modalities. Depth filtering comprises removing noise 

and outliers from the raw LiDAR point clouds using methods 

like statistical outlier removal, voxel grid down sampling, and 

range-based filtering to retain only significant spatial 

information. Data segmentation is applied to separate relevant 

structures from the scene, such as roads, vehicles, pedestrians, 

and buildings. These preprocessing steps convert raw, 

unstructured sensor data into structured inputs appropriate for 

combination in multimodal transformers, object detection 

networks like YOLOv7 [19], and decision-making 

frameworks such as DAgger and Decision Transformers. 

B. Perception Module 

The first phase of the pipeline is a real-time perception 

module based on YOLOv7, an advanced object detection 

network. It processes the frontal camera to identify both 

dynamic and static entities such as automobiles, walkers, 

bicycles, traffic signs, and lane marks. The output is a set of 

bounding boxes 𝐵 = {𝑏𝑖}𝑖=1
𝑁 , each with a class label ci, and 

confidence score si. The detections are transformed into a 

structured representation: 

𝑂𝑡 = {(𝑐𝑖 , 𝑠𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖 , ℎ𝑖)}𝑖=1
𝑁    (1) 

Where (𝑥𝑖 , 𝑦𝑖) is the center, and (𝑤𝑖 , ℎ𝑖) are the height and 

weight of the bounding box respectively. This data helps as a 

visual input for the fusion module and acts as the basis for 

situational consciousness. 

C. Multimodal Transformer 

Autonomous vehicles depend on various sensory inputs, 

including visualization, LiDAR, radar, and GPS. A 

multimodal transformer is used to combine these diverse 

signals into an incorporated, high-dimensional scene 

demonstration. Let It is the image features extracted from 

YOLOv7; Lt is the LiDAR point cloud features; Mt is the HD 

map and lane topology; and St is the ego vehicle’s state vector 

(velocity, acceleration, heading). The inputs are determined 

into embedding vectors: 

𝐸𝑡 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑐𝑜𝑛𝑐𝑎𝑡(𝐼𝑡 , 𝐿𝑡 , 𝑀𝑡, 𝑆𝑡)) (2) 

The transformer utilizes self-attention to evaluate the 

significance of each modality vigorously. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (3) 
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The result provides the model to acquire a rich spatial and 

semantic framework crucial for downstream decision-

making. 

D. Policy Learning 

Imitation Learning Initialization 

 The behaviour cloning is used to bootstrap the policy, 
where a policy П𝜭 is trained using supervised learning on 
proficient routes 

𝜋𝜃(𝑎𝑡|𝑠𝑡) ≈ 𝑎𝑡
𝑒𝑥𝑝𝑒𝑟𝑡

 (4) 

Minimizing the loss: 

𝐿𝐵𝐶(𝜃) = 𝐸(𝑠𝑡,𝑎𝑡
)~𝐷𝑒𝑥𝑝𝑒𝑟𝑡[‖𝜋𝜃(𝑠𝑡) − 𝑎𝑡‖2]  (5) 

DAgger for Expert Correction 

 To address covariate shift, the DAgger (Dataset 
Aggregation) algorithm is employed. In DAgger, the policy 
relates to the situation, and the proficient offer correct labels 
for visited states, which are combined into the dataset. 

𝐷 ← 𝐷 ∪ {(𝑠𝑡 , 𝑎𝑡
𝑒𝑥𝑝𝑒𝑟𝑡

)}
𝑡=1

𝑇
 (6) 

The policy is iteratively restructured on the combined dataset 

to enhance generalization under the distribution persuaded by 

its movements. 

Decision Transformer 

To improve decision-making over prolonged sequences, 

the Decision Transformer (DT) is used, which frames 

reinforcement learning as a sequence modeling problem. The 

input is a sequence of Rt as returns-to-go, 𝑠𝑡  as observed 

states, 𝑎𝑡−1  as Past actions. The Decision Transformer 

calculates the next act using an autoregressive transformer: 
𝑎𝑡 = 𝑓𝐷𝑇(𝑅𝑡 , 𝑠1, 𝑎1, … . 𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡) (7) 

The above expression (7) permits the model to focus on 

chosen outcomes and reason about the multi-step effects of 

actions, allowing high-level strategic decisions even in 

innovative circumstances. 

 
Fig 2. Decision pipeline 

 

The decision-making process begins with Behavior 

Cloning to initialize the policy using supervised learning. 

Once the policy is trained, DAgger is employed, which 

iteratively collects new data where the model updates. This 

allows a transient shift and improves robustness. To handle 

longer-term dependencies the Decision Transformer is used 

which takes decision-making as a sequence modeling task 

using a transformer architecture. Finally, multiple policies 

from BC, DAgger, and DT are combined to form a robust 

output, reducing variance and improving safety in ambiguous 

or edge-case scenarios. The ensemble votes or averages 

predictions based on uncertainty estimates to choose the final 

action. The overall Process is visually represented in Fig. 2. 

E. Ensemble Models  

To further enhance reliability, model ensembling is used, 

where multiple autonomously trained policy networks vote or 

average their predictions: 

𝑎𝑡̂ =
1

𝐾
∑ 𝜋𝜃𝑘(𝑠𝑡)𝐾

𝑘=1   (8) 

Instead, ambiguity can be captured using the 

inconsistency of outputs: 

𝜎𝑡
2 =

1

𝐾
∑ (𝜋𝜃𝑘(𝑠𝑡) − 𝑎𝑡̂)2𝐾

𝑘=1  (9) 

In confusing situations, the vehicle can choose traditional 

emergency behaviors such as stopping or complying with 

rule-based control. 

IV. EXPERIMENTAL SETUP 

The experimental validation of the proposed autonomous 

vehicle decision-making system was shown through a 

complete, multi-stage testing protocol that is considered to 

calculate performance through both simulated and real-world 

surroundings. For real-world data, the Waymo Open Dataset 

is used, which offers extensive multi-modal sensor data, 

including high-resolution LiDAR, radar, and multiple camera 

views. The proposed work used 5000 hours of data. This 

dataset is analytical for preparing the perception models and 

understanding expert routes in real driving situations. The 

experimental framework incorporates several key 

components, comprising simulation environments, hardware 

configurations, software employments, training methods, and 

evaluation metrics, each cautiously considered to validate the 

system's proficiencies. For virtual reality testing, CARLA 

0.9.14 [20] is an open-source autonomous driving simulator 

that offers high-fidelity built-up surroundings with active 

weather and lighting situations. The robust simulator's sensor 

models enable the creation of various testing situations, 

starting from routine driving circumstances to complex edge 

cases. The simulation surroundings were further enriched 

with variable weather patterns, including rain, fog, and 

nighttime conditions, to calculate the system's performance 

under hostile conditions. 

The hardware configuration was selected to support both 

training and real-world deployment requirements. For 

training, workplaces enlightened with four NVIDIA A100 

80GB GPUs, AMD EPYC 7763 processors with 64 cores, 

512GB of DDR4 RAM, and a 20TB NVMe SSD array is used 

for effective data management. The software pile was created 

to incorporate the various mechanisms of the autonomous 

driving system. The perception module exploited VOLOv7 

implemented in PyTorch 2.1 for object detection, together 
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with a Multi-Modal Transformer enhanced through 

TensorRT 8.6 for efficient sensor fusion. The decision-

making subsystem used a Decision Transformer structure 

made on JAX 0.4.13, while DAgger used a custom Python 

hybrid architecture for optimum execution.  

The dataset is divided into three subsets: training (70%), 

validation (15%), and testing (15%). The training set contains 

a combination of standard driving scenarios, highway 

scenarios, and initial edge cases created through scripted 

agents. The validation set is used for hyperparameter tuning 

and to prevent overfitting during training, while the test set 

includes unobserved and more difficult edge-case situations 

to assess the ability of the proposed framework. To increase 

diversity, each split sustains stability across diverse driving 

situations, movement densities, and weather circumstances. 

The experimental results showed the system's performance in 

managing difficult driving situations compared to standard 

approaches, mainly in edge cases involving unexpected 

walker behavior and unfavorable weather conditions. The 

testing procedure verified the effectiveness of the distinct 

technical components and established their unified 

incorporation into an autonomous driving system capable of 

making human-made decisions in complex situations.  

V. RESULTS AND DISCUSSIONS 

Comparative analysis is a vital factor of our experimental 

endorsement. The proposed system is estimated against three 

baseline architectures: a rule-based FSM [21], a CNN 

approach based on NVIDIA's PilotNet architecture [22], and 

a modular pipeline, Apollo 7.0 [23] for decision-making 

models. These comparisons are used to measure performance 

enhancements. Fig. 3 shows the performance metrics in terms 

of success rate, intervention rate, and planning accuracy. 

 
Fig.3. Performance Metrics for decision making 

The comparative analysis graph of collision rate, route 

completion, and average intervention frequency for the FSM, 

PilotNet, Apollo 7.0, for driving performance and the 

proposed system is shown in Fig. 4. The Collision Rate 

calculates the amount of test incidents in which the 

autonomous vehicle accounts for a collision. The Route 

Completion metric signifies the percentage of the scheduled 

route that the autonomous vehicle effectively finishes, 

deprived of major letdowns. Average Intervention Frequency 

calculates how often a human proficient must intrude or take 

control during an incident due to security or performance 

matters. 

 
Fig.4 Performance Metrics for driving performance 

The comparative analysis graph, Fig. 5, shows normalized 

scores for data efficiency, edge case handling, and compute 

cost across Pure Imitation, Pure RL, and the proposed work. 

Data Efficiency mentions how efficiently a learning 

algorithm can excerpt valuable patterns or behaviors from the 

training data. Edge Case Handling assesses how well a model 

can manage unusual, risky situations. Compute Cost 

represents the computational resources needed to train and 

use the model. 

 
Fig.5 Training Paradigm Comparisons 

 

 

Fig.6. Training and validation performance: (a)Accuracy vs. Epochs, 

(b)Loss vs. Epochs. 

As shown in Fig. 6, the training loss steadily decreased, 

converging after around 25 epochs with minimal overfitting. 

The validation accuracy spiked at 91%, while training 

accuracy reached 95%, indicating good generalization. The 

use of DAgger corrections helped reduce validation loss 

spikes, which are typically caused by covariate shifts. 

VI. CONCLUSION 

The proposed work presents a robust and adaptive 

decision-making framework for autonomous vehicles that 

incorporates VOLOv7-based perception, multimodal 

transformers for context fusion, and a hybrid policy 

architecture combining DAgger, Decision Transformer, and 

ensemble learning. Complete wide sets of experiments are 

done using both the Waymo Open Dataset and CARLA 

simulations. The proposed system proves higher performance 
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across key metrics such as collision rate, route completion, 

and intervention frequency, considerably outclassing 

conventional rule-based and deep learning baselines. By 

imitating human-like perception and enabling an overview of 

unseen situations, the proposed approach provides an 

auspicious step toward safety, consistency, and smart 

independence in difficult real-world situations. 
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