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While Parkinson’s disease (PD) is typically characterized by motor disorder, there is also evidence of 
diminished emotion perception in PD patients. This study examines the utility of electroencephalography 
(EEG) signals to understand emotional differences between PD and healthy controls (HCs), and for 
automated PD detection. Employing traditional machine learning and deep learning methods on multiple 
EEG descriptors, we explore (a) dimensional and categorical emotion recognition and (b) PD versus HC 
classification from multiple descriptors characterizing emotional EEG signals. Our results reveal that 
PD patients comprehend arousal better than valence and, among emotion categories, fear, disgust, and 
surprise less accurately, and sadness most accurately. Mislabeling analyses confirm confounds among 
opposite-valence emotions for PD data. Emotional EEG responses also achieve near-perfect PD versus 
HC recognition. Cumulatively, our study demonstrates that (a) examining implicit responses alone 
enables (i) discovery of valence-related impairments in PD patients and (ii) differentiation of PD from 
HC and that (b) emotional EEG analysis is an ecologically valid, effective, practical, and sustainable tool 
for PD diagnosis vis-à-vis self-reports, expert assessments, and resting-state analysis.

Introduction

   Parkinson’s disease (PD) is a neurodegenerative disorder of the 
central nervous system that affects movements, often causing 
tremors. PD is characterized by the progressive loss of dopami-
nergic neurons in the substantia nigra [  1 ]. In addition to motor 
dysfunctions, cognitive, behavioral, and emotional defects are 
common in PD [  2 ], affecting over 10 million people globally [  3 ].

   A number of studies have examined motor and cognitive 
impairments in PD patients by examining explicit user responses 
(e.g., performance in recognition tasks and self-reports) or 
implicit responses such as electroencephalography (EEG) sig-
nals [  4 ]. Some works detect PD from abnormalities in resting-
state EEG [  5 ,  6 ]. Resting-state EEG is acquired in a highly 
controlled setting, e.g., requiring the subject to remain motion-
less with eyes closed in a dim and quiet room, which makes this 
setting ecologically invalid. A more realistic setting involves 
EEG acquisition during routine tasks such as music listening 
[  7 ] or movie watching [  8 ].

   As movie and musical stimuli are often emotion eliciting [  9 ], 
they enable researchers to understand how PD patients perceive 

emotions. Apart from specific emotions, some studies focus on 
PD perception of the valence (feeling of pleasantness/aversion) 
and arousal (emotional intensity) dimensions [  10 ]. Prior studies 
show that PD patients have a deficit in recognizing positive and 
negative valence emotions from prosody [  11 ] and facial expres-
sions [  12 ], and reduced reactivity to highly arousing pictures 
[  13 ]. Recognizing emotions is critical to social interaction and 
communication, apart from inferring nonverbal behavior such 
as emotional voice and facial expressions [  14 ,  15 ].

   Implicit physiological and biological signals reflect the char-
acteristic activity of the central nervous system and cannot 
be intentionally suppressed. Recent studies have extensively 
employed biosignals [  16 ,  17 ] for emotion perception in healthy 
subjects. EEG, functional magnetic resonance imaging (fMRI), 
magnetoencephalography (MEG), and positron emission tomo
graphy (PET) provide more reliable information on emotional 
states compared to other modalities [  18 ]. EEG is noninvasive, 
has high temporal resolution, and can detect changes in brain 
activity over a span of milliseconds. EEG frequency bands are 
known to correlate with emotions [  19 ]. Hand-coded EEG 
descriptors such as spectral power vectors (SPVs) enable emotion 
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detection, while convolutional neural networks (CNNs) can auto-
matically learn cognitive and emotional correlates [ 17 ,  20 ].

   This study examines EEG-based PD emotion perception 
via a comparative analysis of data acquired from PD patients 
vis-à-vis healthy controls (HCs). We explore both low-level 
EEG descriptors such as SPVs and common spatial patterns 
(CSPs), and the intermediate EEG image and movie repre-
sentations [ 20 ] to this end. SPVs represent the power distribu-
tion across different frequency bands, while CSPs are popular 
descriptors for maximizing interclass discriminability [  21 ]. 
EEG image descriptors are synthesized via topomaps captur-
ing both spectral and spatial activity, whereas the EEG movie 
descriptor additionally captures temporal activity trends. We 
employ classical machine learning (ML) and deep learning 
frameworks such as 1D-, 2D-, and 3D-CNNs for emotion 
decoding. As shown in Fig.  1 , we perform categorical and 
dimensional emotion recognition (binary valence and arousal 
classification) and PD versus HC recognition from EEG data.        

   The key findings from our study are as follows: (a) Dimensional 
analysis reveals that arousal is better perceived in PD than 
valence; similar or superior classification is achieved with HC 
data for both attributes. (b) Fine-grained analyses of emotion 
class mislabeling reveal confounds among opposite-valence 
emotions for PD data; this trend is not discernible for HC. 
(c) Near-ceiling PD versus HC classification (F1 ≥ 0.97) is achieved 
with a 2D-CNN on emotional EEG data, implying that affective 
neural responses of PD and HC subjects are highly discrim-
inable. Analyzing emotional neural responses can, therefore, 
enable facile PD diagnosis and treatment. Our study makes the 
following contributions:

   • It examines (a) PD versus HC recognition and (b) emotion 
perception in PD exclusively from EEG classification trends. 
While resting-state EEG analysis has achieved high PD recogni-
tion accuracy [ 6 ,  22 ], it requires EEG acquisition in a highly 
controlled setting. In contrast, we examine EEG signals acquired 
during the routine task of emotional media viewing, which addi-
tionally enables PD emotion understanding.

   • PD diagnosis and treatment heavily rely on patient self-
reports and expert assessments. While the importance of pre-
clinical diagnosis and the need for objective monitoring with 
wearables [  23 ] has been highlighted recently, high PD versus 
HC discriminability achieved with passive data acquisition dur-
ing a routine task points to a promising alternative.

   • We employ multiple (a) EEG descriptors and (b) machine 
and deep learning recognition frameworks for analyses. Among 
the EEG descriptors, CSPs and SPVs are optimal for emotion 
and PD recognition, respectively. CNN frameworks trained 
with intermediate EEG image and movie descriptors, however, 
achieve superior emotion and PD recognition performance.

   To highlight the novelty of our study, we review related work 
on (a) emotional impairments in PD patients and (b) the use 
of biosignals to assess emotional impairments.  

Emotional impairments in PD patients
   PD patients show not only motor symptoms but also cognitive 
[  24 ] and emotional [  25 ] deficits. Kan et al. [  26 ] report PD defi-
cits in recognizing the fear and disgust facial emotions. Clark 
et al. [ 12 ] note impaired anger recognition in PD patients with 
left hemisphere pathology and reduced surprise recognition 
with right hemisphere pathology. Baggio et al. [  27 ] observe 
PD deficits in recognizing sadness, anger, and disgust, while 
Narme et al. [  28 ] note impaired recognition of anger and fear. 
A meta- analysis indicates an initial PD deficit for negative 
emotions [ 25 ] and later for positive emotions [  29 ]. Some stud-
ies employ nonvisual stimuli, e.g., auditory and verbal, to assess 
PD emotion deficits. In an emotional voice test [  30 ], PD 
patients in general exhibit impaired recognition and expres-
sion. Kan et al. [ 26 ] observe reduced recognition of fear, sur-
prise, and disgust from text.   

Using biosignals to assess impairments
   Emotion is a psychophysiological expression related to external 
stimuli, mood, and personality [ 9 , 16 ]. Wearable sensing tech-
nologies can help examine biosignals and interpret associated 
emotions. Various physiological signals (or biosignals) such as 
EEG, MEG, fMRI, facial (micro)expressions, eye movements, 
electrodermal activity, and heart rate have been employed to 
study emotions induced by stimuli, such as facial imagery [  31 ], 
audiovisual music and movie clips [ 9 , 16 ], and advertisements 
[ 17 ], or impairments thereof.

   fMRI brain activations reveal stronger activation in somato-
sensory regions during emotion processing for PD patients 
[  32 ]. fMRI analyses show reduced functional activity in the 
left and right posterior putamen [  33 ], disturbing emotional 
processing. Spontaneous facial expressivity in PD observed via 
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Fig. 1. Overview of our pipeline. EEG preprocessing and extraction of low-level features such as SPVs and CSPs is followed by feeding of these features or intermediate EEG 
image/movie representations to machine and deep learning frameworks to perform dimensional and discrete emotion recognition, and PD versus HC classification (HV and 
LV refer to high and low valence, while HA and LA refer to high and low arousal). Emotions belonging to each category are described in the “Valence classification” section.
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electromyogram (EMG) and electrocardiogram (ECG) signals 
reveal differences between PD patients and controls [  34 ]. A 
neuroimaging study involving fearful faces notes that dopa-
mine levels modulate the amygdala’s response in PD [  35 ], and 
amygdala dysfunction induces impaired reactions to fear-
inducing stimuli.

   CNNs have been employed for EEG-based seizure predic-
tion [  36 ], fMRI-based schizophrenia detection [  37 ], etc. Deep 
learning methods learn salient and latent neural representa-
tions [  38 ]. EEG-based categorical emotion recognition in PD 
patients has been pursued via higher-order spectral statistics 
[ 8 ,  39 –  41 ]. PD recognition via spectral analysis of resting-state 
EEG has been performed with k-nearest neighbor (kNN) and 
support vector machine (SVM) classifiers [ 22 ]. A 13-layer 
1D-CNN for PD versus HC classification with resting-state EEG 
has been proposed in [ 6 ]. Binary PD versus HC EEG classifica-
tion using a convolution recurrent neural network (CRNN) has 
been proposed in [  42 ].   

Identifying research gaps
   While it is largely known that PD patients face emotional defi-
cits, only a few studies examine these deficits via implicitly 
acquired biosignals, such as EEG. Moreover, prior studies on 
automated PD diagnosis have only examined resting-state EEG, 
but not emotional EEG signals. Emotional EEG signals can be 
(a) acquired via easy-to-use, portable headsets under routine 
settings and (b) utilized for PD recognition plus studying PD 
emotion deficits as described in this work. Table  1  compares 
and contrasts our work against the literature; evidently, our 
approach achieves optimal PD recognition with ecologically 
valid data, thus differs from prior work on resting-state and 
emotional EEG.     

Materials and Methods

Dataset
   The dataset comprises EEG signals from 20 nondemented PD 
(10 male/10 female) and 20 HC (9 male/11 female) subjects 
from Hospital Universiti Kebangsaan Malaysia, Kuala Lumpur, 
upon ethics approval (approval no. UKM1.5.3.5/244/FF-354-
2012) [ 39 , 41 ]. The demographic and PD severity of the patients 
are included in Table S1. EEG data were recorded via the 
14- channel wireless Emotiv Epoc headset (128-Hz sampling 
rate). Audiovisual stimuli were used to induce the 6 Ekman emo-
tions (sadness, happiness, fear, disgust, surprise, and anger), 
resulting in a total of 1,440 samples (2 classes × 20 subjects × 
6 emotions × 6 trials/emotion). The emotional stimuli were 
gathered from video clips collected from various sources on 
the internet, the International Affective Picture System (IAPS) 
[  43 ] database, and the International Affective Digitized 
Sounds (IADS) [  44 ] database. The IAPS, designed for studies on 
emotion, is a database comprising 956 pictures of everyday 
objects and scenes (e.g., household furniture). The IADS database 
comprises 935 digitally recorded sounds from daily life (e.g., 
footsteps and babies crying). The pictures and the sounds in the 
IAPS and IADS databases are annotated for valence and arousal, 
respectively. The stimuli employed for this study were synthe-
sized from these 2 databases. A pair of stimuli with identical 
parity of valence and arousal was combined and presented 
to the participant. For example, a negative-high aroused sound 
was given along with a negative-high aroused image [  40 ]. Each 
trial (stimulus episode) lasted 4 to 5 min. PD patients were 

optimally medicated to reduce tremors, and informed consent 
was obtained from all participants. Data acquisition, PD 
clinical history, ethics approval, and PD inclusion and exclu-
sion criteria are described in [ 8 , 39 ].   

Data preprocessing
   EEG outlier samples were discarded by limiting the signal 
amplitude to 85 μV, followed by an infinite impulse response 
(IIR) bandpass Butterworth filter to retain the 8- to 49-Hz 
range [ 8 ]. We consider 8 to 49 Hz as the frequency range in 
this study as the α (8 to 13 Hz), β (13 to 30 Hz), and γ (30 
to 49 Hz) spectral bands play an important role in emotion-
related activities, as compared to the δ (1 to 4 Hz) and θ (4 
to 8 Hz) bands [ 40 ]. Additionally, the β band activity (which 
increases in the basal ganglia and decreases in the motor 
cortex) is observed to contribute greatly to motor symptoms 
in PD [  45 ].

   Each filtered EEG signal, recorded for 40 to 50 s [ 8 , 39 ], was 
segmented into 5 s epochs to preserve temporal information 
following [  46 ], resulting in 8 to 10 segments per recording. This 
process resulted in an average of 9.16 segments for 1,440 sam-
ples, leading to a total of 13,193 samples for feature extraction. 
Each of these samples, termed as raw data henceforth, are of 
dimension (14, 640). For classical ML methods, raw features 
were z-normalized followed by principal components analysis 
(PCA) to retain 95% data variance (PCA was not part of the 
CNN pipeline).   

Feature extraction from raw EEG
Spectral power vector
   Power spectral analysis was performed to estimate EEG spectral 
density upon spectral transformation [  47 ]. On each epoch, a 
Butterworth bandpass filter was applied to extract the α (8 to 
13 Hz), β (13 to 30 Hz), and γ (30 to 49 Hz) spectral bands. A 
fast Fourier transform (FFT) was performed, followed by sum-
mation of squared FFT values within each of the 3 frequency 
bands over the 14 electrodes to obtain the concatenated SPV 
[α 1, β 1, γ 1, ..., α 14, β 14, γ 14]. Thus, each raw EEG sample of dimen-
sion (14, 640) was transformed to (1, 42).   

Common spatial patterns
   CSPs were extracted by learning a linear combination of the 
original features [  48 ]. Filters (transformations) were designed 
so that the transformed signal variance was maximal for one 
class and minimal for the other. Apart from dimensionality 
reduction, CSPs enable recovery of the original signal by gath-
ering relevant information spread over multiple channels and 
are, hence, popular EEG features [ 47 ]. We learn the spatial 
transform w, which maximizes the function:
﻿﻿   

   where Ci﻿ and Xi﻿ are, respectively, the spatial covariance matrix 
and the bandpass-filtered signal matrix for class i. In  Eq. 1 , wXi﻿ 
is the spatially filtered EEG signal for class i and ﻿wXiX

T
i
wT    is 

the transformed signal variance, i.e., the band power of the fil-
tered signal. Thus, maximizing JCSP﻿(w) leads to spatially filtered 
signals whose interclass band power ratio is maximal, and can 
be solved via eigenvalue decomposition. The spatial filters w that 

(1)JCSP(w) =
wX1X

T
1
wT

wX2X
T
2
wT
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wC1w

T

wC2w
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Table 1. Overview of studies examining PD behavior and automated PD detection

Behavior studied References Year Description Findings Remarks

 Implicit [66] 1995  PD and HC subjects presented 
with emotional faces, and asked 
to pose those expressions.

 PD patients were impaired 
relative to controls on 
making emotional faces.

 Purely behavioral study, 
automated PD detection 
not attempted.

 Explicit + Implicit [62] 1996  PD and HC subjects shown 
emotional video clips and their 
emotional reactions encoded via 
Facial Action Coding System. 
Emotional self-ratings compiled.

 PD group showed 
considerably less facial 
activity than controls.

 Purely behavioral study, 
automated PD detection 
not attempted.

 Implicit [67] 2003  PD and HC subjects presented 
with odors and their emotional 
reactions encoded via Facial 
Action Coding System.

 Spontaneous facial 
activity, ability to pose and 
mask facial expressions 
impaired in PD.

 Purely behavioral study, 
automated PD detection 
not attempted.

 Explicit + Implicit [13] 2009  24 PD and 24 HC subjects 
presented with emotional 
pictures, and responses acquired 
via self-ratings (explicit) and EMG 
activity (implicit).

 Reduced PD reactivity to 
low-valence, high-arousal 
pictures; behavior was not 
specific to any emotion 
category (e.g., fear and 
disgust).

 Behavioral study with 
no automated PD 
detection.

 Explicit [11] 2010  PD and HC subjects presented 
with videos or text and asked to 
label the stimulus emotion. 
Emotion recognition compared 
via standardized tests across the 
lexical-semantic, prosody, and 
facial information channels.

 PD emotion recognition 
capability increased with 
more channels, but PD 
group performed worse 
than controls across all 
channels.

 Behavioral study with 
no automated PD 
detection.

 Implicit  
(emotional EEG)

[58] 2014  PD versus HC recognition via 
emotional EEG analysis with SVM 
classification. Dataset proposed 
in [ 39 ] examined.

 Mean accuracy of 87.9% 
achieved.

 Routine and ecologically 
valid setting. Only PD 
versus HC classification 
attempted.

 Implicit (rest-state 
EEG)

[6,22] 2019, 
2020

 PD versus HC recognition via 
resting-state EEG analysis using 
ML [ 22 ] and deep learning [ 6 ] 
approaches. Dataset proposed in 
[ 22 ] examined.

 Mean recognition 
accuracy of 99.1% 
achieved with SVM [ 22 ], 
and 88.3% achieved with 
1D-CNN [ 6 ].

 Resting-state EEG 
compiled under highly 
controlled conditions, 
ecologically invalid.

 Implicit  
(emotional EEG)

[68] 2022  Categorical emotion detection in 
PD and HC via emotional EEG 
analysis with a convolutional 
recurrent neural network. Dataset 
proposed in [ 39 ] and 2 other 
publicly available datasets 
examined.

 Mean categorical emotion 
recognition accuracy of 
83.2% achieved for PD 
data, and 86.0% achieved 
for HC data.

 Routine and ecologically 
valid setting. Only 
emotion classification in 
PD and HC attempted.

 Implicit  
(emotional EEG)

Our work ﻿  Dimensional and categorical 
emotion plus PD recognition via 
machine and deep learning 
approaches. Dataset in [ 39 ] 
examined.

 Valence-specific mislabel-
ing observed with PD data, 
while no arousal-related 
differences noted between 
PD and HC groups. 
Maximum accuracy/F1 
scores of 93%, 98%, and 
99% achieved for valence, 
arousal, and PD recogni-
tion, respectively.

 PD and emotion EEG 
recognition with 
multiple classification 
methods. PD recogni-
tion higher accuracy 
with emotional EEG and 
comparable to prior 
work with resting-state 
EEG.

D
ow

nloaded from
 https://spj.science.org on A

ugust 28, 2025

https://doi.org/10.34133/icomputing.0084


Parameshwara et al. 2024 | https://doi.org/10.34133/icomputing.0084 5

maximize JCSP﻿(w) are the eigenvectors of the highest and lowest 
eigenvalues for matrices C 1, C 2. Hence, w gives feature vectors 
that are optimal for class discrimination. For each class i, the 
variances of only a small number of signals most suitable for 
distinguishing are used. Six filters corresponding to the 3 largest 
and smallest eigenvalues are used for generating the CSP feature 
of dimension (1, 6) for each (14, 640) EEG epoch, given by

﻿﻿   

   It is shown that the classification accuracy does not improve 
with a larger number of filters [  49 ].    

Classical ML algorithms
   Raw EEG data or extracted features were input to machine/
deep learning classifiers (Fig.  1 ). We explore the following ML 
algorithms for classification.

   • kNN, where the test sample is assigned the label corre-
sponding to the mode of its k-closest neighbors based on a 
suitable distance metric [  50 ].

   • SVM, where input data are transformed to a high-dimensional 
space where the 2 classes are linearly separable and the interclass 
distance is maximal [  51 ].

   • Gaussian naive Bayes (GNB), a generative classifier assum-
ing class-conditional feature independence [  52 ].

   • Decision tree (DT), which uses a tree-like graph structure 
where each leaf node represents a category label [  53 ].

   • Linear discriminant analysis (LDA), which linearly trans-
forms data to achieve maximal interclass distance [  54 ].

   • Logistic regression (LR), which maps the input to class 
labels via the sigmoid function [  55 ].

   Model parameters are fine-tuned via grid search, upon per-
forming 10-fold cross-validation (10FCV) on the training set. 
Table  2  presents the range of parameters explored for each ML 
algorithm.    

Convolutional neural network pipeline
   We explored 1D-, 2D-, and 3D-CNNs to learn EEG representa-
tions. Raw or extracted EEG features were fed to the 1D-CNN; 

the feature dimensions input to the 1D-CNN with raw, spectral, 
and CSP descriptors were (640, 14), 42, and 6, respectively. 
However, this representation ignores the EEG spatial structure; 
therefore, we synthesized the EEG image and EEG movie 
descriptors to preserve the spatial structure.

   Extracted SPVs were transformed to an EEG image as in [ 20 ]. 
EEG electrodes distributed on the scalp in 3D were projected 
onto a 2D surface to capture the spatial activity distribution. 
Azimuthal equidistant projection was used to preserve the rela-
tive interelectrode distance. Scattered scalp power measurements 
were interpolated to derive a 32 × 32 pixel EEG image. Repeating 
this process for the α, β, and γ bands produced 3 topo-maps, 
which were then merged to form a 3-channel (32 × 32 × 3) EEG 
image [ 20 ]. To learn the temporal EEG structure, given that 
3D-CNNs effectively learn from video chunks [  56 ], we synthe-
sized EEG movie samples comprising 5 images generated by 
sliding nonoverlapping 1 s windows over the 5 s epoch. The 
3D-CNN input dimensionality is 5 × 32 × 32 × 3.

   With the recent success of CNNs for PD diagnosis, we exploit 
an architecture inspired by [ 6 ] for 1D, 2D, and 3D data. The 
general architecture of the 3-layered 1D/2D/3D-CNN employed 

(2)f = log
(

wC2w
T
)

= log
(

var
(

wX2

))

.

Table 2. Parameters and their ranges considered for grid search optimization

Algorithm Parameters Values

 kNN  Number of neighbors  2, 3, ⋯, 10

﻿  Distance metric  Euclidean, Chebychev, Minkowski

﻿  Weight function  Uniform weight function, distance weight function

 SVM  Regularization parameter (C)  10−3, 10−2, ⋯, 103﻿

 GNB  Variance smoothing factor  10−3, 10−2, ⋯, 103﻿

 DT  Maximum depth of the tree  Evenly spaced 50 numbers in the log-scale [10−2, 10]

﻿  Function to measure the quality of the split  Gini impurity, entropy

 LDA  Solver  Singular value decomposition, least squares solution, eigenvalue 
decomposition

 LR  Norm for the penalty ﻿l 2, No penalty

﻿  Inverse of the regularization strength (C)  10−2, 10−1, ⋯, 103﻿

Convolution
layer-2Input Convolution

layer-3
Convolution
layer-1

Average
pooling-1

Average
pooling-2 Softmax

Fully
connected

Average
pooling-3

Fig. 2. Basic architecture of the 1D/2D/3D-CNN.
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for classification is shown in Fig.  2 . Output dimensions for each 
CNN layer are presented in Table  3 . Three convolutional layers 
convolve the input signal with a stride of 3 and comprise 16, 32, 
and 32 filters of size 3, 3 × 3, and 3 × 3 × 3, respectively. Each 
convolutional layer is followed by average pooling over 2-unit 
regions. Batch normalization is applied to normalize prior acti-
vations, and a dropout of 0.1 to 0.5 is employed for regulariza-
tion. The dense layer comprises 128 neurons and is followed by 
a softmax layer composed of 2 neurons (for dimensional emo-
tion and PD versus HC classification) or 6 neurons (for categori-
cal emotion recognition) conveying class probabilities. CNN 
hyperparameters (learning rate ∈[10−5, …, 10−1], optimizer 
∈{SGD, Adam, RMSPropogation}, and dropout rate) were tuned 
via 10FCV identical to the ML models.The code is available 
online at  https://github.com/ravikiranrao/EEG-Parkinson .            

Performance evaluation
   For all results, we report the weighted F1 measure or the weighted 
mean of the per-class F1 scores, which accounts for the class 
imbalance noted in valence and arousal classification.    

Results and Discussion
   This section details classification results on PD and HC data 
for the valence and arousal dimensions [ 10 ] (val_results, asl_
results), followed by categorical emotion (multi_results), and 
PD versus HC recognition (pdnc_results).  

Valence classification
   To examine emotional perception in PD, we first perform valence 
classification by training binary classifiers with (a) PD, (b) HC, and 
(c) combined PD and HC, or full EEG data. Happiness and surprise 
are categorized as high valence (HV), while sadness, fear, disgust, 
and anger data are grouped in the low valence (LV) category. The 
HV:LV class ratio within PD, HC, and the full data is 1:2.

   Valence classification results on PD, HC, and the full data 
for various models are presented in Table  4 . Higher F1 scores 
were achieved with HC data, implying reduced discriminability 
with PD EEG data. We discuss the results below. The valence 
classification results of all ML algorithms on PD, HC, and full 
data are shown in Table S2.   

Classification with PD data
   The impact of descriptors on the efficacy of ML techniques is 
evident from Table  4 . A one-way analysis of variance (ANOVA) 
to examine the effect of features (Raw, SPV, and CSP) on F1 
scores confirms the impact of descriptor type (F(2, 27) = 
969.05, P < 0.0001). Comparing F1 scores from 10 classifier 
runs, post hoc Tukey tests reveal significant differences between 
the predictive powers of SPV versus CSP (P < 0.001), CSP ver-
sus Raw (P < 0.001), and SPV versus Raw features (P < 0.001). 
Maximum F1 scores were achieved with CSPs, while only close-
to-chance classification performance is achieved with raw 
features.

   Higher F1 scores were observed with the 1D-CNN for all 
features, revealing the superior learning ability of CNNs. A 
one-way ANOVA reveals the minimal impact of different fea-
tures on 1D-CNN performance, even as CSP features achieve 
the highest F1 (0.86). The 2D- and 3D-CNNs achieve even 
higher F1 scores, conveying that the EEG image and movie 
representations are most effective for valence prediction. The 
3D-CNN achieves the highest F1 score (0.91).

   Figure  3 A presents model sensitivity and specificity with PD 
data. Sensitivity denotes the true positive rate or proportion of 
HV samples classified correctly, while Specificity denotes the 
true negative rate or the proportion of correctly classified LV 
samples. For ML algorithms, a significantly higher mean speci-
ficity (0.94) is observed than sensitivity (0.67). A similar trend 
is observed for the 1D- and 2D-CNNs, with much higher speci-
ficity scores noted in both cases. Comparable mean specificity 
(0.95) and sensitivity (0.85) scores are noted, however, with 
the 3D-CNN. Overall, these trends convey reduced positive 
valence recognition with PD data.           

Classification using HC data
   F1 scores similar to or higher than PD are obtained on HC data 
for all features and methods (Table  4 ). The impact of features 
on ML performance is confirmed by an ANOVA test (F(2, 27) = 
1382.90, P < 0.0001), with CSP features outperforming SPV 
and Raw features. Higher F1 scores are noted with the 1D-CNN, 
with all features performing similarly. The 2D- and 3D-CNNs 
perform better than the 1D-CNN, with the 3D-CNN achiev-
ing the best mean F1 score (0.93).   

Table 3. Output dimensions of each layer in 1D-, 2D-, and 3D-CNN

Layer

1D-CNN

2D-CNN 3D-CNNSpectral CSP Raw

 Convolution layer-1 42, 16 6, 16 640, 16 32, 32, 16 5, 32, 32, 16

 Average pooling-1 21, 16 3, 16 320, 16 16, 16, 16 3, 16, 16, 16

 Convolution layer-2 21, 32 3, 32 320, 32 16, 16, 32 3, 16, 16, 32

 Average pooling-2 11, 32 2, 32 160, 32 8, 8, 32 2, 8, 8, 32

 Convolution layer-3 11, 32 2, 32 160, 32 8, 8, 32 2, 8, 8, 32

 Average pooling-3 6, 32 1, 32 80, 32 4, 4, 32 1, 4, 4, 32

 Flatten 192 32 2,560 512 512

 Batch normalization 192 32 2,560 512 512

 Fully connected 128 128 128 128 128

 Softmax 2 or 6 2 or 6 2 or 6 2 or 6 2 or 6
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PD versus HC F1 comparison
   Figure  3 B compares the valence F1 scores obtained with PD and 
HC data over all models, with CSP scores plotted for the ML 
and 1D-CNN methods. While identical scores were achieved 
on PD and HC data employing ML methods, marginally higher 
F1 scores were noted on the HC data for the 1D-, 2D-, and 
3D-CNNs. Overall, better classification is achieved with the HC 
rather than the PD data. Figure  3 C compares sensitivity for the 
PD and HC data across models. With ML algorithms, the sen-
sitivity on PD data (0.67) is significantly lower than on HC data 
(0.73) as per a t test (t(18) = 5.39, P < 0.0001). Lower sensitivity 
scores are again noted on PD data with the 1D-, 2D-, and 
3D-CNNs even if the differences are insignificant. Cumulatively, 
our result trends reveal lower valence recognition sensitivity to 
PD EEG data.    

Arousal classification
   To examine arousal perception in PD, we grouped the anger, 
disgust, fear, happiness, and surprise data in the high arousal 
(HA) category, and samples labeled sadness as constituting the 
low arousal (LA) category as in the circumplex model [ 10 ]. The 
HA:LA class ratio within PD, HC, and full data is, thus, 5:1.

   Table  4  also presents arousal classification results with full, 
PD, and HC data. Evidently, similar F1 scores were achieved 
for these subsets. We again compare PD versus HC results. The 
arousal classification results of all ML algorithms on PD, HC, 
and full data are shown in Table S3.  

Classification using PD data
   The impact of the descriptors on ML classification perfor-
mance is confirmed by a one-way ANOVA (F(2, 27) = 1332.94, 
﻿P < 0.0001). Raw features performed worst (F1 = 0.76), while 
CSP features achieved optimal arousal prediction (F1 = 0.93). 
Significant F1 score differences were noted via a Tukey test for 
CSP versus SPV (P < 0.005), CSP versus Raw (P < 0.001), and 
SPV versus Raw (P < 0.001). Higher F1 scores were obtained for 
the 1D-CNN with spectral features performing best, even if the 
differences among descriptors were not significant. The 2D- and 
3D-CNN models achieved an identical, near-ceiling F1 of 0.98.

   Figure  4 A presents specificity (LA classification rates) and sen-
sitivity (HA classification rate) scores for the PD data. Significantly 
higher sensitivity (0.97) than specificity (0.76) was observed for 
the ML algorithms (P < 0.0001). This trend repeated for the 
1D-CNN (P < 0.0001) and 3D-CNN (sensitivity = 0.98 > speci-
ficity = 0.91 with P < 0.01), while comparable measures were 
achieved for the 2D-CNN. Overall, higher sensitivity than speci-
ficity was achieved on PD data with the different models.           

Classification using HC data
   CSP features produced a maximum F1 score of 0.93 with ML 
methods on HC data. The 1D-CNN achieved a higher F1 of 0.95 
with CSP features, but all features performed comparably. F1 
scores of 0.94 and 0.97 were achieved with the 2D- and the 
3D-CNN, respectively, revealing that the spectral EEG image and 
movie descriptors effectively encode emotion information.   

PD versus HC F1 score comparison
   The F1 scores achieved with PD and HC data are presented in 
Fig.  4 B, with CSP results shown for the ML and 1D-CNN meth-
ods. Very similar F1 scores were found on PD and HC data for 
ML algorithms. The 1D-CNN achieved a much higher score 
with HC data (P < 0.0001), while the trend reversed for the 
2D-CNN (PD F1 = 0.98 > HC F1 = 0.94, with P < 0.05). 
Similar F1 scores with PD and HC data were again noted for 
the 3D-CNN. Overall, result trends point to the lack of differ-
ences between EEG embeddings of the PD and HC cohorts 
with respect to arousal.    

Categorical emotion classification
   Since reduced HV-LV discriminability was noted in the PD 
patients, we explored categorical emotion recognition and the 
nature of misclassifications with PD versus HC data. A uniform 
distribution of 240 samples/emotion is available in this setting.

   Multiclass emotion classification results across models with 
full, PD, and HC data are shown in Table  4 . An equal number of 
samples were available for the sadness, happiness, fear, disgust, 
surprise, and anger emotion classes for both PD and HC subjects. 
F1 scores averaged over all emotion classes are shown. For most 

Table 4. Affect classification. F1 scores are of the form μ ± σ. The best results among all ML algorithms are reported in the ML column, 
corresponding to kNN and GNB (denoted using *).

Affect Data

ML 1D-CNN

2D-CNN 3D-CNNSPV CSP Raw SPV CSP Raw

 Valence  Full 0.78 ± 0.01 0.81 ± 0.01 0.55 ± 0.01 0.85 ± 0.01 0.82 ± 0.02 0.88 ± 0.11 0.89 ± 0.06 0.91 ± 0.05

﻿  PD 0.75 ± 0.02 0.84 ± 0.01 0.55 ± 0.01 0.82 ± 0.09 0.86 ± 0.03 0.75 ± 0.17 0.86 ± 0.07 0.91 ± 0.07

﻿  HC 0.81 ± 0.02 0.84 ± 0.01 0.56 ± 0.01 0.85 ± 0.08 0.88 ± 0.04 0.90 ± 0.11 0.91 ± 0.07 0.93 ± 0.05

 Arousal  Full 0.92 ± 0.01 0.93 ± 0.00 0.76 ± 0.00* 0.95 ± 0.03 0.92 ± 0.01 0.95 ± 0.07 0.97 ± 0.02 0.97 ± 0.02

﻿  PD 0.92 ± 0.01 0.93 ± 0.01 0.76 ± 0.00 0.96 ± 0.03 0.92 ± 0.02 0.94 ± 0.06 0.98 ± 0.02 0.98 ± 0.03

﻿  HC 0.91 ± 0.01 0.94 ± 0.01 0.76 ± 0.00* 0.91 ± 0.05 0.95 ± 0.01 0.94 ± 0.07 0.94 ± 0.03 0.97 ± 0.02

 Categorical 
emotions

 Full 0.64 ± 0.01 0.72 ± 0.01 0.18 ± 0.01 0.76 ± 0.10 0.69 ± 0.02 0.77 ± 0.22 0.82 ± 0.09 0.83 ± 0.09

﻿  PD 0.62 ± 0.02 0.76 ± 0.01 0.17 ± 0.01* 0.77 ± 0.08 0.80 ± 0.05 0.81 ± 0.21 0.84 ± 0.10 0.88 ± 0.09

﻿  HC 0.68 ± 0.02 0.74 ± 0.02 0.20 ± 0.01 0.76 ± 0.09 0.76 ± 0.03 0.78 ± 0.22 0.86 ± 0.08 0.90 ± 0.07
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conditions, the highest scores were achieved with HC data, while 
the lowest scores were achieved with full data. The multiclass 
emotion classification results of all ML algorithms on PD, HC, 
and full data are shown in Table S4.  

Classification with PD data
   As with valence and arousal, EEG features significantly impacted 
ML performance as per a one-way ANOVA (F(2, 27) = 4113.91, 
﻿P < 0.0001). CSP features produced the best F1 score (0.76), 

A B

C

Fig. 3. Binary valence classification. (A) Sensitivity and specificity with PD data across various models. (B) F1 scores with PD and HC data across various models. (C) Sensitivity 
on PD and HC data across various models. Error bars denote standard error of mean (SEM). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, and ns P > 0.05 as per a 
Tukey honestly significant difference (HSD) test.

A B

Fig. 4. Binary arousal classification. (A) Sensitivity and specificity with PD data across models. (B) F1 on PD and HC data across models. Error bars denote SEM. ****, ***, 
**, *, and ns respectively imply P < 0.0001, P < 0.001, P < 0.01, P < 0.05, and P > 0.05 as per a Tukey HSD test.
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significantly outperforming SPV and Raw features (P < 0.001) 
as per post hoc Tukey tests. For the 1D-CNN, raw EEG achieved 
the best F1 score (0.81), which was marginally superior to that 
of CSP and SPV features. Higher mean F1 scores of 0.84 and 0.88 
were achieved with the 2D- and 3D-CNN, conveying accurate 
emotion recognition with PD data.

   Figure  5  depicts emotion-specific F1 scores obtained on 
the PD and HC data across models, with CSP results pre-
sented for the ML and 1D-CNN models. For the PD data, 
the ML methods produced the highest and lowest F1 scores 
for sadness (F1 = 0.81) and surprise (F1 = 0.71), respectively, 
and a significant variation in F1 scores for different emotions 
was found per one-way ANOVA (F(5, 54) = 8.68, P < 0.0001). 
A significant effect of emotions on F1 scores was also noted 
for the 1D-, 2D-, and 3D-CNNs (P < 0.05 in all cases). 
Sadness was easiest to recognize with all 3 models (F1 = 
0.87, 0.93, and 0.94 for the 1D-, 2D-, and 3D-CNN, respec-
tively), while disgust (F1 = 0.78), surprise (F1 = 0.80), and 
fear (F1 = 0.85) were recognized worst by the 1D-, 2D-, and 
3D-CNN, respectively.           

Classification with HC data
   Trends similar to those in the PD results were observed with 
the HC data. CSP features produced the highest score (F1 = 
0.74) with the ML methods, significantly outperforming SPV 
and Raw features (P < 0.001 for both comparisons). All fea-
tures performed comparably with the 1D-CNN, while the 

EEG image and movie descriptors produced mean F1 scores 
of 0.86 and 0.90, respectively, via the 2D- and 3D-CNN.   

Misclassification analyses
   Hitherto, (a) sensitivity–specificity analyses have shown lower 
recognition rates for HV emotions, and (b) emotion-specific 
results convey that surprise, disgust, and fear have often been 
confounded with other emotions. We further examined mis-
classifications with PD and HC data to discover any underlying 
patterns. Figure  6  depicts the maximum misclassification rate 
and most mispredicted label per model and emotion class. For 
instance, the first row shows that the sadness PD samples are 
often misclassified as happiness by the best-performing ML, 
1D-, 2D-, and 3D-CNN models, with the misclassification rates 
specified in brackets. For HC data (2nd row), sadness is respec-
tively mislabeled as happiness, anger, and fear. We note that:        

   • The happiness and surprise high-valence emotions are 
most commonly mislabeled as low-valence emotions, namely, 
sadness, fear, and anger for both PD and HC data. As per 
Fig.  6 , misclassification rates are slightly higher with PD than 
HC data.

   • Among low-valence emotions, sadness is consistently pre-
dicted as happiness with PD data. Conversely on HC data, sad-
ness is often confounded with other low-valence emotions such 
as fear and anger.

   • Fear and disgust are often misclassified with both PD and 
HC data. On HC data, fear is frequently confounded with 
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Fig. 5. Emotion-wise F1 scores on HC (left) and PD data (right) across models. Error bars denote the standard error of mean. ****, ***, **, *, and ns respectively imply 
P < 0.0001, P < 0.001, P < 0.01, P < 0.05, and P > 0.05 as per a Tukey HSD test.
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disgust, and disgust with fear and anger. With PD data, how-
ever, disgust is often confused with happiness and surprise, and 
fear with happiness.

   • From the above, one can infer a greater propensity to con-
found with opposite-valence emotions on PD data. Overall, 
misclassification trends results convey that valence-related dif-
ferences are not effectively encoded in PD EEG responses.    

PD versus HC classification
   The above sections reveal some differences in the emotional 
EEG characteristics of the PD and HC groups. We examined 
whether the emotional EEG responses were discriminable for 
PD versus HC classification. To this end, we attempted PD rec-
ognition from both emotion-specific and emotion-agnostic (or 
full) EEG data acquired during the routine task of audiovisual 
media consumption. Given that a balanced class distribution 
is available in this setting (an equal number of PD and HC 
samples are available as part of the full as well as emotion-
specific data), we further evaluated whether individual-specific 
rather than group-specific signatures impacted PD recognition 
performance by employing both the 10FCV and leave-one-out 
cross-validation (LOOCV) procedures on the best-performing 
2D-CNN model (see Table  5 ). 

   Emotion-agnostic and specific PD recognition results are 
presented in Table  5 . Empirical results show that accurate PD 
recognition is achieved even with limited and emotion-specific 
EEG data. Near-ceiling F1s are noted with the 2D-CNN, imply-
ing that PD and HC emotional responses are highly discrim-
inable upon learning from only a few training samples. Notably, 
excellent discriminability between PD versus HC EEG encod-
ings is confirmed by the excellent (even if marginally lower) F1 
scores achieved with the LOOCV data-split strategy, where 

subject-specific data are held out and evaluated on the trained 
model. This observation indicates that the influence of subject-
specific signatures is marginal for PD recognition from emo-
tional EEG signals. The best recognition rates with the 10FCV 
(F1 of 0.99 with sadness and fear) and LOOCV (peak F1 of 0.98 
with anger) are noted with negative valence emotions, mirroring 
prior findings concerning PD perception of negative emotions 
[ 25 , 27 , 28 ].

   Further examining sensitivity and specificity measures, bal-
anced recognition of PD and HC classes across models was 
achieved mainly for the negative disgust, fear, and sadness emo-
tions. That negative emotions best reflect PD impairments has 
been observed in prior studies [ 27 , 28 ]. Focusing on features 
and models, spectral features achieved the best results with ML 
methods. With the 1D-CNN, superior F1 scores were achieved 
with all features even if no clear trends were discernible. Similar 
to emotion recognition, the 2D-CNN again achieved optimal 
PD recognition, demonstrating that the EEG movie features 
optimally encode PD-related emotional differences.   

Discussion summary
Valence
   We examined PD valence perception, since valence is a funda-
mental emotional attribute [  57 ]. While prior studies have found 
valence-related differences between PD and HC groups via 
their explicit responses to visual [ 27 ], verbal [ 30 ], and textual 
[ 26 ] stimuli, we differently examined implicit emotional EEG 
responses to this end. As per the results in Table  4  and Fig.  3 , 
valence classification trends with multiple features and meth-
ods convey reduced performance and lower sensitivity on PD 
data in general. Therefore, PD data exhibit lower valence dis-
criminability and sensitivity.
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Fig. 6. Misclassifications on PD and HC emotion data across models. First column denotes the actual emotion, while other columns denote predicted emotion with the 
model specified on top. Upper and lower row pairs respectively denote emotions predicted with PD and HC data, and values in parentheses denote misclassification 
rates. Green and red colors are used to code positive and negative valence emotions.
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   Lower PD sensitivity is consistent with the findings in [ 29 ], 
where PD patients are found to have deficits in processing both 
positive and negative emotions. Dysfunction of the basal gan-
glia thalamocortical circuits in PD patients impairs their gen-
eral emotional valence recognition [ 2 ]. With respect to models 
and features, CNNs expectedly achieved higher F1 scores than 
ML methods (see Table  4 ), confirming that they can efficiently 
learn spatiotemporal EEG patterns. CSP features predominantly 
achieve the best scores, and their utility in EEG-based analysis 
is well known [ 48 ]. The EEG movie descriptor optimally 
encodes spatiotemporal patterns in spectral EEG.   

Arousal
   With respect to arousal, Miller et al. [ 13 ] observed muted reac-
tivity or fewer startled eye blinks from PD patients to high-
arousal, low-valence aversive pictures. Similar findings were 
reported in [ 11 , 26 ], where PD patients showed deficits in rec-
ognizing emotions from lexical, prosody, and facial cues. While 
these findings are based on implicit EMG data and/or explicit 
self-ratings, our inferences are based on EEG classification pat-
terns. Given the identical distributions for the PD and HC 
classes and corresponding F1 comparisons, our results convey 
that very comparable F1 scores are obtained for the PD and 
HC groups across models and features, conveying little differ-
ence between their EEG encodings with respect to arousal.   

Performance of models and features
   Sensitivity and specificity scores observed for PD data also 
convey an interesting trend. Given the imbalanced class pro-
portions for both the valence and arousal conditions, significant 
sensitivity versus specificity disparities are noted particularly 
for the ML and 1D-CNN models. However, these differences 
become less conspicuous for the 2D- and 3D-CNN models, 
conveying that they are able to efficiently learn minority-class 
representations. Regarding algorithms and features, F1 scores 
gradually improve while advancing from the ML algorithms 
to the 3D-CNN. CSP features perform best with ML algo-
rithms, but mixed results are observed for the 1D-CNN. The 
EEG image and movie descriptors achieve a maximum and 
identical F1 score of 0.98 for arousal, with the 3D-CNN produc-
ing the maximum F1 of 0.93 for valence, showing their efficacy 
in learning emotional EEG representations.   

Categorical emotion recognition
   We creatively examined categorical emotional classification using 
EEG data from both PD and HC participants. Prior studies on 
PD emotional perception typically examined facial expression 
recognition tasks [ 12 , 26 , 28 ] or studied physiological signals 
along with self-assessment reports to understand emotional defi-
cits [ 32 , 34 ]. These studies observe PD impairment in recognizing 
negative emotions such as sadness, fear, anger, and disgust.

   We performed categorical emotion recognition to better 
understand which emotions are recognized better/worse with PD 
and HC data. Our results in the “Classification with PD data” sec-
tion reveal that while sadness and happiness were well recognized 
with both PD and HC data, fear, disgust, and surprise were poorly 
recognized with the PD EEG data. Disturbances in the orbitofron-
tal cortex and the anterior cingulate cortex, which are active in 
negative emotion processing, can be attributed to these deficits 
[ 29 ]. We then studied the nature of misclassifications for each 
emotion class. Misclassification results in Fig.  3  show frequent 
confounds among opposite-valence emotions with PD data, indi-
cating weaker valence encodings in emotional PD EEG responses.

   With respect to features and models, the trends are consistent 
with valence and arousal classification. We generally observe a 
steady increase in emotion-specific and overall F1 scores as we 
progress from the classical ML methods to the 3D-CNN. The 
CSP and raw EEG features produce the best performance with 
the ML and 1D-CNN approaches, respectively. The 2D- and 
3D-CNN models, however, tend to achieve higher F1 scores, 
implying that spatiotemporal spectral EEG patterns best encode 
emotional information.   

PD versus HC classification
   To our knowledge, only 1 study [ 58 ] has performed PD recogni-
tion from emotional EEG signals. In it, a mean accuracy of 87.9% 
was achieved employing ML classifiers and a 10FCV data-split 
strategy (see Table  1 ). Others [ 6 , 22 ] have performed PD versus 
HC classification from resting-state EEG signals, which is an 
ecologically invalid setting requiring a highly controlled envi-
ronment for EEG acquisition. In this regard, we attempted PD 
recognition from both emotion-specific and emotion-agnostic 
(or full) EEG data acquired during the routine task of audiovi-
sual media consumption. Recent studies [  59 –  61 ] observe that 
individual-specific, rather than emotion-specific, signatures are 
utilized by ML models to achieve superior recognition on small 

Table 5. PD versus HC results. F1 scores (equals accuracy for balanced dataset) are of the form μ ± σ. Best ML results are achieved with the 
kNN and GNB classifiers. GNB results are denoted with a * symbol. Best F1 scores are shown in bold.

Data

ML 1D-CNN 2D-CNN

SPV CSP Raw SPV CSP Raw 10FCV LOOCV

 Full 0.97 ± 0.01 0.88 ± 0.01 0.66 ± 0.01 0.99 ± 0.01 0.87 ± 0.02 0.91 ± 0.07 0.99 ± 0.01 0.96 ± 0.09

 Sadness 0.97 ± 0.01 0.92 ± 0.01 0.58 ± 0.03 0.97 ± 0.02 0.94 ± 0.02 0.96 ± 0.06 0.99 ± 0.01 0.95 ± 0.12

 Happiness 0.97 ± 0.01 0.90 ± 0.02 0.59 ± 0.02* 0.91 ± 0.08 0.92 ± 0.02 0.95 ± 0.09 0.98 ± 0.02 0.97 ± 0.06

 Fear 0.96 ± 0.01 0.93 ± 0.02 0.61 ± 0.03* 0.96 ± 0.02 0.95 ± 0.02 0.89 ± 0.15 0.99 ± 0.01 0.95 ± 0.07

 Disgust 0.96 ± 0.02 0.91 ± 0.02 0.59 ± 0.01* 0.98 ± 0.03 0.93 ± 0.03 0.93 ± 0.09 0.98 ± 0.02 0.95 ± 0.14

 Surprise 0.95 ± 0.01 0.91 ± 0.03 0.60 ± 0.02* 0.92 ± 0.03 0.94 ± 0.02 0.94 ± 0.10 0.97 ± 0.03 0.94 ± 0.16

 Anger 0.96 ± 0.01 0.92 ± 0.01 0.59 ± 0.03* 0.98 ± 0.01 0.94 ± 0.03 0.87 ± 0.14 0.98 ± 0.02 0.98 ± 0.03
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datasets, and that recognition performance is adversely impacted 
when subject-independent train and test sets are used for evalu-
ation. To examine if this observation holds for PD recognition, 
we employed both the 10FCV and LOOCV data-split strategies 
to train and evaluate the best-performing 2D-CNN model.

   The empirical results presented in Table  5  show that accurate 
PD recognition is achieved even with emotion-specific EEG 
data. Near-perfect F1s are noted with the 2D-CNN, implying 
that PD and HC emotional responses are highly discriminable 
upon learning from only a few training samples. Furthermore, 
PD versus HC discriminability is not influenced by individual 
signatures as conveyed by the excellent recognition perfor-
mance achieved with the LOOCV data-split strategy, where the 
test subject data are held out from training. While the best rec-
ognition rates with the 10FCV procedure are obtained for the 
sadness and fear emotions, a peak F1 score of 0.98 is achieved 
for anger with LOOCV. The fact that maximum PD versus HC 
discriminability can be noted for negative emotions mirrors 
similar findings in [ 12 , 26 – 28 ].

   Further examining sensitivity and specificity measures, bal-
anced recognition of PD and HC classes across models was 
achieved mainly for the negative disgust, fear, and sadness 
emotions, reinforcing that negative emotions best reflect 
PD impairments [ 27 , 28 ]. Focusing on features and models, 
spectral features achieved the best results with ML methods. 
With the 1D-CNN, superior F1 scores were achieved with all 
features even if no clear trends were discernible. Similar to 
emotion recognition, 2D-CNN again achieved optimal PD 
recognition, demonstrating that the EEG movie features opti-
mally encode PD-related emotional differences.     

Conclusion
   PD patients may often have difficulty expressing their emotions 
and internal feelings in real life owing to (a) PD effects especially 
in the advanced stages of the disease and (b) the effect of associ-
ated medications. Given these limitations, an assistive and sustain-
able diagnostic tool based on noninvasive detection of emotional 
disturbances can facilitate treatment and help improve life quality 
for PD patients. While many studies identify PD-related impair-
ments based on the patients’ explicit and implicit responses 
[ 11 , 13 , 62 ], or cognitive dissimilarities based on resting-state EEG 
[ 4 , 6 , 22 ], we differently examined emotional EEG responses to 
perform both emotion and PD recognition.

   While studies examining facial behavior and resting-state EEG 
[ 4 ] typically derive their findings based on statistical patterns 
observed for the PD and HC groups, our inferences are entirely 
derived from classification patterns. Interesting trends and simi-
larities with prior work are revealed in our analyses. Dimensional 
emotion recognition experiments conveyed reduced discrim-
inability with PD EEG data, while arousal-related differences 
vis-à-vis the HC group were not apparent. Furthermore, categori-
cal emotion recognition results revealed that disgust, fear, and 
surprise were associated with low recognition rates on PD data, 
while sadness was well recognized. Mislabeling analyses showed 
frequent confounds among opposite-valence emotions with PD 
data, but not with HC data. Reduced recognition of low-valence 
emotions and confounds noted with positive emotions mirror 
with deficits noted in the perception of these emotions from pic-
torial [ 13 ] and prosodic stimuli [ 11 ].

   Given some differences in emotion perception between the PD 
and HC groups, we then examined if the PD versus HC emotional 

responses were discriminable, and if this discriminability differed 
across emotions. The empirical results revealed that differences 
were apparent for both emotion-specific and emotion-agnostic 
data, with high F1 scores achieved in all conditions. Here, again, 
the maximum recognition performance was achieved for negative 
emotions; also, very similar sensitivity and specificity rates across 
models were noted for negative emotions such as disgust, sadness, 
and fear, reinforcing that the PD versus HC encodings were most 
discriminable for these emotions.

   With respect to features and models, CSPs considerably out-
performed spectral features with ML models for emotion recog-
nition. Conversely, spectral descriptors outperformed CSPs for 
PD versus HC classification. The efficacy of spectral features for 
isolating PD characteristics has been observed in prior studies 
[  63 ]. No single feature performed best with the 1D-CNN, even 
if the 1D-CNN consistently outperformed classical ML methods. 
The 2D- and 3D-CNN models consistently achieved optimal 
recognition performance, conveying that spectral spatiotemporal 
models best encode EEG patterns as noted in [ 20 , 56 ].

   Our key finding is that both emotion and PD recognition 
can be reliably performed from EEG responses passively com-
piled during audiovisual stimulus viewing. Given that we effort-
lessly interact with media routinely, EEG signals can be captured 
easily over longer time intervals as compared to resting-state 
EEG, which can practically be acquired only over short epi-
sodes. Also, while many EEG differences between PD and HC 
groups have been noted from resting-state analysis, the exact 
relation between EEG and motor symptoms is unknown [ 4 ].

   Most empirical results presented in this paper are generated 
via a 10FCV strategy, given the small dataset size and imbalanced 
class distribution. Nevertheless, the LOOCV procedure adopted 
for the PD versus HC classification problem reveals that the EEG 
encodings are relatively robust to individual idiosyncrasies. A 
limitation of our study is that we analyze data compiled from a 
limited number of PD subjects with only mild-to-moderate dis-
ease severity (Hoehn and Yahr scale [  64 ] of 1 to 3). Future work 
will also focus on severity levels 4 and 5. While perceptual dif-
ferences between PD versus HC subjects were captured via clas-
sification results, an assistive diagnostic tool should also be able 
to provide explanations behind decision-making. Future work 
will focus on generating explanatory predictions, building on 
recent work [  65 ] in this regard.   
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