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Abstract: Classroom EEG recordings classification has the capacity to significantly enhance compre-
hension and learning by revealing complex neural patterns linked to various cognitive processes.
Electroencephalography (EEG) in academic settings allows researchers to study brain activity while
students are in class, revealing learning preferences. The purpose of this study was to develop a
machine learning framework to automatically classify different learning-style EEG patterns in real
classroom environments. Method: In this study, a set of EEG features was investigated, including
statistical features, fractal dimension, higher-order spectra, entropy, and a combination of all sets.
Three different machine learning classifiers, random forest (RF), K-nearest neighbor (KNN), and
multilayer perceptron (MLP), were used to evaluate the performance. The proposed framework was
evaluated on the real classroom EEG dataset, involving EEG recordings featuring different teaching
blocks: reading, discussion, lecture, and video. Results: The findings revealed that statistical features
are the most sensitive feature metric in distinguishing learning patterns from EEG. The statistical
features and RF classifier method tested in this study achieved an overall best average accuracy of
78.45% when estimated by fivefold cross-validation. Conclusions: Our results suggest that EEG
time domain statistics have a substantial role and are more reliable for internal state classification.
This study might be used to highlight the importance of using EEG signals in the education context,
opening the path for educational automation research and development.

Keywords: classroom EEG; academic; learning style; cross-validation; statistical measurements;
automation; comprehensive; EEG recordings

1. Introduction

Within the constantly developing domain of educational research and cognitive neu-
roscience, the incorporation of cutting-edge technologies has emerged as a critical factor
in elucidating the complexities of the human brain’s involvement in the learning pro-
cess. Electroencephalography (EEG) stands out among these technologies as a potent
and non-intrusive method for capturing neural activity in real-time [1]. It offers unique
insights into the cognitive processes that occur in reaction to diverse stimuli. In the field
of education, the integration of EEG recordings into the classroom environment signifies
a fundamental change [2,3], providing an unprecedented opportunity to investigate the
complex relationship between varied learning styles and neural patterns.
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In recent years, several research works have been published on assessing learners’
behavior in distance/online learning. Distance/online education has become more impor-
tant during COVID-19, and plenty of courses in the latest technology have been offered
online. Based on the EEG signals collected from 100 individuals, the authors proposed
a decision support system to understand learners” attention behavior [4]. Nevertheless,
they only studied binary classes (attentive/inattentive) and found that Support Vector Ma-
chines (SVMs) predicted attention better than other machine learning algorithms (91.68%).
A recent study used 128 channel EEG signals to classify 34 university students’ learning
styles (learning and memory retrieval) using three types of deep learning models, including
Long Short-Term Memory (LSTM), convolutional neural network (CNN), and Fully CNN
(LSTM-FCNN). The authors reported a maximum mean accuracy of 94% for LSTM-CNN,
which is more efficient than other DL models. In their earlier studies, the same researchers
used frequency domain and time-frequency domain analyses and ML classifiers to classify
visual and non-visual learners based on their alpha- and gamma-band EEGs [5]. Zhang et al.
utilized EEG signals features extracted from 14 university students to classify their learning
styles based on Felder-Silverman'’s processing dimension theory and achieved a maximum
precision of 69.8% with an accuracy of 71.2% utilizing deep convolutional neural network
[DCNN] [6]. In the study, [7] analyzed EEG signals to classify the learning styles of learners
based on their IQ and stress levels. It was found that alpha-band EEG was more effective
in distinguishing learning styles between IQ and stress tests.

Innovative methodologies have been made possible by developments in neuroscience
research to examine the ways in which the brain facilitates dynamic social interactions in
the real world. For instance, academics have initiated investigations into the neurological
foundations of social interactions through the comparison of brain activity exhibited by
numerous individuals across a range of semi-naturalistic tasks [3,8]. Brain synchrony and
comprehension, as well as the predictability of an individual’s communicative action, have
been correlated in studies involving turn-taking in gestural communication. Significantly,
additional research has demonstrated that intricate visual and auditory stimuli (such as nat-
ural films) provoke comparable neural activity and affective reactions in observers [9-12],
and that these responses differ significantly according to the attentional engagement of the
participants. In addition to demonstrating a correlation between synchrony at the neural
and motoric levels, scanning neuroscience research has also demonstrated that the rela-
tionship between social factors and brain-to-brain synchrony is moderated by face-to-face
interactions [13-15]. Joint action tasks reveal that increased sentiments of affiliation and
social cohesion result from synchronous motor activity among interactive participants [16];
this is especially true in cooperative contexts as opposed to competitive ones, and this is
reflected at the neural level.

Under semi-controlled conditions, the classroom is an ideal location for systematically
investigating group interactions—such as those between students and their teacher while
measuring cognitive and behavioral outcomes (e.g., student engagement and academic
performance). It has been demonstrated that the dynamic interaction between a teacher and
a group of students influences both student engagement and academic achievement, which
are both fundamental to classroom learning [17,18]. Instruction and knowledge acquisition
can be perceived as a collaborative effort involving both the instructor and the learners,
in which aspects of the interactive companion and the activity are evaluated as stimuli
in a two-way exchange. Exploring the neural activity that lies beneath student-teacher
relationship exchanges in the classroom could help in comprehending and predicting
educational outcomes from both the student’s and the teacher’s perspectives, according
to research. In a recent study [19], researchers recorded nine students concurrently using
portable EEG equipment in the classroom while they watched a natural movie. The results
of these experiments were replicated from laboratory-based designs using commercial-
grade equipment, showcasing the feasibility of applying such equipment to measure
students’ attentional engagement in real-world scenarios.
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However, most of the existing research is limited by several drawbacks, as studies
frequently neglect to examine social behavior in naturalistic settings, are routinely restricted
to dyads, and fail to investigate social dynamics over time. To identify neural markers of
group engagement during dynamic real-world group interactions, this research study [20]
presents experiments that significantly transcend pairs and laboratory boundaries. They
assessed the brain activity of 12 high school pupils throughout an entire semester (11 classes)
during routine classroom activities using a portable electroencephalogram (EEG). Student
class engagement and social dynamics can be predicted by the degree to which brain
activity is synchronized across students [20], according to a novel analysis technique for
evaluating group-based neural coherence.

Machine learning and deep learning have indeed gained significant popularity in
signal processing domains such as PPG (photoplethysmography) [21,22], electrocardio-
gram [23], and EEG [24] analysis. Utilizing the multiple signal classification (MUSIC) model
to extract features from multichannel EEG signals in an effective way, ref. [25] addresses the
computational challenges associated with emotion recognition based on EEG. The research
aims to enhance the efficiency of emotional state classification through the adjustment of
MUSIC parameters to identify discriminative features.

Understanding a student’s learning style is crucial for effective teaching, as it enables
educators to tailor instructional methods to individual needs. Learning styles refer to the
preferred ways in which students absorb, process, and retain information. By recognizing
these preferences, teachers can design lesson plans that align with students’ natural tenden-
cies, thereby enhancing engagement, comprehension, and retention. This study aims to
explore EEG data collected from real classrooms to assess the discriminative power of EEG
in identifying different learning styles using machine learning. The key contributions of
this work are as follows:

e  First comprehensive ML framework: This study introduces the first comprehensive
machine learning (ML) framework that utilizes EEG data from real classroom envi-
ronments to examine the discriminative power of EEG in distinguishing different
learning styles.

¢  Effective use of real-world data: The proposed ML framework demonstrates that EEG
data from real-world classroom settings can be effectively used for the classification of
different learning styles, highlighting the practical applicability of this approach.

¢ Advancement of Personalized Learning: By leveraging real classroom EEG data,
the study advances the field of personalized learning, providing a potential pathway
for creating more tailored educational experiences based on individual cognitive
patterns.

The following sections are structured in the paper: Section 2 presents an extensive
review of the relevant literature, with particular attention given to the substantial ad-
vancements that have occurred in this domain. A comprehensive dataset, methodology,
and phased implementation summary are presented in Section 3. The comprehensive
analysis and discussion of the study’s results can be found in Section 4. Section 5 provides
a summary of the primary study results.

2. Related Works

Frequently adapting to technological developments, higher education continues to
provide students with educational instruction of the highest standard. The contribution of
information technologies to modern education is significant, as a variety of technological
resources can be utilized to deliver instruction using a variety of instructional methods [26].

The implementation of EEG signal analysis offers promising instruments for assessing
and forecasting individualized cognitive characteristics in students, thereby providing a
quantitative understanding of educational achievements. By analyzing EEG bands with
high and low frequencies, it is possible to obtain information regarding the continuous
cognitive processes of students while they are learning. The identification of alertness,
active thought, attention, and multisensory processing states is facilitated by high-frequency
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bands [27]. Analyses of EEG signals to forecast intelligence and ability in children were
reported in ref. [28]. The use of EEG spectral characteristics to identify mathematically
gifted individuals was the subject of the study [28]. In the past, the mean score of the cohort
was the standard for classifying students as gifted in this research. Mental load, attention,
and relaxation were the three internal states for which the EEG apparatus designated
epochs of the recording. The characteristics of these internal states that were classified as
gifted according to the previously mentioned criteria were utilized as inputs for machine
learning models: mean, median, standard deviation, minimum, and maximum values.
The result shows that 76.00 of ability classifications were achieved for the optimal machine
learning model. In another study, a simultaneous EEG recording of twelve students was
conducted in the classroom over the course of eleven classes during the semester [20].
In addition to pleasure metrics, EEG synchronization metrics between the students and the
instructor were computed. The study’s findings revealed a correlation between the EEG
metrics and both student performance and class enjoyment. The findings of these studies
indicated that the classification and prediction of cognitive performance may be feasible
through the analysis of EEG measurements. Sleep-deprived adolescents demonstrate
diminished cognitive performance and increased levels of morning lethargy, according
to research [29]. Adolescents, by an unfortunate coincidence, dedicate a considerable
portion of their mornings to the task of retaining information. An active debate regarding
secondary school commencement times has resulted from this. Indeed, it appears that even
a 50 min delay in school start times has a substantial positive impact on student academic
performance [30].

Comparing the EEG data collected during cognitive assessments in an actual classroom
setting versus an identical virtual classroom was the focus of a prior investigation con-
ducted by [31]. Between the actual and virtual environments, the results indicated that the
frequency band-power of the EEG did not differ significantly. The initial findings suggested
that immersive virtual reality (VR) technologies of the present day with high resolution
may serve as a suitable surrogate for approximating neural responses to tangible, in-person
architectural design elements [32]. A recent investigation [33] showcased the application of
the attention monitoring and alarm method (AMAM), a neurofeedback instrument that
analyzes the neural activity of students to perpetually monitor their attention throughout
e-learning sessions. Students who utilized EEG devices were given attention-level feedback
in an effort to assist them in refocusing during study sessions. The findings of the research
demonstrated that the group utilizing the AMAM exhibited superior sustained attention
and learning performance in comparison to the control group that did not utilize it. In an-
other recent study [34], researchers recorded the attentional engagement of nine students
concurrently while watching a natural movie using portable EEG equipment in the class-
room. The results of these experiments were replicated using commercial-grade equipment
and mirrored the findings from laboratory-based experimental designs, showcasing the
feasibility of measuring students’ attentional engagement in the real world. Brain-to-brain
synchrony [35], also known as interbrain coherence or total interdependence [T1], among
students during class activities was correlated with student engagement and classroom
social dynamics, according to additional recent classroom-based research that served as the
basis for the present study.

According to another study [20], students exhibited greater group affinity, focus,
and empathy when their preferred teaching method (e.g., video) was utilized as opposed
to the lecture method. Furthermore, the results pertaining to group social dynamics lend
validity to the concept that the presence of other students modifies synchrony among
students in the classroom. Students who participated in prelesson face-to-face baseline
recordings exhibited the greatest pairwise synchrony during class with their mutual gaze
partner, in contrast to other randomly selected students in the group [20]. Additionally,
higher student ratings of their teacher were associated with a narrower disparity between
video conditions (in which the teacher was not involved) and lecture conditions (in which
the teacher was central). In conjunction with (i) stimulus properties, (ii) individual vari-
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ances, and (iii) social dynamics, their findings indicate that brain-to-brain synchrony is
dictated by all three. A self-study task-related EEG instrument that provides students with
feedback regarding their level of attention was implemented in [36]. As student feedback,
the utilized EEG apparatus generated an attention index; auditory feedback was delivered
when the attention index dropped below a predetermined threshold. The experiments
were conducted with two groups: one experimental and one control. The experimental
group was provided with feedback, while the control group was not. The experimental
group exhibited a greater duration of attentive periods as indicated by the results.

3. Materials and Methods

The following section outlines the EEG data used in this study and the methodological
approach utilized to achieve the stated objectives of the study, which aims to establish
a framework for classifying classroom EEG recording in relation to learning patterns.
Figure 1 provides an illustration of the overall methods used to automatically classify
different learning-style EEG patterns in real classroom environments.

Real-world classroom
EEG data

Pre-processing/filtering of EEG
signals

Clean EEG signals

Y
- Higher order
. Fractgl Entropies Statistical Spectra
dimension ADEn. SamEn (MAD1, MAD2, mAmD. H1
(KFD, PFD) || (APEM SamEn) 1"\ maD1) || ¢ o f@ '

Feature Generation

Y

Feature Selection
(ANOVA)

Selected features

\ 4

Random
Forest

KNN MLP

Classification
Labels ¢

Reading / Discussion / Video / Lecture

Figure 1. Flowchart of the proposed machine learning framework to classify classroom EEG recordings.

3.1. Dataset Description

The dataset employed in this research was constructed by Dikker et al. [20] in 2020
as described in their Social Cognitive and Affective Neuroscience article “Morning brain:
real-world neural evidence that high school times matter” (pp. 1193-1202). According to
the findings of Dikker et al. [20], learning may be most effective during the mid-morning



Algorithms 2024, 17, 503

6 of 19

window. To examine this, they deliberately opted for EEG recordings collected from 12 stu-
dents during regular biology classes on weekday mornings (see Figure 2). The duration
of these classes was seventeen days, and they were conducted at 10:30 a.m. Each original
dataset contained four sessions of EEG recordings. Every session consisted of four dis-
crete teaching blocks, with each block lasting between two and five minutes: “reading”
sessions led by the instructor, “video” sessions involving educational video viewing, “lec-
ture” sessions led by the instructor, and “discussion” sessions involving group discussions.
The total number of recorded days in the original dataset varied significantly among the
teaching blocks: 5 days were allocated for reading, 11 days were devoted to video, 5 days
were devoted to lecture, and 11 days were dedicated to discussion. The EEG signals were
recorded from 14 channels (AF3, F7, F3, FC5, T7, P7, 01, O2, P8, T8, FC6, F4, F8, and AF4)
using the wireless Emotiv EPOC+ (Emotive Systems, Inc., San Francisco, CA, USA) neuro
headset with sampling frequency of 128 Hz. The process of this data collection and the
details about the available segments are presented in Figure 3 and Table 1, respectively.

A Teacher

HighBrain-To-BrainSynchony  LowBrain T chrony
(More engaged in class) (Less en 55)

€ e

Figure 2. (A) Students’ brain waves can be measured using EEG in a high school classroom from
Dikker et al. [20] and (B) the brain waves of students can exhibit rapid synchronization with those of
their peers, a phenomenon observed in more engaged students (left). A lack of synchronicity with
their peers (right) was observed among less engaged students.

Table 1. The table contains a summary of the dataset, details about the sessions conducted, and the
available and used segments. To create a balanced class problem, we select a random subset of the
available segments. The subset size is equal to the method with the fewest segments, reading (2284).

Method Number of Sessions Available Segments Used Segments

Reading 2 2284 2284
Discussion 4 6842 2284
Lecture 2 2749 2284
Video 4 5777 2284
Total - 19,855 9136

The subjects of this study were 12 healthy high school students in their senior year (9 fe-
males and 3 males, aged 17-18) with no known history of neurological disease. Regrettably,
this study dataset lacked EEG recordings pertaining to students 7 and 12. The analysis was
therefore performed on EEG recordings obtained from a sample of ten students. In addition,
certain mid-morning session recordings were missing from the dataset, specifically, four ses-
sions for discussion, two sessions for reading, and two sessions for video. Comprehending
the complexities of dataset composition is crucial for grasping the context and constraints of
this research, given that they influence the availability and comprehensiveness of the EEG
data utilized in the training and evaluation of the proposed machine learning framework.
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Figure 3. Figure from Dikker et al. [20], explaining the setup of the data collection process. Data
for the four methods are taken for this study, which includes "teacher reads aloud’, 'video’, teacher
lectures’, and “group discussion’. The respective session time for each method is also mentioned in
the figure.

3.2. Data Preprocessing

Data preprocessing encompassed several critical stages to safeguard the quality and
integrity of the EEG recordings. The original dataset included epoched EEG signals that
had already been segmented according to different learning conditions. In this study,
the raw EEG signals were filtered using an infinite impulse response (IIR) Butterworth
bandpass filter (4th order) with a cutoff frequency of 1-49 Hz. The cutoff frequency range
of 1-49 Hz was chosen to effectively eliminate low-frequency noise, such as drift and
movement artifacts, as well as high-frequency noise, including power line interference at
50/60 Hz. Following that, to improve the spatial resolution, a common average reference
(CAR) was implemented. To facilitate analysis, the data were subsequently divided into
2 s epochs. To reduce the likelihood of encountering artifacts, an automated artifact
rejection system was integrated. This system eliminated segments containing data that
exceeded +100 microvolts, with particular attention given to eye-blink artifacts. Following
an extensive preprocessing stage, a grand total of 2284 artifact-free segments were preserved
for further examination. This refined and immaculate dataset was utilized to extract features
and classify classroom EEG recordings according to learning styles.

3.3. Feature Extraction

The objective of the feature extraction procedure was to comprehensively collect a
wide array of properties from EEG signals to enable detailed analysis, thereby diving
into their complicated character. By incorporating a wide range of feature categories,
the proposed methodology sought to precisely represent the complex information that
is inherent in the neural data. The selection of each category was conducted with great
attention to offer a comprehensive comprehension of the implicit patterns present in the
EEG recordings.

i Statistical features
Within the field of statistical characteristics, this study employed techniques that go
beyond simply evaluating components of the EEG signal, delving into the complexities
of signal dynamics [37]. The following approach permitted us to determine the
statistical characteristics of the signal.

*  The mean of absolute values of 1st difference (MAD): This feature provides two
important functions: it measures the average of the absolute values of differences
between consecutive data points and illuminates the dynamic character of the
neural activity by indicating the signal variability:

1 N-1
MADI1 = =—— 1:21 |Xip1 — xi 1)

¢ The mean of absolute values of 2nd difference (MAD?2): This is a metric that
offers a nuanced perspective of the underlying neural processes by determining
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ii

iii

signal smoothness and trend information through the calculation of the average
of absolute values of second-order differences:

1 N-2
MAD, = +— Y X2 — xil 2)
i=1

¢ The utilization of the normalized 1st difference (NMAD): Normalizing the 1st dif-
ference enhances the interpretability of amplitude fluctuations in EEG signals by
one dimension, thereby facilitating a more nuanced comprehension of amplitude
changes throughout the recorded epochs:

MAD;,

NMAD = max(MAD;)

3)

where N represents the total number of EEG samples.

Fractal dimension features

The fractal dimension (FD) characteristics are of the utmost importance in our method-
ological endeavor to comprehend and describe the intricate dynamics that are intrinsic
in EEG signals [38]. The phrase “fractal dimension” encompasses the intrinsic irregu-
larities, complexities, and self-replicating qualities that are present in neural activity
patterns that encompass multiple dimensions. In this study, we considered Katz and
Petrosian FD algorithms, which are commonly used for EEG analysis [39].

e  Katz Fractal Dimension (KFD): This is a critical metric utilized in our feature
extraction procedure to decipher the complex characteristics of EEG signals.
KFD plays a crucial role in the characterization of the EEG waveform’s inherent
irregularity and complexity [40]. Through the evaluation of the signal’s self-
similarity at various scales, KFD offers a more intricate understanding of the
neural dynamics at play. The significance of this dimensionality measure increases
significantly when it comes to capturing the various irregularities and patterns
that could potentially signify differences in learning styles within EEG recordings
from the classroom:

KFD = log(N)

= i ,where d is Euclidean distance 4)
log(7) +1log(N)

*  Petrosian Fractal Dimension (PFD): This provides an additional level of under-
standing regarding the intricacy of the EEG waveform, serving as a comple-
mentary component to the KFD. PFD, in its capacity as an indicator of signal
irregularity, examines the intricate intricacies of the EEG signal, thereby capturing
a broader range of details than conventional measures. By adding a significant
dimension to our feature set, this metric becomes particularly relevant when
distinguishing irregular patterns in neural activity. By incorporating PFD, our
comprehension of complex neural mechanisms is enhanced, thereby bolstering
the capability of our machine learning framework to accurately classify classroom
EEG recordings according to individual learning styles:

log(N)

PFD = (G))

log( N+O~4*NzNero—crossings

Higher-Order Spectral Features

Higher-order spectral (HOS) features are an essential component in the investigation
of EEG signal characteristics, as they offer a more profound understanding of the
complex dynamics of neural activity [41,42]. In contrast to conventional spectral anal-
ysis, higher-order spectra provide a more intricate viewpoint through the inclusion of
phase couplings and non-linear interactions among distinct frequency components.
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By revealing concealed intricacies in EEG signals, this class of characteristics proves in-
dispensable for enhancing our comprehension of the neural mechanisms that underlay
variations in learning styles within an educational environment.

Bispectrum Magnitude (mAmp): The Bispectrum Magnitude (mAmp) is an
essential metric in our feature extraction collection, providing valuable insights
into the complex dynamics of EEG signals [43]. By displaying the magnitude of
the bispectrum explicitly, this characteristic offers insight into the phase coupling
that occurs among various frequency components. Through an examination of
the interconnections among these elements, the mAmp function emerges as a
pivotal factor in comprehending the non-linear dynamics intrinsic in the neural
activity captured during instructional sessions.

Summation of the Bispectrum Logarithmic Amplitudes Summation (H1): This
enhances our set of features by encompassing the logarithmic amplitudes of
the bispectrum. By acting as a perceptive lens, this characteristic reveals non-
linearities that are concealed within the EEG signal. By employing logarithmic
transformation, a more intricate viewpoint can be introduced, facilitating the
recognition and analysis of intricate patterns that might serve as indicators of
unique learning-style attributes.

Summation of the Bispectrum Logarithmic Amplitudes of Diagonal Elements
(H2): The bispectrum logarithmic amplitudes of diagonal elements summation
(H2) enhances the comprehensiveness of our analysis by placing particular em-
phasis on the diagonal elements comprising the bispectrum. This functionality
furnishes valuable insights into the precise interrelationships among frequency
components, thereby facilitating a comprehensive comprehension of the dis-
tinctive spectral attributes inherent in the EEG recordings. By augmenting the
interpretability of neural dynamics, the H2 feature fortifies the resilience of our
machine learning framework.

The 1st order moment of amplitudes of the spectral waves of diagonal elements
of the bispectrum (H3): An analysis of the amplitude distribution within the
bispectrum is conducted in the 1st Order Spectral Moment of Amplitudes of
Diagonal Elements of the Bispectrum (H3) [44]. This functionality provides sig-
nificant insights into the spectral composition of the EEG signal by presenting
valuable information regarding its characteristics. H3 enhances our feature set by
characterizing the distribution of amplitudes, thereby making a valuable contri-
bution to the comprehensive comprehension of the neural processes documented
in classroom EEG recordings.

Entropy features

Entropy features are highly influential metrics within the domain of EEG signal anal-
ysis, providing a distinctive viewpoint on the intricacy and consistency of neural
activity. Entropy, an information theory-derived concept, offers a quantitative quantifi-
cation of the disorder, uncertainty, and inconsistency present in a signal. In this study,
the entropy feature set includes the approximate and sample entropy; these entropies
are explained below.

Approximate entropy (AE): The approximation entropy (AE) is an essential
parameter for quantifying the unpredictability or irregularity of the electroen-
cephalogram (EEG) signal [45]. The degree to which patterns within the signal
repeat or remain consistent over time is quantified by AE. An elevated AE value
indicates heightened intricacy, which corresponds to a more diverse and uncertain
neural activity environment. Therefore, AE assumes a crucial role in identifying
mild irregularities that could potentially serve as indicators of differences in
learning styles:
Cun(r)

AE(TI’L,F) = _log(Cm+1(r)) (6)
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e Sample entropy (SE): This serves as a complementary metric to AE, quantifying
the degree of similarity that exists between subsequences contained within the
EEG signal. SE offers valuable insights into the degree of regularity or repetition
exhibited by patterns in neural activity. A reduced SE value indicates a higher de-
gree of regularity, emphasizing occurrences in which particular patterns are more
prone to recurrence. By quantifying the degree of regularity in the EEG signal,
SE enhances our comprehension of the neural dynamics’ stable and recurring
components

SE(n, 1) = ~log( 2\ %

3.4. Feature Selection Using ANOVA

The developed machine learning model’s fine-tuning depends on feature options.
Using ANOVA (analyses of variance), a rigorous statistical procedure, we refined this study
feature set. ANOVA is successful in identifying and selecting EEG variables that signifi-
cantly differentiate learning styles [46]. ANOVA [47] is used to examine the distribution of
feature values across classes, discovering characteristics with significant differences that
may be used to categorize learning styles. In this study, ANOVA was used to find discrimi-
native traits that reveal important brain processes underpinning classroom learning styles.
Since they comprise the most relevant data for distinguishing EEG signal-based learning
approaches, the selected features improve the classification model. This feature selection
approach boosts model performance and interpretability by selectively picking features.
Thus, cognitive processes in the ever-changing classroom may be better characterized.
ANOVA improves the statistical rigor of the feature selection procedure and ensures that
the selected features are statistically significant and can detect learning-style differences in
classroom EEG recordings. Statistical significance was defined as p-value < 0.05.

3.5. Learning-Style Classification

Three well-known classification techniques, random forest (RF), K-nearest neighbor
(KNN), and multilayer perceptron (MLP), were applied and evaluated for EEG signal
classification under various conditions, including reading, lecture, discussion, and video
viewing using each EEG feature set described above, as well as a combination of all
feature sets.

Random forest: The random forest (RF) classifier functions as a meta-estimator, in
which several decision tree classifiers are fitted to different subsamples of the dataset [39].
By averaging the results, the RF classifier enhances predictive accuracy and mitigates the
issue of overfitting. The machine learning algorithm is highly durable and is capable of
effectively managing classification and regression tasks. The number of trees in the forest,
the maximum depth of each tree, the minimum number of samples needed to divide an
internal node, and additional factors may be among the optimized parameters for RF.

K-nearest neighbors: The K-nearest neighbors (KNN) algorithm is a refined and user-
friendly machine learning technique utilized to address problems involving classification
and regression [48]. KNN utilizes the principle of similarity to forecast the label or value
of a novel data point by considering its K-nearest neighbors from the training dataset.
The optimized KNN parameters may consist of, among other things, the distance metric
employed and the quantity of neighbors to be considered.

Multilayer perceptron: The multilayer perceptron (MLP) classifier falls under the
category of feedforward artificial neural networks [49]. The architecture comprises a
minimum of three node layers and employs a non-linear activation function. MLP is an
algorithm for supervised learning in which a function is learned through training on a
dataset. The number of hidden neurons, the type of activation function, the solver for
weight optimization, and additional factors may be among the optimized parameters
for MLP.
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3.6. Learning-Style Classification-Performance Evaluation

In this study, standard performance metrics, such as accuracy, precision, recall, F1-
score, and area under the curve (AUC), were employed to assess the performance of the
classifiers in differentiating EEG recordings from reading, lecture, discussion, and discus-
sion. To obtain consistent recognition performance, fivefold cross-validation was employed
in this study. For fivefold cross-validation, the features were randomly divided into five
relatively equal subsets (folds). Four out of the five subsets were then used for model
training, while the fifth subset was used for evaluation. This fivefold process was per-
formed five times so that each fold was used as a test set, resulting in five classifier accuracy
scores for each feature set classification method. To evaluate the overall classification per-
formance, the average and the standard deviation (SD) of the final metrics were computed
across the five folds. The cross-validation was conducted in a manner that preserved the
independence of student trials across folds, ensuring that data from the same student did
not appear in both the training and testing folds simultaneously. This strategy helped
in obtaining reliable estimates of the model’s performance and in selecting the optimal
hyperparameters without compromising the model’s ability to generalize to unseen data.

3.7. EEG Scalp Topography Related to Learning Style

In this study, the topographical distributions for each learning style were generated
based on the feature set that achieved the best classification performance. To ensure
comparability across features, each statistical feature was normalized using a z-score, which
standardizes the data by subtracting the mean and dividing by the standard deviation. This
normalization process allowed us to account for differences in scale and variability across
features. The normalized features were then used to create topographical maps, which
visually represent the spatial distribution of these features across the scalp. These maps
provided insights into the distinct EEG patterns associated with different learning styles,
highlighting the regions of the brain that are most active or significant for each style. In
addition, two-tailed paired-sample t-tests were used to explore the pair-wise comparisons
of different learning styles’ significance.

4. Results and Discussion

The statistical significance and variability of various EEG features during distinct
cognitive tasks (reading, discussion, lecture, and video) are comprehensively examined in
Figure 4. A one-way ANOVA test was conducted to assess the effectiveness of features in
differentiating between teaching methods. Features with p-values < 0.05 are highlighted,
and their corresponding F-values indicate the strength of their discriminative power. There
are statistically significant differences (p < 0.001) between MAD1, MAD2, and NMAD]1,
suggesting that the EEG signals exhibit differing levels of dispersion throughout the various
activities. Significant differences are highlighted by the high F-values associated with
these characteristics (836.89, 744.59, and 719.29, respectively). The KFD and PFD features
demonstrate substantial differences (p < 0.001) in their respective F-values of 1577.9 and
1079.3, which emphasize the non-linear complexity of the underlying brain activity captured
by FD. Significant variations in mAmp, H1, H2, and H3 are observed (p < 0.0001, F-value:
81.71, 1395.26, 1353.21, 1507.48, respectively), indicating that cognitive tasks possess unique
spectral amplitude properties. Entropy measures, namely, AE, and SE, exhibit substantial F-
values (671.66 and 544.83) that indicate significant differences (p < 0.001). These differences
underscore the varied patterns of regularity and complexity observed in EEG signals
throughout cognitive activities. In brief, the ANOVA results underscore the intricate
character of neural reactions, illuminating the distinct EEG characteristics that distinguish
cognitive initiatives, and furnishing significant data for comprehending cerebral intricacies
through participation in reading, discussion, lecture, and video.
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Feature Extraction ANOVA
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Figure 4. F-values bar plot for each significant feature from ANOVA. Green color bar denotes the
lowest F-value.

Table 2 presents the average classification performance for reading, discussion, lecture,
and video learning styles. Performance scores are shown for each feature classification
technique, including the combination of all the feature sets. The highest scores across the
feature sets are highlighted in bold. The mean class accuracies for the four teaching methods
are reading (79.29%), video (82.79%), lecture (80.31%), and discussion (72.28%); the video
class exhibits the highest performance, with a mean class accuracy of 82.79% across the three
models. The majority of the feature sets perform reasonably well with average classification
accuracy (>65.44%), precision (>65.52%), recall (>65.45%), F1-score (>65.37%), and AUC
(=0.76). This is interesting, as it suggests a complex relationship between learning styles
and many properties of EEG signals. As illustrated in Table 2, the performance of EEG
statistical features is higher for classifying learning styles relative to other features when
using RF, KNN, or MLP classifiers. One of the possible reasons that statistical features
outperform could be that they utilize more time domain information. These results are also
broadly consistent with previous research highlighting the significance of statistical features
for recognizing the hidden internal discriminative information needed for learning-style
identification [39]. Furthermore, the statistical feature set delivers classification results with
the lowest SD of accuracy, precision, recall, F1-score, and AUC, showing that they perform
more consistently than other features set in this study. This suggests greater stability or
reliability of statistical feature sets for unveiling learning-style patterns.

Furthermore, we found that no prior research employed a machine learning approach
specifically for classifying learning-style EEG data in real classroom settings. However,
several studies have utilized EEG features to construct recognition models for learning-style
classification based on the Felder-Silverman model, which divides learning styles into four
dimensions: information processing, perception, input, and understanding. For example,
Zhang et al. (2021) developed and validated an experimental method that effectively
stimulates differences in the information-processing dimension, achieving an accuracy of
71.2% [6]. Additionally, other studies have recorded learners’ behavior during interactions
with learning objects in online courses and used mapping rules to infer learning styles
according to the Felder-Silverman model, with reported classification accuracies ranging
from 62.5% to 72.7% [50-53]. In comparison, our proposed framework demonstrates
superior performance, achieving higher accuracy than previously reported studies for
learning-style classification. This highlights the effectiveness of our approach and the
potential of EEG features in educational research, warranting further exploration into
effective learning-style recognition.
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Table 2. Average classification performance of classroom EEG recordings based on statistical, FD,
HOS, entropy, and combined features of EEG. All ACC, PRE, REC, and F1-S are given as % = SD.
The performance highlighted in pink color represents the highest performance scores across the
feature sets.

Feature Set Classifier Accuracy Precision Recall F1 Score AUC

RF 78.45 £ 0.85 78.9 £ 1.02 78.45 + 0.85 78.49 + 0.86 0.8563 + 0.0056

Statistical KNN 76.76 = 1.46 76.78 = 1.4 76.76 = 1.46 76.67 =147  0.8451 + 0.0097
MLP 76.14 £ 1.22 76.37 + 1.09 76.14 £ 1.22 76.06 + 1.23 0.8409 + 0.0081

RF 76.78 + 0.98 77.39 £ 0.9 76.78 £ 0.98 76.85 £ 0.98 0.8452 + 0.0065

FD KNN 76.70 = 1.08 76.68 + 1.08 76.70 = 1.08 76.59 + 1.06 0.8446 + 0.0072
MLP 7541 + 0.44 7547 +0.41 7540 + 0.44 75.33 +0.45 0.836 + 0.0029

RF 67.75 £ 1.64 68.47 +1.48 67.75 £ 1.64 67.82 +1.65 0.7850 + 0.0109

HOS KNN 59.40 £ 0.5 59.43 £ 0.55 59.40 + 0.51 59.17 £ 047 0.7294 + 0.0034
MLP 65.29 +1.29 65.53 + 1.54 65.29 +1.29 65.15 +1.29 0.7686 + 0.0086

RF 65.50 = 0.91 66.46 + 0.86 65.50 = 0.91 65.62 +0.93 0.7700 + 0.0061

Entropy KNN 60.88 + 1.75 61.25 + 1.82 60.88 + 1.75 60.59 + 1.75 0.7392 + 0.0116
MLP 65.44 + 0.84 65.52 + 0.77 65.45 + 0.84 65.37 £ 0.86 0.7696 + 0.00560

RF 76.75 £ 1.11 7741 £ 1.17 76.75 £ 1.11 76.82 +1.14 0.8450 + 0.7402

Combined KNN 59.40 £ 0.5 59.43 + 0.55 59.40 + 0.51 59.17 + 047 0.7294 + 0.0034
MLP 76.19 £ 0.5 76.30 + 0.49 76.19 £ 0.50 76.15 + 0.55 0.8413 + 0.00342

Another finding of the present study is that the RF classifier performed better for dis-
criminating learning-style patterns compared to KNN and MLP. As illustrated in Figure 5,
the RF outperformed other classifiers irrespective of the feature choice made. In contrast,
KNN and MLP exhibited results that are comparable in nature. Using a statistical feature
set, we achieved the highest average performance accuracy of 78.45%, precision of 78.90%,
recall of 78.45%, F1-score 78.49%, and AUC of 0.8563. This is in line with previous research
supporting the utility of RF for EEG signal classification, showcasing its adaptability. Given
that the statistical feature set was the most successful, the subsequent results primarily
focused on outcomes for the statistical features and RF classifier model. Notably, entropy
achieved the lowest accuracy in learning-style classification because it primarily measures
the overall unpredictability or randomness of the signal, which can be highly influenced by
the noise and artifacts inherent in EEG data [54]. This measure may lack the specificity
needed to capture the distinct patterns or structures crucial for distinguishing between
different cognitive states or tasks. Additionally, entropy does not account for the temporal
dynamics of EEG signals, which are non-stationary and can change over time.

Topographical maps of statistical features (i.e., MAD1, MAD2, and NMAD1) asso-
ciated with reading, video, lecture, and discussion learning-style patterns are plotted in
Figure 7. The color coding (orange to red) indicates the degree of brain activity, with orange
suggesting low activity and red indicating high activity.

From Figure 7, we observe that brain activity becomes more pronounced as certain
activities, such as lectures or discussions, progress. During lectures, this increase in brain
activity suggests that students are actively processing and integrating the information being
presented over time. In contrast, reading sessions consistently show lower brain activity,
which may indicate a more relaxed state or a different type of cognitive focus that requires
less overall brain activation. Similarly, brain activity tends to rise during discussions,
which likely reflects the active engagement and critical thinking required to analyze and
respond to interactive content. When watching videos, the increase in brain activity over
time indicates the ongoing processing of complex visual and auditory information. It is
important to recognize that these general trends can vary widely among individuals and
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are influenced by the specific context and nature of the activity. Each person’s unique
cognitive and emotional response to different tasks may lead to variations in how brain
activity evolves over time.
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Figure 5. Comparison of classification performance with various features (in terms of accuracy).
Figure 5 shows the classification performance, reflecting the performance of the statistical features
using RF, KNN, and MLP classifiers, illustrating the time-domain statistical characteristics of EEG
signals that can effectively discriminate reading, discussion, lecture, and video learning-style patterns.
The confusion matrix, which is illustrated in Figure 6a, provided further insights into the performance
results in accurately categorizing instances. Significantly, accurate classifications were made for 341
occurrences of discussion, 384 occurrences of lecture, 347 occurrences of reading, and 375 occurrences
of video. Nevertheless, the model demonstrated its shortcomings through the misclassification of
instances in diverse contexts. For example, 72 occurrences of discussion were incorrectly classified as
lecture, which suggests areas that could be enhanced.

Statistical-Random Forest

Statistical-KNN

True label
True label

L R
Predicted label

L R
Predicted label

(a) RF (b) KNN

Statistical-MLP
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L R
Predicted label
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Figure 6. Confusion matrix of a fold using statistical features obtained from (a) RF, (b) KNN, and
(c) MLP. The diagonal elements are the correctly recognized samples.
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From the p-values displayed in Figure 8, it is evident that all pair-wise comparisons
between the learning methods—reading, video, lecture, and discussion—show statistically
significant differences. This uniform significance across all combinations can be attributed
to several factors. Firstly, each learning method engages different cognitive and sensory
processes, leading to distinct impacts on learning outcomes. For instance, reading involves
textual processing, video incorporates both visual and auditory information, lectures pro-
vide verbal instruction, and discussions facilitate interactive engagement. These diverse
modalities result in varied effectiveness in enhancing understanding and retention. Addi-
tionally, the statistical sensitivity of the paired ¢-tests ensures that even small but meaningful
differences between the methods are detected. The significant differences observed suggest
that each learning method offers unique advantages and challenges, which contributes to
the varied effectiveness observed across all pairings.

0.986 Lecturer 0.997 Discussion 0.998

Reading

0.998

uvHz

WVAHz
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Figure 7. Topographical maps of different learning styles. (a) Reading, (b) video, (c) lecture,
(d) discussion.
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Figure 8. Statistical results of two-tailed paired t-test. * denotes p < 0.0001.

Limitations and Future Directions

This pilot study has several limitations to note. First, the sample size is relatively small,
which may affect the generalizability of the results. A larger sample would help to confirm
the findings and provide a more comprehensive understanding of the learning methods’
effectiveness. Additionally, the sample exhibits a gender bias, which may influence the
results and limit their applicability to all gender groups. Future research should aim to
include a more balanced and larger sample to address these issues and ensure that findings
are representative of diverse populations. Ensuring gender balance and a sufficient sample
size will enhance the validity and generalizability of the study’s conclusions. Second,
further improvements in performance will be possible in the future by expanding and
incorporating deep learning methods like convolutional neural networks that are inspired
by neural network approaches. It is not feasible to explore this approach here due to a
lack of data. Third, this study’s data focus on high school students from one American
school, limiting the generalizability of the findings. Additional research is needed to
explore how neural patterns in different learning settings might unfold in other age groups
or schools. Finally, Dikker et al.’s study [20] is the non-randomized nature of the data
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collection sequence. The fixed sequence of learning methods—reading, video, lecture,
and discussion—is used throughout the study, which may introduce a learning effect that
could influence the results. The participants are exposed to these methods in a specific order,
potentially affecting their engagement and learning outcomes. To enhance the validity of
future research, it is recommended that studies be designed with multiple groups, where
the sequence of learning methods is varied. This approach will help to determine whether
the sequence influences the results and contribute to a more robust understanding of the
effectiveness of each learning method. Incorporating such variations in sequence will help
establish the credibility of the findings by addressing the potential sequence-related biases.

5. Conclusions

This study aimed to develop a machine learning framework to automatically classify
different learning styles of EEG patterns in real classroom environments. As the first com-
plete machine learning framework to classify learning-style differences in classroom EEG
data, this study advances the discipline. For this purpose, a set of features (statistical, FD,
HOS, entropy, and combined) were extracted from the EEG signals, and a quantitative com-
parison was conducted of the feature extraction techniques with three different classifiers,
RF, KNN, and MLP. The dataset constructed by Dikker et al. [20] was used to assess the
performance of the study. It includes EEG recordings comprising various teaching blocks,
such as reading, discussion, lecture, and video. The results showed that statistical features
are the most sensitive feature metric for distinguishing learning patterns from EEG in
terms of their ability to distinguish between them. This study achieved the highest average
accuracy of 78.45% using statistical features and the RF classifier method. Based on the
results of this study, it can be concluded that the EEG time domain statistical characteristics
of EEG signals can be efficiently used to discriminate between different learning styles. This
might result in the creation of an effective human interactive system, which may be useful
in evaluating classroom teaching and learning. Furthermore, this innovative study has
established a new standard in the area, emphasizing the revolutionary capacity of machine
learning to comprehend and use the brain patterns linked to different cognitive processes
in constantly evolving educational environments.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Approximate Entropy

AMAM Attention Monitoring and Alarm Method
ANOVA Analysis of Variance

AUC Area Under the Curve

CNN Convolutional Neural Network

EEG Electroencephalogram

H1 Summation of the Bispectrum Logarithmic Amplitudes Summation
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H2 Summation of the Bispectrum Logarithmic Amplitudes of Diagonal Elements
H3 1st Order Moment of Amplitudes of the Spectral Waves of Diagonal Elements of the
Bispectrum
HOS Higher Order Spectra
KFD Katz’s Fractal Dimension
KNN K-Nearest Neighbor
LST™M Long Short-Term Memory
MAD1 Mean of Absolute Values of 1st Difference
MAD2 Mean of Absolute Values of 2nd Difference
mAmp Bispectrum Magnitude
MLP Multilayer Perceptron
NMAD1 Normalized Mean of Absolute Values of 1st Difference
PFD Petrosian fractal dimension
RF Random Forest
SD Standard Deviation
SE Sample Entropy
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