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Abstract—One of the most useful imaging methods for 

finding brain tumors is magnetic resonance imaging. Among the 

deadliest human diseases, brain tumors rank high. Brain MRI 

is a lifesaver for radiologists when it comes to diagnosing and 

treating patients with brain tumors. Radiologist have utilized 

magnetic resonance imaging (MRI), a relatively new imaging 

method, to visualize the anatomy and physiology of the human 

body. Whether a tumor is benign or malignant, it can be utilized 

to characterize it and track its course. The output weights may 

be efficiently derived using the suggested GELM model, which 

shares a closed form solution with the classic DCN, RCNN, 

UNet. The numerical results show that the suggested method is 

effective in identifying abnormal and normal tissue from brain 

MRI images with a higher level of accuracy (94.54%), sensitivity 

(93.34%), and specificity (93.47%). 

Keywords—brain tumor detection (BTD), magnetic resonance 

imaging (MRI), potential field segmentation (PFS), graph 

regularized extreme learning machine (GELM), densely 

connected networks (DCN). 

I. INTRODUCTION 

The brain is the seat of executive function in a human 
being. Over an extensive system of connections and neurons, 
it is in charge of carrying out all operations. An aberrant 
proliferation of brain cells that impacts neurological system 
functions is the cause of a brain tumor, one of the most 
dangerous disorders [1]. A physician's expertise and 
knowledge are crucial in the crucial step of brain cancer 
classification. To aid radiologists and doctors in the detection 
of brain tumors, an automated tumor classification system is 
crucial. A brain tumor in a human being is the result of 
unchecked cell growth. There are two categories: malignant 
and benign. A malignant tumor contains cancerous cells, 
whereas a benign tumor is a homogeneous structure free of 
them. According to the American Brain Tumor Association 
and the World Health Organization (WHO), a tumor grading 
system has been established, with grades I and II being 
referred to as benign, and grades III and IV as malignant [2]. 
When contrasted with malignant growth, benign growth is 
much slower. Using any radiation from ions, Magnetic 
resonance imaging (MRI) provides a precise picture of the 
human brain's anatomy. Although this technique works well 
for segmenting brain tumors, it struggles to identify normal 
and unhealthy areas in a single MRI. The brain's activity and 

even healthy cells can be negatively impacted by unchecked 
cell development. With the advancement of technology; 
imaging techniques have contributed to the study of the 
structure and function of the brain. MRI can pinpoint the exact 
location of a tumor. But in order to treat a tumor, radiologists 
must first determine its size [3]. When it comes to diagnosing 
and treating tumors with machine learning, image processing 
approaches are crucial for the monitoring of tumor sites 
between computers and doctors. Brain tumor MR image 
recognition and self- classification made use of a wide variety 
of techniques. Conventional wisdom holds that CT and MRI 
scans are the gold standard for diagnosing brain tumors. 

MRI in particular provides high-quality images owing to 
its sophisticated magnetic technology, illuminating the brain's 
structure in great detail. If a tumor is suspected to be located 
in the brain or spinal cord, an MRI of that area will be chosen. 
These imaging techniques have their uses, but they also have 
their limitations. Diagnostic mistakes may occur due to the 
subjectivity of picture interpretation, which can compromise 
the precision of tumor characterization [4]. In addition, a 
definitive diagnosis may require a battery of testing, which 
can add both time and money to the procedure. It is 
challenging to diagnose brain tumors due to the intricate brain 
structure that results from the interconnected nature of all 
brain tissues. Segmentation has gained a lot of attention and 
popularity in treatment monitoring and surgery planning, even 
if classification approaches are also important. A major reason 
for this is a development in image guided surgery. Necrosis, 
edema, and the active tumorous core are some of the tumor 
structures that will primarily be delineated throughout this 
segmentation phase. The segmentation techniques that are 
now available can be categorized as either edge-based or 
region-based. The methodology utilized to select and analyze 
relevant publications will be thoroughly discussed, with an 
emphasis on the analysis criteria and procedures that were 
used to obtain useful insights. Surgery, radiation treatment, 
and chemotherapy are common forms of treatment, with 
specific regimens adapted for each patient based on age, 
general health, tumor type, and location.  

Radiation therapy attempts to shrink the tumor while 
surgery attempts to eradicate it entirely. Radiation treatment 
and chemotherapy seek for and kill tumor cells, whereas 
surgery attempts to remove the tumor in its entirety. Treatment 
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advances have improved results, but tumor features and early 
identification determine prognosis [5]. Current research 
frequently employs conventional statistical or machine 
learning models in isolation, which may inadequately 
represent the intricate, nonlinear relationships between 
logistics performance metrics and economic variables.  This 
work presents a RELM approach to mitigate these constraints.  
The RELM component manages over dispersed count data 
and optimizes parameter choices to enhance predictive 
performance. The goal of this research is to help improve 
patient outcomes by creating diagnostic tools that are more 
precise and efficient by investigating the use of artificial 
intelligence in medical imaging.  

Section 2 explains the relevant works. In Section 3, we 
offer the proposed way and in Section 3, we present the 
traditional approaches. Section 4 presents and discusses 
experimental comparisons on an MRI benchmark dataset 
between the individual segmentation methods and the 
ensemble approaches. Lastly, Section 5 provides the final 
observations. 

II. LITERATURE SURVEY 

The literature suggests a hybrid method for using MRIs to 
detect and classify brain tumors. The bounding boxes of bone 
structures on MRI are identified using a Support Vector 
Machine (SVM) and non-linear regression [6]. By utilizing 
local information, such as textural cues, and forming 
associations between the relative locations of pelvic bone 
components, the proposed model is able to identify their 
placements. Novels introduced Convolutional Neural 
Networks (CNN) [7]. The study's suggested method 
outperformed the genetic algorithms KNN, SVM, and CNN 
in terms of accuracy, according to the evaluation results. It 
suggested using MLBPNN, an approach for brain tumor 
classification systems that is based on ML [8].  It utilized 
Extreme Learning Machine (ELM-LRF), an algorithm 
developed, to classify and detect brain tumors. To begin, in 
order to ignore noise, non-local measures and local smoothing 
techniques have been employed. Step two involved 
classifying cranial MR images as either benign or malignant 
using ELM-LRF. Image analysis for Brain Tumor diagnosis 
and feature extraction based on Magnetic Resonance images 
was initiated by [9] using the Berkeley Wavelet Transform 
and Support Vector Machine (BWT SVM) [10]. In order to 
assign a label to the central pixel, the majority of CNN-based 
algorithms use 2D or 3D patches extracted from MR 
images.SVM , Fuzzy C-means (FCM) [11] and Decision 
Forests (DF) are among the most applied discriminative 
methods. The most accurate brain tumor segmentation 
algorithm was the Random Forests (RF) algorithm.  

Semantic segmentation, scene classification, and tissue 
categorization are all areas where CNNs have shown 
effective. A further limitation with these methods is that they 
tend to over-fit the data, which can be mitigated by using RF 
[12]. But new findings show that Deep Learning (DL)-based 
approaches beat standard discriminative models. CNNs are 
another popular DL method; they do very well with both two- 
and 3-D medical pictures. We suggested a feature selection 
method to further reduce computing time and improve 
efficiency. Afterwards, the ELM was used to categories the 
robust features that were produced using this technique. A 
Generative Adversarial Network (GAN)-based approach 
ELM-based learning residual network standard-features-
based classification adaptive independent subspace analysis, 

transfer learning based tumor classification and Excitation 
DNN are some of the other methods introduced in the 
literature for brain tumor classification [13]. On top of that, to 
gaçaretal. Debugging and issue discovery can be challenging 
with LSTMs due to their complexity compared to CNNs and 
RNNs [14]. Furthermore, the significance of transfer learning 
for DL feature extraction was also explained. As a result, the 
traditional manual processes must be replaced with automated 
technologies. Both the previous multimodal BraTS tests and 
the findings from the last decade show that Deep Neural 
Networks (DNNs) perform exceptionally well [15]. 

A lot of focus has been on learning with local consistency 
of data as a means to enhance the performance of current deep 
learning models as of late. We propose a discriminative graph 
regularized Extreme Learning Machine (GELM) in this 
research based on the premise that related samples should 
share similar features. Constraints on output weights in 
GELM ensure that samples within the same class produce 
consistent results. An analytical solution to the output weights 
is also achieved by adding the regularization term to the aim 
of the basic ELM model, which is how the constraint is 
formulated. In order to assess how well GELM works, we run 
experiments on four popular face data bases. The 
experimental results show that GELM outperforms simple 
ELM and state-of-the-art models in most circumstances. 

III. PROPOSED SYSTEM 

Among the most difficult and time-consuming tasks in 
medical image processing is the detection and segmentation 
of brain tumors. Magnetic resonance imaging, or MRI, is a 
non-invasive medical imaging method that doctors primarily 
utilize to see the human body's internal structures. It is a 
challenging process to classify tumors as malignant or benign 
after proper segmentation of brain MR images because of the 
complexity and variety in tumor tissue features such shape, 
size, grey level intensities, and location. 

There are four categories in this RAR archived dataset: 
three for tumors (pituitary, glioma, and meningioma) and one 
for normal MRI [16] images of the brain. The data cleanliness 
is the strongest point of this dataset when compared to 
previous releases on Kaggle. To that end, we ran a thorough 
data cleaning workflow on the raw dataset. Improving the 
dataset's integrity and usefulness was the goal of this pipeline's 
multiple steps. 

 
Fig. 1. Block Diagram for Proposed GELM 

In Figure 1, we can see the suggested method's 
development. To begin, MRI data of brain tumors was 
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acquired and preprocessed to remove noise using ACEA and 
the median filter. 

A. Data Preprocessing 

The following are the main operations that will be applied 
to the MRI pictures in this step to ensure that the system can 
read the correct input and improve the conditions for image 
analysis:  

1) Image Resize: In this stage, we will establish a fixed 

size, such as (32 × 32), to examine the entire dataset under 

the same conditions, taking into account that the input images 

have varying height and breadth. Skull Removal: This stage 

involves removing the background and extracting the brain's 

skull, which is necessary because the brain is so important 

[17]. The skull surrounding the brain serves several purposes. 

2) Filtration of Image: In order to improve the likelihood 

of feature detection and to make the median filter applicable 

in both training and testing situations, it is applied to MRI 

images at this stage. 

B. Segmentation 

1) Potential Field Segmentation: Following Potential 

Field Clustering, we expand upon it. A magnetic resonance 

imaging (MRI) scan is represented by the set of pixels � =
{��, ��, … , �	}where each pixel ��
ℚ� has a corresponding 

grey intensity value 0 ≤ �� ≤ 255 . Identifying the subset 

���� ⊂ �  of tumor pixels is the goal. According to the 

comparison, the charge or mass that generates the potential 

field is the pixel intensity. Take note that there is a practical 

limitation on the number of masses (i.e., pixel intensities) that 

may be used to determine the potential field at a given 

position in a digital image due to the fact that it is a 

discretisation. The number of places at which the potential 

field is calculated must likewise be finite for implementation 

purposes. Since there are an identical number of pixels in the 

image, we'll set the number of points equal to that.  
There are multiple stages to the segmentation algorithm. 

Determining the potential field for each pixel ��  is the initial 
stage [18]. our violates the physical analogy: at one point 
(another pixel in our example), a potential field originates 
from the pixels, which have positions in the two-dimensional 
picture space.  

A pixel's potential at location ��  is equal to the sum of all 
of its individual potentials, where Ω�(��) is the potential that 
pixel ��   creates at position �� as shown in Equation (1).  

�(��) = ∑ ��(��)	���                            (1) 

Equation (2) shows the distinct potential field functions Ω�(��) can be expressed in a wide variety of mathematical 
ways. Next, you'll need to determine an adaptive potential 
threshold. 

 ! = �	�" + (�	$% − �	�" )(                   (2) 

Where the values of the potential fields for each of the )Ω(��)  variables range from 0 ≤ * ≤ 1 , with Ω	$%  and 
Ω	�" being the upper and lower bounds, respectively. Every 
pixel ��  that has a Ω(��) ≤  Ω is linked to the tumor set ����  
in the third phase. Since tumor pixels have a bigger mass, the 
potential of the surrounding regions is also substantially larger 

than in other regions with smaller or no mass, making this 
small potential segmentation criterion intuitively valid. Here 
is a summary of this segmentation strategy in Algorithm 1. 

Algorithm 1: Potential Field Segmentation 

Input: ,-. �, * 

Output: Segmentation ����  /0 � 

���� = 1, Ω	�" = 0, Ω	$% = 2345678)964 

for 63=ℎ ��
� do 

Ω(��) = 0 

for 63=ℎ ��
� do 

Ω(��) = Ω(�@) + Ω�(��) 
                      end for 
                  end for 

for 63=ℎ ��  
� do 

if Ω(��) < Ω	�"then 

Ω	�" = Ω(��) 
                   end if 

@0 Ω(��) > Ω	$%  Hℎ67 

Ω	$% = Ω(��) 
                  end if 
                    end for 

 I = Ω	�" + (Ω	$% − Ω	$%)* 

0/4 63=ℎ ��
� J/ 

@0  Ω(��) ≤  IHℎ67 

���� = ����⋃{��} 
               end if 
           end for 

 
Both LMN  and LMO  have a time complexity of L()�) , 

which is a result of the potential field computation being an 
L()�)  process. The potential field at pixel �� , for all ) 
pixels, equals calculated as the total of the individual 
potentials generated by all the other pixels. The total time 
complexity is L()�), meaning that for every )pixels, there 
are ) computations. The first for loop in Algorithm 1 has an 
inner for loop, which computes potential fields with an L()�) 
complexity. Everything else in Alg. 1 is L()) Keep in mind 
that the accuracy of the produced segmentation is the primary 
metric for performance in this domain, namely medical image 
segmentation, despite the fact that �P�  is a quadratic-time 
technique.  

C. Feature Extraction 

In order to extract the image features, this approach uses 
the GLCM technique. To extract the second-order statistical 
textural properties from a specific brain image, a statistical 
method called the co-occurrence matrix is applied. Always 
make sure that the number of grey levels is equal to the 
number of rows and columns when using GLCM. To extract 
the [19] first-order histogram-based characteristics, we apply 
the following equations. The proposed method involves 
extracting form, textural, and statistical elements from each 
cluster and feeding them into the classifier to help it detect 
tumors in the given MRI picture. Here are the features that 
were extracted in Equation (3): 

P7H4/�Q = ∑ 2/5 NRS"TU�R�V                      (3) 

One way to look at the entropy of a random variable is as 
a measure of how unpredictable it is. The maximum potential 
value of the co-occurrence matrix is achieved when all of its 
components are equal.  
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=/44623H@/7 = ∑ (R,S)W(R,S)UXYXZ[\]^_`a
bYbZ

               (4) 

The degree of connection between the reference pixel and 
its neighbours is ascertained by the correlation metric is 
explained in Equation (4). 

P7645Q = ∑ NRS �"TU�R�V                        (5) 

The product of squared dimensions is defined in terms of 
energy in Equation (5).  This establishes the degree to which 
the mixture is uniform. Pixels with a high energy value are 
quite similar to one another.  

O/7H43 H = ∑ 7�N(c, d)�"TU�"�V,R�V                 (6) 

As derived in Equation (6), a image's contrast is defined as 
the brightness disparity between a reference pixel and its 
adjacent pixels.  

,637(e) = ∑ c.  (c) "TU�R�V                       (7) 

The mean is a measure of the average brightness of a 
picture or material. The variation around the mean describes 
the intensity range of the readings as indicated by Equations 
(7)-(9). 

Ng(h) = i∑ (c − e)�.  (c)"TU�R�V                    (8) 

j34@37=6(h�) ∑ (c − e).  (c)"TU�R�V                   (9) 

D. Model Training 

It is assumed that there is a dataset consisting of , 
samples and J  classifications. There are ,  samples in the 
 kl  class, where ,� + ,� + ⋯ + ,n = , . Here Equation 
(10) define the neighbouring matrix o in a manner similar to 
the discriminative analysis:

o�� =    p1 ,k   @0 9/Hℎ 5�  37J 5�  962/75 H/ Hℎ6  kl =23  
0                                                         /Hℎ64c@ 6  q                                                (10)

5� = rℎ�sc�t, … , ℎTsc�tuv
 represents the hidden layer 

for input sample c� , and 5� = sℎ�(c�), … , ℎT(c�)tv
 

represents the hidden layer for input sample c� . Imagine a 
diagonal matrix O  with the following entries: O�� = ∑ o��� , 

where are the sums of the columns (or rows, as o  is 
symmetric) of o.We are able to calculate the Laplacian of the 
graph w = O − o. 

The output weight matrix * maps two vectors, d� and d�, 
to the values of 5�  and 5� , respectively.The following 

objective function Equation (11) should be minimised based 
on the assumption that d�  and d�  should be similar when 5� 

and 5� are from the same class: 

)@7 ∑ xyd� − d�yx�
� o�� = Nz({w{v) �,�                (11) 

The setting for the { = *v| Extreme Learning Machine.  
We may formulate the goal function of graphregularized 
extreme learning machine as follows by including the graph 
regularisation terminus into the conventional ELM model: 

)@7(y|*v| − N|y�
� + ~�Nz(*v|w|v*) + ~�y|*|y�

�
   (12) 

In this context, ~�  and ~�  are regularisation parameters 
that help to balance the effects of the graph regularisation term 

Nz(*v|w|v*) and the ��-norm regularisation term y|*|y�
as 

depicted in Equation (12). 

Equation (13) may obtain * by setting the derivative of 

the objective function P with regard to * as zero, as follows: 

Set P ≜ y|*v| − N|y�
� + ~�Nz(*v|w|v*) + ~�y|*|y�

�
 

��
�( = (2||v* − 2|Nv) + 2~�|w|v* + 2~�* ≜ 0     (13) 

Algorithm 2 summarises the algorithm description of our 
proposed graph regularised Extreme Learning Machine. 

Algorithm 2: Graph Regularized Extreme Learning 
Machine  

Input: training set , =
�sc� �tyc�
ℚ� ,  �
ℚ" , � = 1,2, … , ,�, 
Function ℎ  for activation, quantity of hidden nodes 

� and Parameters of Regularisation: ~� and ~�. 
Output: Display the Weight matrix *; 

Assign input weights �� and biases at random 3� , @ =
1, … , �;  
Determine the output matrix |  of the hidden layer; 

Determine the Laplacian matrix w ; 

Determine the output weight matrix *. 
 
Data collected from sampling a probability distribution 

that has support on or near a submanifold of the ambient space 
has recently [20] been explored by many academics.  

The significance of the local geometrical structure in the 
dataset is highlighted by the fact that, according to the local 
consistency assumption, close points (neighbours) should 
typically have comparable features. By building a closest 
neighbour graph based on some "distance" measurement, 
several graph embedding (regularisation) upgraded models 
were proposed, based on local consistency.  

IV. RESULT AND DISCUSSION 

Many of the body's regulatory processes—including 
memory, emotions, vision, motor abilities, reactions, and 
breathing—are controlled by the brain, which is why it is 
considered one of the most important organs.   

The model was evaluated using the publicly available 
Kaggle dataset, which comprises 3D MRI scans with labelled 
tumor areas.  Performance was assessed by accuracy, 
sensitivity, specificity, and ROC-AUC.   

The RELM model's exceptional sensitivity (93.34%) 
underscores its capacity for early tumor detection, aiding 
radiologists in minimizing diagnostic inaccuracies and 
enhancing patient outcomes. 
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Fig. 2. Accuracy of proposed GELM 

Figure 2 shows the results of our model's validation and 
training runs. A function called keras callbacks computed it. 
We tested the training and validation accuracy with varying 
epoch counts.  

Table I shows how the model suggested in this study 
stacks up against others that have used deep learning (DL) 

techniques to identify brain tumours. A comparative 
performance assessment reveals that the RELM model 
substantially exceeds baseline techniques on Acc, Sensitivity, 
recall and specificity.  

This enhancement is ascribed to the model's capacity to 
handle overdispersed data and refine feature interaction.

TABLE I.  PERFORMANCE EVALUTION  

Models  Acc  Prec Recall F1-Score Sensitivity Specificity 

DCN 90.61 88.52 86.49 90.65 91.15 91.00 
RCNN 89.70 87.63 85.30 89.75 90.27 90.31 

GELM 94.54 91.25 89.37 94.60 93.34 93.47 

UNet 88.40 86.35 84.39 88.45 92.20 92.48 

 
Fig. 3. GELM Confusion Matrix 

The GELM in the suggested model identified 490 MRI 
scans as brain tumors, as shown in Figure 3, while 
misidentifying 20 scans. 

 
Fig. 4. Comparison of Computational time  

Figure 4 provides a comparison of the amount of time 
required to compute using the recommended strategy with the 
time required by the standard methods.  

 
Fig. 5. Error Rate Vs Training-Testing Performace for Brain Tumor  

Figure 5 displays the dataset's most inaccurate DCN 
model. If you want your DCN model to perform better, try 
using the RCNN, UNET model. The GELM model that was 
proposed is more accurate than the DCN model. 

 
Fig. 6. Training and Validation Loss Value  

After the 20th epoch, the loss value approaches zero for 
both the training and validation sets, and it starts dropping is 
shown in Figure 6. 
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V. CONCLUSION 

Since unreliable predictions and diagnoses can emerge 
from human-assisted manual categorization, brain tumor 
segmentation ranks high among the challenging but essential 
challenges in the realm of medical image processing. When 
compared to DCN, R-CNN, UNet, and other state-of-the-art 
classification approaches, our experimental results show that 
our suggested GELM model performs exceptionally well in 
face recognition. Out of all the models tested, the hybrid 
model performed the best with GELM at 95.54% and UNET 
at 88.40%, while DCN and CNN each earned 90.61% and 
89.70%, respectively. This study illustrates that RELM offers 
an effective and precise method for classifying brain tumours 
utilising MRI images. Its lightweight characteristics and 
superior performance render it appropriate for use in resource-
limited clinical settings. Future endeavours involve the 
integration of the RELM framework with convolutional 
autoencoders to improve feature extraction and the expansion 
of the model to accommodate multi-modal imaging data. 
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