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Abstract 

We examine the collective impact of Hall current and radiation-

enhanced thermal sources on the laminar flow of a first-order fluid. 

The fluid under investigation is incompressible, and the analysis 

pertains to the heat transfer and accumulation dynamics when this 

fluid flows over a uniformly heated vertical plate, which is in motion 

at an elevated speed with rotational motion and the inclusion of            

the Dufour (Df) effect. We applied the Laplace method to derive  

solutions for the pertinent mathematical expressions. Subsequent to 

the investigation, measurable data was obtained by analyzing the 

accelerated flow, taking into account specific parameters such                  

as Prandtl, Schmidt, thermal, and accumulation Grashof values. 

According to the findings, speed rises with higher values of heat 

source, Hall current and Grashof parameters, but drops as radiation 

levels rise. Temperature similarly rises with a higher heat source and 

drops with increased radiation levels. Furthermore, with a rise in the 

chemical reaction rate, the concentration drops. 

1. Introduction 

The assessment of fluid flow is a crucial factor within the domain of  

heat transfer in reactors. This examination has practical uses across a broad 
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spectrum of systems, encompassing biological systems as well as household 

and workplace appliances. This analysis is relevant to a wide range of 

applications, spanning business and industrial operations, food preparation, 

cooling of electronic equipment, building HVAC systems, food freezing and 

refrigeration, among many others. In the research presented in reference         

[1-3] Selvaraj et al., the study examines the Dufour (Df) effect on MHD flow 

over a vertically oriented plate that undergoes rapidly increasing speed while 

traversing a permeable substance with fluctuations in both temperature and 

mass diffusion. In a study conducted by Lakshmikaanth and colleagues [4, 5] 

explore how the presence of a heat source affects the fluid flow around a 

vertical plate maintained at a constant temperature subject to parabolic 

acceleration. Reddy and Rao [6] investigated the impact of radiational 

effects over free convection mass-transfer. Velu et al. [7-9] discussed about 

the fluid rotation over vertical plate undergoing acceleration that follows an 

exponential pattern while encountering fluctuations in temperature and the 

influence of Hall current. Satya Narayana et al. [10] showed the existence of 

a chemical process that results in a deceleration of fluid movement. This 

occurs due to the fact that the consumption of chemical species reduces the 

concentration field, subsequently diminishing the buoyancy effects resulting 

from concentration gradients. As a result, the flow field experiences               

a deceleration. Prasada et al. [11] showed that when the Darcy number 

increases, there is rise in acceleration of the flow because of the 

simultaneous increase in medium permeability and a decrease in Darcian 

impedance. Dursunkaya and Worek [12] conducted a study on transient and 

steady natural convection from a vertical surface with diffusion-thermo and 

thermal-diffusion effects. Seddeek [13] investigated the impact of thermal-

diffusion (Soret) and diffusion-thermo (Dufour) effects on a continuous 

laminar boundary layer flow over an accelerating surface featuring a heat 

source. Abreu et al. [14] conducted study on encompassed forced, natural 

convection scenarios and also effects of Dufour-Soret. Bég et al. [15] 

conducted a study focusing on heat and mass transfer behaviors within the 

context of natural convection flow. This flow encompasses a chemically-
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reacting Newtonian fluid and occurs along both vertical and inclined plates. 

Rout and Pattanayak [16] investigated the influence of the introduction          

of a heat source into the MHD flow in the vicinity of a vertical plate 

experiencing exponential acceleration. Srihari [17] investigated how a 

dissipative fluid flowing across a permeable plate impacts Soret-Dufour-

radiation on the MHD flow while simultaneously experiencing the 

occurrence of a chemical process combined with the existence of a heat 

source. Pandya and colleagues [18, 19] examined the impacts of Soret-

Dufour effects, radiation, and chemical reactions on an unsteady MHD flow 

of an incompressible viscous and electrically conducting fluid (dusty) as             

it flows past a continuously moving inclined plate. Rajput and colleagues          

[20-22] examined the behavior of accelerated plates, both vertical and 

inclined, as well as oscillating plates in the context of MHD flow. Their 

study encompasses various effects, including Dufour (Df) and Hall effects. 

Reddy et al. [23] investigated the influence of radiation on the unsteady 

movement of a thick, non-compressible liquid. This fluid also exhibits 

consistent mass spreading subject to the influence of a magnetic field and 

heat generation source. In [24], Anil Kumar et al. focused on investigating 

the effects of Hall current, radiation, diffusion of Soret and Dufour in the 

context of an unsteady MHD flow driven by natural convection over an 

infinitely tall vertical plate that is immobile within a porous medium. 

Hetnarski [25, 26] offered a methodology for deriving inverse Laplace 

transform formulas. 

2. Numerical Formulation 

In this context, we consider a non-conductive vertical plate at ,0=z  

through which a viscous and incompressible fluid, capable of conducting 

current, is flowing. The x-axis runs vertically along the plate, while the           

z-axis is oriented perpendicular to the plate, and the velocity is expressed as 

.2
0tuu =  It should be noted that the pressure remains constant across the 

entire flow field. The obtained results are based on the fulfillment of the 

continuity equation, which describes the various components of the velocity 
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vector. Under these conditions, the flow characteristics solely depend on z 

and t. The following equations govern the transient flow, taking into account 

these assumptions: 
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To solve equations (1) and (2), use ,ivuq +=  to have 

,
2

2

mq
z

q
GcCGr

t

q −
∂
∂++θ=∂

∂
 (5) 

,
2

2

2

2

z

C

CC

KD
QR

zPr

1

t ps

Tm

∂
∂+θ+θ−

∂
θ∂=∂

θ∂
 (6) 

,
1

2

2

kC
z

C

Sct

C −
∂
∂=∂

∂
 (7) 

( ) i
ih

M
m Ω++= 2

1

2

  

with conditions 

,0=q  ,0=θ  0=C  for all ,0, ≤tz  

1,,2 ==θ= Cttq  for all ,0, =tz  

0,0,0 →→θ→ Cq  as .∞→z  (8) 

3. Solution of the Problem 

We solve equation (7): 
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4. Results and Discussion 

The results for various values of k, Sc, Pr, Gr, Gc, Df, h, R and Q. 

 

Figure 1. The chemical reaction rate is usually described by a rate equation, 

which links the changes in the concentrations of reactants and products               

to their initial concentrations. The specific form of this rate equation                 

is dependent on the reaction mechanism and is determined through 

experimental techniques. In some situations, a rise in the reaction constant, 

denoted as ‘k’, corresponds to a higher reaction rate. This results in a more 

rapid consumption of reactants and consequently leads drops in their 

concentrations as time progresses. 
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Figure 2. In different circumstances, rising the Schmidt numbers signifies 

that the diffusivity of a particular species is relatively lower in comparison  

to the transfer of momentum. This implies that the fluid is more efficient at 

carrying momentum compared to the specific species in question, like the 

solute concentration in a liquid. As a result, in such cases, the fluid tends to 

disperse more easily than the species it is transporting, releads in a decrease 

in concentration levels. 
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Figure 3. The temperature’s behavior concerning the Prandtl number 

depends on the flow characteristics and boundary conditions. In some 

scenarios, an increased Prandtl number can result in slower thermal mixing, 

leading to greater temperature gradients. Conversely, in other instances, it 

can facilitate quicker heat transfer and a more even temperature distribution. 
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Figure 4. The influence of the radiation parameter on temperature behavior 

varies according to the particular system and conditions at hand. Typically, 

an elevation in radiation values might result in a greater influence of 

radiative heat transfer and could potentially alter the temperature distribution 

within the system. 
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Figure 5. The heat source, denoted as “Q”, signifies the quantity of thermal 

energy introduced into a system. This energy input can take the form of 

external heating, like that from a burner or electrical heating element, or it 

can originate internally within the system through chemical reactions or 

other processes. When heat is introduced into a system, it is dispersed among 

its individual particles, leading to an elevation in their kinetic energy, which, 

in turn, results in a rise in temperature. 
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Figure 6. A raise in the Dufour (Df) number suggests a higher relative 

significance of mass diffusion and thermal diffusion contributions. While 

this may affect the overall heat transfer characteristics of the flow, it does 

not influence the direction of the temperature profile, meaning it does not 

cause either a decrease or increase in temperature. 
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Figure 7. The influence of the Dufour (Df) number on velocity is contingent 

on the specific flow conditions, boundary conditions, and system geometry 

in question. The connection between the Dufour number and velocity is 

more intricate and varies according to the particular flow scenario under 

consideration. 
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Figure 8. A raise in the thermal Grashof (Gr) number can lead to more 

vigorous convective motion and result in higher flow velocities. This occurs 

because higher values of the thermal Grashof (Gr) number indicate a              

more pronounced buoyancy-driven flow, often due to larger temperature 

differences or more significant variations in fluid properties, such as density. 
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Figure 9. The mass Grashof number is frequently employed to study natural 

convection flows associated with mass transfer, especially diffusion-driven 

flows. An increase in the mass Grashof number signifies a more robust 

buoyancy-driven flow, often caused by greater disparities in density or 

variations in fluid properties, such as diffusivity. In these scenarios, a higher 

mass Grashof number encourages more vigorous convective motion and 

leads to elevated velocity levels. The buoyant forces prompt the fluid to 

move more swiftly, resulting in higher flow velocities. 
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Figure 10. The thermal radiation is commonly linked to radiative transfer of 

heat which encompasses the transfer of heat through electromagnetic waves, 

particularly infrared radiation. Typically, the radiation parameter serves as 

an indicator of the significance of radiative heat transfer in relation to other 

heat transfer modes like conduction or convection. Although radiative heat 

transfer can impact the temperature distribution within a system, it does         

not have a direct effect on the velocity of fluid flow. Velocity is mainly 

determined by factors such as pressure gradients, fluid properties, and the 

characteristics of the flow regime (e.g., laminar or turbulent). 
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Figure 11. Introducing a heat source into a fluid system has the potential     

to influence fluid flow and may bring about alterations in velocity. 

Nonetheless, the precise relationship between the heat source and velocity is 

intricate. In certain situations, an augmentation of the heat source can indeed 

result in an elevation of velocity. For instance, in a forced convection system 

where a fluid is compelled to move through external means like a pump or a 

fan, augmenting the heat input can lead to an increased flow rate and higher 

velocities. 
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Figure 12. An increase in Hartmann numbers generally leads to a higher 

magnetic field strength relative to viscous forces. This, in turn, can bring 

about changes in flow characteristics, like the damping of turbulence or 

modifications in flow patterns. 
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Figure 13. When the Hall current, denoted as ‘h’, increases, there is a direct 

association with an elevation in velocity. As ‘h’ increases, speed similarly 

exhibits a corresponding upward trend. The influence of the Hall current       

on speed is established through intricate interactions involving the Lorentz 

force, the electric field, and the magnetic field. These interactions can result 

in alterations in flow patterns, the stability of the flow, or the emergence of 

intricate plasma phenomena. However, the precise connection between the 

Hall current and velocity necessitates a detailed analysis of the particular 

system in question. 
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Figure 14. In the realm of fluid dynamics, the existence of rotation can  

exert a noteworthy impact on flow characteristics. As the rotation parameter 

escalates, it signifies a more pronounced rotation or angular velocity within 

the system. This rotational motion can provoke alterations in flow patterns 

and bring about heightened flow velocities. In specific scenarios, an 

augmentation in the rotation parameter can amplify circulation or streamline 

curvature, ultimately resulting in increased velocities. This phenomenon is 

particularly conspicuous in rotating flows, including swirling flows or flows 

occurring within rotating machinery. 
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Figure 15. The impact of Schmidt numbers on velocity depends on the 

specific flow regime, boundary conditions, and the attributes of the mass 

transfer process. In some cases, an increase in the Schmidt number can 

indeed result in a reduction in velocity. This situation arises when the mass 

diffusivity is relatively low compared to the momentum diffusivity, implying 

that the species being transported (e.g., the concentration of a solute)      

diffuse at a slower rate than the fluid momentum, thereby causing reduced 

velocities. 
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Figure 16. There is no direct and universally applicable connection between 

the chemical reaction rate (k) and the velocity in fluid flow systems. The 

chemical reaction rate signifies the pace at which a chemical reaction occurs 

and is generally independent of the fluid flow velocity. In fluid dynamics, 

the flow velocity is primarily governed by factors like pressure gradients, 

boundary conditions, flow geometry, and the nature of the fluid itself. While 

chemical reactions can impact fluid properties and behavior, their direct 

influence on velocity is contingent on the specific characteristics of the 

system and the coupling between chemical reactions and fluid dynamics.         

In certain scenarios, specific chemical reactions may yield products that 

influence flow behavior, such as modifying viscosity or altering fluid 

properties. These alterations can indirectly impact flow velocity. 
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Figure 17. The influence of the Prandtl number on velocity is contingent 

upon the specific flow regime and the heat transfer mechanisms in play. In 

specific cases, particularly in forced convection flows where heat transfer 

plays a significant role, a rise in the Prandtl number may lead to a reduction 

in velocity. This phenomenon occurs because higher Prandtl numbers are 

linked to slower thermal diffusion, which leads to larger thermal boundary 

layers and reduced velocity gradients near solid boundaries. 

5. Conclusion 

We provide a convenient and captivating framework for computational 

analysis, with a specific emphasis on the swift isothermal flow along              

a vertical plate which involves heat and mass transfer. From these 

calculations, various essential relationships are deduced: 

  (i) A rise in velocity corresponds to a rise in radiation. The Hartmann 

number, M, and the Dufour (Df) number lead to a decrease in velocity. 

Higher Grashof numbers indicate greater fluid velocities, signifying a more 
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significant impact of buoyancy-driven flow. Velocity also rises with the 

expansion of the heat source, Q, and with the increase in Hall current, h. 

 (ii) With an increase in radiation (R), temperature decreases. 

Temperature, on the other hand, rises with an increase in heat source, Q. 

(iii) As the rate of chemical reaction, denoted by k, rises, the species’ 

concentration involved tends to decrease. This relationship suggests that a 

higher reaction rate results into a more rapid conversion of reactants into 

products, leading to a reduction in their concentrations over time. 

In summary, the incorporation of various factors into our research has 

led to a comprehensive list of findings. Continual additions to our study will 

allow us to further refine and deepen our understanding. 
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