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Abstract:  

Let 𝑆 be a 𝑐𝑟-set of graph 𝐺 and let 𝐺 be a connected graph. If 𝑆 is the only 𝑐𝑟-set that 

contains 𝑇, then a subset 𝑇 ⊆ 𝑆 is referred to be a forcing subset for 𝑆. A minimum 

forcing subset of 𝑆 is a forcing subset for 𝑆 of minimum cardinality. The cardinality 

of a minimum forcing subset of 𝑆 is the forcing circular number of 𝑆, represented by 

the notation 𝑓𝑐𝑟(𝑆). 𝑓𝑐𝑟(𝐺) = min {𝑓𝑐𝑟(𝑆)} is the forcing circular number of 𝐺, where 

the minimum is the sum of all minimum forcing circular-sets 𝑆 in 𝐺. For several 

standard graphs, the forcing circular number is identified. It is demonstrated that there 

exists a connected graph G such that 𝑓𝑔(𝐺) = 𝑎 and 𝑓𝑐𝑟(𝐺) = 𝑏 for every integer 𝑎 ≥

0, and 𝑏 ≥ 0. 

Keywords: 𝑐𝑟-set, circular number, forcing circular number. 

AMS Subject Classification: 05C12. 

 

1. Introduction and Preliminaries 

A graph 𝐺 =  (𝑉, 𝐸) is a connected, finite graph that does not have loops or numerous edges. 𝐺 is 

represented by the symbols 𝑛 and 𝑚, respectively, for order and size. We use [1,6] for basic 

terminology in graph theoretic. If 𝑢𝑣 ∈  𝐸(𝐺), “then two vertices, 𝑢 and 𝑣, are considered nearby in 

𝐺. The collection of vertices next to a vertex 𝑣 in 𝐺 is called its neighbourhood, or 𝑁(𝑣). The vertex 

𝑣 has a degree of 𝑑𝑒𝑔(𝑣)  =  |𝑁(𝑣)|. We refer to u as an end edge, u as a leaf, and v as a support 

vertex if 𝑒 =  {𝑢, 𝑣}  is an edge of a graph G with 𝑑𝑒𝑔(𝑢)  =  1 and 𝑑𝑒𝑔(𝑣)  >  1. The greatest degree 

of a graph 𝐺 is shown by ∆(𝐺). 𝐺[𝑆] is the representation of the subgraph that a set 𝑆 of vertices of a 

graph 𝐺 induces, where 𝑉 (𝐺[𝑆])  =  𝑆  and 𝐸(𝐺[𝑆])  =  {𝑢𝑣 ∈  𝐸(𝐺) ∶  𝑢, 𝑣 ∈  𝑆}. A vertex 𝑣 is an 

extreme vertex of 𝐺 if and only if 𝐺[𝑁(𝑣)] is complete. 

The length of the shortest path between two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) is the distance 𝑑(𝑢, 𝑣). A 𝑢 − 𝑣 

geodesic of 𝐺 is any 𝑢 − 𝑣 path of length 𝑑(𝑢, 𝑣). If 𝑥 is a vertex of 𝑃 and 𝑥 ≠  𝑢, 𝑣, then 𝑥 is an 

internal vertex of a e𝑢− e𝑣 path 𝑃. 𝐼[e𝑢, e𝑣] is the closed interval consisting of 𝑢, 𝑣 and all vertices that 

are on a e𝑢− e𝑣 geodesic of 𝐺. The closure of a non-empty set 𝑆 ⊆  𝑉 (𝐺) is given by the set 𝐼[𝑆]  =

 ⋃  𝐼[𝑢, 𝑣]𝑢,𝑣∈𝑆 . If 𝐼[𝑆] =  𝑉 (𝐺), then a set 𝑆 ⊆  𝑉e(𝐺) is a geodetic set. The geodetic number of 𝐺, 

represented by 𝑔(𝐺), is the lowest cardinality of a geodetic set of 𝐺. A 𝑔 −set of 𝐺 is a geodetic set” 

of minimum cardinality. See [3,4,8] for references on geodetic parameters in graphs.  

The longest path between two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) is the detour distance 𝐷(𝑢, 𝑣). A 𝑢 − 𝑣 detour of 

𝐺 is any a𝑢− a𝑣 path of length 𝐷(a𝑢, a𝑣). All vertices of the closed interval 𝐼𝐷[𝑢, 𝑣] lie on some 𝑢 − 𝑣 
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detour of 𝐺, and the interval itself consists of 𝑢, 𝑣. The closure of a non-empty set 𝑆 ⊆  𝑉 (𝐺) is given 

by the set 𝐼𝐷[𝑆]  =  ⋃  𝐼𝐷[𝑢, 𝑣]𝑢,𝑣∈𝑆 . A detour set is then defined as a set 𝑆 ⊆  𝑉 (𝐺). The detour 

number of G, represented by 𝑑𝑛(𝐺), is the lowest cardinality of a detour set of 𝐺. A 𝑑𝑛-set of 𝐺 is a 

diversion set with minimum cardinality. Hence [5,7] covered the study of these ideas. 

𝐷𝑐(𝑢, 𝑣) represents the circular distance between 𝑢 and 𝑣, which is represented as  

𝐷𝑐(a𝑢, a𝑣) = {
𝐷(a𝑢, a𝑣) + 𝑑(𝑢, 𝑣)     if a𝑢 ≠ a𝑣
               0                     if a𝑢 = a𝑣

 

The detour distance and the distance between 𝑢 and 𝑣 are denoted by 𝐷(a𝑢, 𝑣) and 𝑑(a𝑢, 𝑣), 

respectively. The circular diameter 𝐷𝑐 is the longest circular distance between 2 vertices on 𝐺. An 𝑢 −

𝑣 circular of 𝐺 is any 𝑢 − 𝑣 path of length 𝐷𝑐(𝑢, 𝑣). The circular diameter 𝐷𝑐 is the longest circular 

distance between 2 vertices on 𝐺. For  𝑢, 𝑣 ∈ 𝑉, 𝐼𝑐[𝑢, 𝑣] represents group of every vertex positioned 

on a 𝑢 − 𝑣 circular in 𝐺. For 𝑆 ⊆ 𝑉(𝐺), let 𝐼𝑐[𝑆] = ⋃ 𝐼𝑐[𝑢, 𝑣].𝑢,𝑣 ∈𝑆  These concepts were studied in 

[2,9,10]. 

Theorem 1.1. [2] In a connected graph, every geodetic set of 𝐺 has an extreme vertex. 

Theorem 1.2. [2] Let 𝑊 be the set of all geodetic sets in graph 𝐺. Then 𝑓𝒈(𝐺)  ≤ 𝑔(a𝐺)– |a𝑊|. 

2. The forcing circular number of a graph 

Definition 2.1. A subset 𝑇 ⊆  𝑆 is referred to as a forcing subset for e𝑆, if 𝑆 is the only 𝑐𝑟-set that 

contains 𝑇. A forcing subset of minimum cardinality for e𝑆 is known as a minimum forcing subset of 

𝑆. The forcing circular number of 𝐺 is denoted by the notation 𝑓𝑐𝑟(𝐺) =  min{𝑓𝑐𝑟(𝑆)}, where the 

minimum is established over all 𝑐𝑟-sets 𝑆 in 𝐺. The cardinality of a minimum forcing subset of 𝑆 is 

the forcing circular number” of 𝑆.   

Example 2.2. The only two 𝑐𝑟-sets of the graph G displayed in Figure 2.1 are 𝑆1 = {a𝑣1, a𝑣4, 𝑣5} and 

 𝑆2 = {a𝑣1, a𝑣4, 𝑣6}  such that 𝑓𝑐𝑟(𝑆1) =  𝑓𝑐𝑟(𝑆2) = 1 and 𝑓𝑐𝑟(𝐺)  = 1. 

Figure 2.1 
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Observation 2.3. For each graph 𝐺 that is connected, 0 ≤ 𝑓𝑐𝑟(𝐺) ≤ 𝑐𝑟(𝐺). 

Remark 2.4. Observation 2.3 has sharp bounds. For 𝐺 = 𝑃3, 𝑓𝑐𝑟(𝐺) = 0.  

For 𝐺 = 𝐶4 with vertex set 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝑆1 = {a𝑣1, a𝑣2}, 𝑆2 = {a𝑣2, a𝑣3}, 𝑆3 = {𝑣3, 𝑣4}, 𝑆4 =

{𝑣7, a𝑣4},   𝑆5 = {𝑣1, a𝑣3} and 𝑆6 = {a𝑣2, a𝑣4}  are the only six 𝑐𝑟-sets of a𝐺 there exists 𝑓𝑐𝑟(𝑆𝑖) = 2, 1 ≤

𝑖 ≤ 6 so that 𝑓𝑐𝑟(𝐺) = 𝑐𝑟(𝐺) = 2.  

Additionally, the limitations in Observation 2.3 may be extremely rigorous. The graph 𝐺 shown in 

Figure 2.1 has two values: 𝑐𝑟(𝐺) = 2 and 𝑓𝑐𝑟(𝐺) = 1. Hence 0 < 𝑓𝑐𝑟(𝐺) < 𝑐𝑟(𝐺). 

Theorem 2.5. Consider a connected graph, 𝐺. Following that 

i) 𝑓𝑐𝑟(𝐺) = 0 iff 𝐺 has a unique minimum 𝑐𝑟-set of 𝐺. 

ii) 𝑓𝑐𝑟(𝐺) = 1 iff 𝐺 possesses a minimum of two 𝑐𝑟-sets, at least one of which is a distinct 𝑐𝑟-et that 

includes one of its elements. 

iii) 𝑓𝑐𝑟(𝐺) = 𝑐𝑟(𝐺) iff any proper subset of 𝐺 that is not contained in any 𝑐𝑟-set is the unique minimal 

𝑐𝑟-set of G. 

Definition 2.6. A vertex 𝑣 “of a connected graph 𝐺. If 𝑣 belongs to each 𝑐𝑟-set of 𝐺, then 𝑣(𝐺) is 

considered to be a circular vertex of 𝐺.      

   Example 2.7. For the graph 𝐺 shown in Figure 2.2, the set of all circular vertices of 𝐺 is represented 

by {𝑣1, 𝑣3, 𝑣5}  since 𝑆1 = {e𝑣1, e𝑣3, 𝑣5, e𝑣6} and  𝑆2 = {e𝑣1, 𝑣3, 𝑣5, 𝑣9} are the only two 𝑐𝑟-sets” of e𝐺. 

 

Figure 2.2 

Theorem 2.8. Let 𝑊 be the set of all circular vertices of connected graph 𝐺.  Then 𝑓𝑐𝑟(e𝐺)  ≤

𝑐𝑟(e𝐺)– |e𝑊|. 

  Remark 2.9. The bounds in Theorem 2.8 are precise. Regarding the graph G shown in Figure 2.2,  

|e𝑊| = 3, 𝑐𝑟(𝐺) = 4 and 𝑓𝑐𝑟(𝐺) = 1. Thus 𝑓𝑐𝑟(𝐺) = 𝑐𝑟(𝐺)– |𝑊|. Moreover, the bounds in Theorem 

2.8 may be rigid. With respect to graph G displayed in Figure 2.3, 𝑆1 = {a𝑣1, a𝑣4, a𝑣5, a𝑣7}, 𝑆2 =

{a𝑣1, a𝑣4, a𝑣5, a𝑣8}, 𝑆3 = {𝑣1, a𝑣4, a𝑣5, 𝑣9}, 𝑆4 = {a𝑣2, a𝑣4, a𝑣5, a𝑣7}, 𝑆5 = {a𝑣2, 𝑣4, a𝑣5, 𝑣8} and  𝑆6 =
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{𝑣2, 𝑣4, 𝑣5, 𝑣9} are the six 𝑐𝑟-sets of 𝐺 so that {𝑣1, 𝑣4, 𝑣5} is the set of all circular vertices of e𝐺 there 

exists 𝑓𝑐𝑟(𝐺) = 1 and 𝑐𝑟(𝐺) = 3.  

 

Figure 2.3 

    Theorem 2.10. “For the complete bipartite graph 𝐺 =  e𝐾𝑟,𝑠, (1 ≤ e𝑟 ≤  𝑠), 

   𝑓𝑐𝑟(𝐺) = {
0    𝑖𝑓 𝑟 = 1, e𝑠 ≥ 2
2   𝑖𝑓 2 ≤ e𝑟 ≤ e𝑠    

 

Proof. Let  𝑈 =  {e𝑢1,  e𝑢2, . . . , e𝑢𝑟} and 𝑊 = {e𝑤1,  e𝑤2, . . . , e𝑤𝑠}  be the bipartite sets of 𝐺.  

   For 𝑠 ≥ 2 and 𝑟 = 1, 𝑆 = 𝑊 is the distinct 𝑐𝑟-set of e𝐺 so that 𝑓𝑐𝑟(e𝐺) = 0. Hence 2 ≤ e𝑟 ≤ e𝑠. Let 

𝑤 ∈ 𝑊 and 𝑢 ∈ 𝑈. Such that 𝑆 = {𝑢,𝑤} is a 𝑐𝑟-set of 𝐺.” Since this is true for all  e𝑢∈ e𝑈 and e𝑤∈ e𝑊, 

𝑆 is not unique 𝑐𝑟-set of 𝐺 containing 𝑢 or 𝑤. Therefore 𝑓𝑐𝑟(𝐺) = 2. As this holds “true for every 𝑐𝑟-

sets 𝑆 of e𝐺, 𝑓𝑐𝑟(e𝐺) = 2.  

Theorem 2.11. For the non-trivial tree 𝑇, 𝑓𝑐𝑟(𝑇) = 0. 

Proof. Considering 𝑆 to be the collection of all end vertices in 𝐺, 𝑆 is the only 𝑐𝑟-set in 𝐺 such that 

𝑓𝑐𝑟(𝐺) = 0. 

Theorem 2.12. “For the cycle e𝐺 = e𝐶𝑛,(e𝑛≥4), 𝑓𝑐𝑟(e𝐺) = 2.” 

Proof. Let 𝑥 and 𝑦 represent any two vertices of 𝐺. There exists 𝑆 = {𝑥, 𝑦} is a 𝑐𝑟-set of 𝐺. Hence e𝑥 

and e𝑦 are arbitrary, 𝑆 is not a unique 𝑐𝑟-set containing 𝑥 or 𝑦. Therefore 𝑓𝑐𝑟(𝐺) = 2. As this holds true 

for all 𝑐𝑟-sets 𝑆 of 𝐺 ” therefore 𝑓𝑐𝑟(𝐺) = 2.  

Theorem 2.13. “For the wheel e𝐺 = e𝐾
1
+𝐶

𝑛−1
,(e𝑛≥5), 𝑓𝑐𝑟(e𝐺) = 1.” 

Proof. Assume that 𝑥 represents the central vertex of 𝐺 and e𝐶𝑛−1 be 𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣1. Then 𝑆𝑖 =

{𝑥, 𝑣𝑖} (1 ≤ 𝑖 ≤ 𝑛 − 1) and 𝑆 = {𝑢, 𝑣} where 𝑢 and 𝑣 are any two vertices in 𝐶𝑛−1  are the 𝑐𝑟-sets of 

𝐺. Now 𝑓𝑐𝑟(𝑆𝑖) = 1 (1 ≤ 𝑖 ≤ 𝑛 − 1). Since 𝑢 and 𝑣 are arbitrary, 𝑆 is not a dsitinct 𝑐𝑟-set containing 

𝑢 or 𝑣. Therefore 𝑓𝑐𝑟(𝐺) = 2. Hence it follows that 𝑓𝑐𝑟(𝐺) = 1.                                                                

Theorem 2.14. “For the fan graph 𝐹𝑛 = e𝐾1 + 𝑃𝑛−1, (e𝑛 ≥ 5), 𝑓𝑐𝑟(e𝐺) = 1.” 
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Proof. Suppose that 𝑥 represents the central vertex of of 𝐺 and 𝑉(𝑃𝑛−1) = {𝑣1, 𝑣2, … , 𝑣𝑛−1}. Then 

𝑆𝑖 = {𝑥, 𝑣𝑖}  (1 ≤ 𝑖 ≤ 𝑛 − 1) and 𝑆 = {𝑢, 𝑣} where 𝑢 and 𝑣 are any two vertices in 𝑃𝑛−1    are the 𝑐𝑟-

sets of 𝐺. Now 𝑓𝑐𝑟(𝑆𝑖) = 1 (1 ≤ 𝑖 ≤ 𝑛 − 1). Since 𝑢 and 𝑣 are arbitrary, 𝑆 is not a unique 𝑐𝑟-set 

containing 𝑢 or 𝑣. Therefore 𝑓𝑐𝑟(𝐺) = 2. Hence it follows that 𝑓𝑐𝑟(𝐺) = 1.                          

3. The Forcing Geodetic Numbers and the Forcing Circular Number of a Graph 

           The forcing geodetic numbers and the forcing circular number of a graph have no relationship, 

as the example below demonstrates. 

                             

 Example 3.1. The unique 𝑔-set of the graph 𝐺 shown in Figure 3.1 is indicated as ,  𝑆 = {𝑣1, 𝑣4, 𝑣5}. 

Therefore 𝑓𝑔(𝐺) = 0. Also “𝑆1 = {𝑣1, 𝑣4} and  𝑆2 = {𝑣1, 𝑣5}  are the only two 𝑐𝑟-sets of 𝐺 such that  

𝑓𝑐𝑟(𝐺) = 1. Thus 𝑓𝑔(𝐺) < 𝑓𝑐𝑟(𝐺).  

 Example 3.2. The unique 𝑐𝑟-set of the graph 𝐺 shown in Figure 3.2 is represented as  𝑆 = {𝑣1, 𝑣2}. 

Therefore 𝑓𝑐𝑟(𝐺) = 0. Also 𝑆1 = {𝑣1, 𝑣3, 𝑣6} and  𝑆2 = {𝑣1, 𝑣4, 𝑣6}  are the only  𝑔-sets of 𝐺 so that  

𝑓𝑔(𝐺) = 1.” Thus 𝑓𝑔(𝐺) > 𝑓𝑐𝑟(𝐺).  

 

Theorem 3.3. In a connected graph 𝐺, 𝑓𝑔(𝐺) = 𝑎 and 𝑓𝑐𝑟(𝐺) = 0 exist for each integer 𝑎 ≥ 0. 

Proof. Assume that 𝑃: 𝑢, 𝑣, 𝑤, 𝑥 is an order four path. Consider 𝑃𝑖: 𝑢𝑖 , 𝑣𝑖  (1 ≤ 𝑖 ≤ 𝑎) represent an 

identical pair of vertices. Let 𝐺 be the graph generated by adding the edges 𝑣𝑢𝑖 and 𝑤𝑣𝑖 to 𝑃 and  

𝑃𝑖   (1 ≤ 𝑖 ≤ 𝑎).  The figure 3.3 displays the graph 𝐺.  

        𝐺 

Figure 3.1 
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We first establish that 𝑓𝑔(𝐺) = 𝑎.  Let 𝑍 = {𝑢, 𝑥} represent all of 𝐺's end vertices.  𝑍 is a subset of 

every 𝑔-set in 𝐺, according to Theorem 1.1. For (1 ≤ 𝑖 ≤ 𝑎), consider  𝐻𝑖 = {𝑢𝑖 , 𝑣𝑖}. It is easily shown 

that 𝑔(𝐺) ≥ 𝑎 since every vertex in the 𝑔-set of 𝐺 contains exactly one vertex from each 

𝐻𝑖(1 ≤ 𝑖 ≤ 𝑎). Let 𝑆 = 𝑍 ∪ {𝑢1, 𝑢2, … , 𝑢𝑎}. As a result, 𝑆 is a 𝑔-set of 𝐺 and 𝑔(𝐺) = 𝑎 + 2, as 𝐼[𝑆] =

𝑉(𝐺). For every 𝑔-set of 𝐺 contains a subset, 𝑍. By Theorem 1.2, 𝑓𝑔(𝐺) ≤ 𝑔(𝐺) − |𝑍| = 𝑎 + 2 − 2 =

𝑎. Therefore 𝑓𝑔(𝐺) ≤ 𝑎.  

Considering that 𝑔(a𝐺) = a𝑎 + 2 and that 𝑍 exists in every 𝑔-set of 𝐺, following that each 𝑔-set of 𝐺, 

if so, has the form 𝑆 = 𝑍 ∪ {a𝑐1, a𝑐2, … , a𝑐𝑎}, where 𝑐𝑖 ∈ 𝐻𝑖(1 ≤ 𝑖 ≤ 𝑎). Given |𝑇| < 𝑎, let 𝑇 be any 

proper subset of 𝑆. After that, a𝑐𝑗  (1 ≤  a𝑗 ≤  a𝑎) is a vertex such that a𝑐
𝑗
∉ a𝑇. Assume that 𝑏𝑗, a vertex 

of 𝐻𝑗, is distinct from a𝑐
𝑗
. Consequently, a𝑆

1
=

(

 a𝑆−
{
 

 
a𝑐
𝑗} 
 

)

 ∪
{
 
 

 
 

a𝑏
𝑗
}
 
 

 
   is a g-set that properly contains 𝑇. As a 

result, 𝑇 is not a forcing subset of S. For every minimum 𝑔-set of 𝐺, this holds true. Therefore  𝑓𝑔(𝐺) =

𝑎.  

Next we prove that 𝑓𝑐𝑟(𝐺) = 0. Since 𝑍  is the distinct 𝑐𝑟-set of 𝐺, 𝑓𝑐𝑟(𝐺) = 0.   

 

Figure 3.3 

Theorem 3.4. For every integer 𝑎 ≥ 0, “there exists a connected graph 𝐺 such that 𝑓𝑔(𝐺) = 0 and 

𝑓𝑐𝑟(𝐺) = 𝑎. 

For every integer 𝑎 ≥ 0, there exists a connected graph 𝐺 such that 𝑓𝑔(𝐺) = 𝑎 and 𝑓𝑐𝑟(𝐺) = 𝑎. 

Proof. Let 𝑃′: 𝑤1, 𝑤2, 𝑤3  be a path of order 3, and “consider 𝑃𝑖: 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 be a path of order 5. Let 

𝑃𝑖e: 𝑟𝑖e, 𝑠𝑖e (1 ≤ 𝑖 ≤ 𝑎) be an order 2 replica of the path. Let 𝐺e be the graph created by adding the edges 

𝑡2𝑤1, 𝑡2𝑤2, 𝑡4𝑤2, 𝑡4𝑤3, 𝑡2𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑎) and  𝑡4𝑆𝑖  (1 ≤ 𝑖 ≤ 𝑎) to 𝑃′ and 𝑃𝑖 (1 ≤ 𝑖 ≤ 𝑎). The Figure 

3.4 displays the graph 𝐺.   

 First, we establish that 𝑓𝑐𝑟(𝐺) = 𝑎. Let the set of all of 𝐺's end vertices be 𝑍 = {𝑡1, 𝑡5}.  Such 

that 𝑍 is therefore a subset of each 𝑐𝑟-set of 𝐺 according to Theorem 1.1. 𝐻𝑖e: {𝑟𝑖 e, 𝑠𝑖e} (1 ≤ 𝑖 ≤ 𝑎) be 

given. Then, it is evident that 𝑐𝑟(𝐺) ≥ 𝑎 + 2 since every circular set of 𝐺 has at least one vertex from 



Communications on Applied Nonlinear Analysis 

ISSN: 1074-133X 

Vol 31 No. 4s (2024) 

 

225 https://internationalpubls.com 

each 𝐻𝑖  (1 ≤ 𝑖 ≤ 𝑎). Let 𝑆 = 𝑍 ∪ {𝑟1, 𝑟2, … , 𝑟𝑎}.  𝐼𝐷𝑐[𝑆] = 𝑉(𝐺) in this case, indicating that 𝑆 is a 

circular set of 𝐺 and hence 𝑐𝑟(𝐺) = 𝑎 + 2. As 𝑍 is a subset of each 𝑐𝑟-set of 𝐺e, 𝑓𝑐𝑟(𝐺) ≤ 𝑐𝑟(𝐺) −

|𝑍| = 𝑎 + 2 − 2 = 𝑎, according to Theorem 2.3. Consequently, 𝑓𝑐𝑟(𝐺) ≤ 𝑎. Given that 𝑐𝑟(𝐺) = 𝑎 =

2, Furthermore, it is evident that every 𝑐𝑟-set of 𝐺 that contains 𝑍 has the form 𝑆 = 𝑍e ∪ {𝑐1 e, 𝑐2, … , 𝑐𝑎}, 

where 𝑐𝑖 ∈ 𝐻𝑖 (1 ≤ 𝑖e ≤  𝑎). Given |𝑇| < 𝑎e, let 𝑇 be any suitable subset of 𝑆. After that, 

𝑐𝑗  (1 ≤  𝑗e ≤  𝑎) is a vertex such that 𝑐𝑗 ∉ 𝑇. Assume that 𝑏𝑗, a vertex of 𝐻𝑗, is different from 𝑐𝑗. 

Subseequently, 𝑆1 = (𝑆 − {𝑐𝑗}) ∪ {𝑏𝑗} is a 𝑐𝑟-set that correctly contains 𝑇. 𝑇 is not a forced subset of 

𝑆” as a result. For every minimum 𝑐𝑟-set of 𝐺, this is true. Consequently, 𝑓𝑐𝑟(𝐺) = 𝑎. 

          Next, we prove that 𝑓𝑔(𝐺) = 𝑎. The representation of every extreme vertex in 𝐺 is 𝑍1 = 𝑍 ∪

{𝑤1, 𝑤3}.  Theorem 1.1 states that every 𝑔-set in 𝐺 is a subset of 𝑍1. Give 𝐻𝑖: {𝑟𝑖 e, 𝑠𝑖 e} (1 ≤ 𝑖e ≤ 𝑎). 

Since every 𝑔-set of 𝐺 contains at least one vertex from every  𝐻𝑖(1 ≤ 𝑖e ≤ 𝑎), it is easy to demonstrate 

that 𝑔(𝐺) ≥ 𝑎 + 4. 𝑆 = 𝑍1 ∪ {𝑟1, 𝑟2, … , 𝑟𝑎} is assumed. Consequently, since 𝐼[𝑆] = 𝑉(𝐺), 𝑆 is a 𝑔-set 

of 𝐺 and 𝑔(𝐺) = 𝑎 + 4. All of the 𝑔-sets in 𝐺 have a subset called 𝑍1. The 𝑓𝑔(𝐺) ≤ 𝑎 Theorem applies.  

𝑍1 appears in every 𝑔-set of 𝐺, and since 𝑔(𝐺) = 𝑎 + 4, it follows that every 𝑔-set of 𝐺 has the form 

𝑆 = 𝑍1 ∪ {𝑐1, 𝑐2 e, … , 𝑐𝑎 e}, where 𝑐𝑖 ∈ 𝐻𝑖(1 ≤ 𝑖e ≤ 𝑎e). Let 𝑇 be any appropriate subset of 𝑆 such that 

|𝑇| < 𝑎. After that, a vertex such that is 𝑐𝑗 ∉ 𝑇 is 𝑐𝑗  (1 ≤  𝑗 ≤  𝑎). Presume that 𝑡𝑗, one of  𝐻𝑗 's 

vertices, is distinct from 𝑐𝑗. Consequently, a 𝑔-set that suitably contains 𝑇 is 𝑆1 = (𝑆 − {𝑐𝑗}) ∪ {𝑏𝑗}. 

As such, 𝑇 is not a forced subset of 𝑆. This is valid for any smallest 𝑔-set of 𝐺. As a result, 𝑓𝑔(𝐺) = 𝑎.  

 

Figure 3.4 

Theorem 3.5. Let G be a connected graph. For every integer 𝑎 ≥ 0, and 𝑏 ≥ 0, there exists 𝑓𝑔(𝐺) = 𝑎 

and 𝑓𝑐𝑟(𝐺) = 𝑏. 

 Proof. Case (i) 𝑎 = 0, 𝑏 ≥ 1. The graph produced in Theorem 3.3 meets the requisite requirement. 

Case (ii) 𝑎 ≥ 1, 𝑏 = 0. The graph constructed Theorem 3.3, satisfies the required condition. 

Case (iii) 𝑎 = 𝑏 ≥ 1. The graph constructed Theorem 3.4, satisfies the required condition. 
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Case (iv) 0 < 𝑎 < 𝑏. Consider the graph 𝐺 given in Figure 3.5. 

                We first establish that 𝑓𝑔(𝐺) = 𝑎. The set of all extreme vertex of 𝐺 is denoted by 𝑍 =

{𝑡, 𝑤1, 𝑤3, 𝑥1, 𝑥2, … , 𝑥𝑏−𝑎, 𝑦1, 𝑦2, … , 𝑦𝑏−𝑎}. Thus 𝑍 is a subset of each geodetic set in 𝐺, according to 

Theorem 3.4. 𝐻𝑖: {𝑟𝑖, 𝑠𝑖} (1 ≤ 𝑖 ≤ 𝑎) be given.  Every geodetic set of “𝐺 has exactly one vertex from 

each 𝐻𝑖  (1 ≤ 𝑖e ≤ 𝑎), as can be seen easily. As a result, (𝐺) ≥ 3 + 𝑏 − 𝑎 + 𝑏 − 𝑎 + 𝑎 = 2𝑏 − 𝑎 + 3. 

Let 𝑆e = 𝑍 ∪ {e𝑟1, e𝑟2, … , e𝑟𝑎}. Thus, 𝑆 is a geodetic set of 𝐺e since 𝐼[e𝑆] = 𝑉(𝐺). Consequently, 𝑔(e𝐺) =

2𝑏 − 𝑎 + 3. 𝑓𝑔(𝐺) ≤ 𝑔(𝐺) − |𝑍| = 2𝑏 − 𝑎 + 3 − (2𝑏 − 2𝑎 + 3) = 𝑎, according to the theorem. 

Given that 𝑔(𝐺) = 2𝑏 − 𝑎 + 3 and that 𝑍1 appears in every 𝑔-set of 𝐺, it is clear that every 𝑔-set of 

𝐺 has the form 𝑆 = 𝑍 ∪ {e𝑐1, e𝑐2, … , e𝑐𝑎}where 𝑐𝑖 ∈ 𝐻𝑖 (1 ≤ 𝑖 ≤ e𝑎). Given  |𝑇| < 𝑎, let e𝑇 be any 

suitable subset of 𝑆. After that, 𝑐𝑗  (1 ≤  𝑗 ≤  𝑎)” is a vertex such that e𝑐𝑗 ∉ 𝑇. Assume that e𝑏
𝑗
, a vertex 

of 𝐻𝑗, is different from 𝑐𝑗. Subsequently, 𝑆1 = (𝑆 − {𝑐𝑗}) ∪ {𝑏𝑗}  is a 𝑔-set that correctly contains e𝑇. 

Such that e𝑇 is not a forced subset of 𝑆 as a result. For every smallest 𝑔-set of 𝐺, this holds true. Hence, 

𝑓𝑔(𝐺) = 𝑎. 

 

Figure 3.5 

            We then demonstrate that 𝑓𝑐𝑟(𝐺) = 𝑏. Let 𝑍1 = {𝑡} represent 𝐺's end vertex. Such that 𝑍 is a 

subset of every 𝑐𝑟-set in 𝐺 according to Theorem 1.1. 𝑄𝑗: {𝑥𝑗 , 𝑦𝑗} (1 ≤ 𝑗 ≤ 𝑏 − 𝑎) be given. Every 

circular set of 𝐺 has exactly one vertex from every 𝑄𝑗 (1 ≤ 𝑗 ≤ 𝑏 − 𝑎) and exactly one vertex from 

every 𝐻𝑖 (1 ≤ 𝑖 ≤ 𝑎), as can be seen easily. Therefore, 𝑐𝑟(𝐺) ≥ 1 + 𝑎 + 𝑏 − 𝑎 = 𝑏 + 1. Assume that 

𝑆 = 𝑍 ∪ {𝑟1, 𝑟2, … , 𝑟𝑎} ∪ {𝑥1, 𝑥2, … , 𝑥𝑏−𝑎}. As a result, 𝑆 is a circular set of 𝐺 since 𝐼[𝑆] = 𝑉(𝐺). 

Consequently, 𝑐𝑟(𝐺) = 𝑏 + 1. Therefore 𝑓𝑐𝑟(𝐺) ≤ 𝑐𝑟(𝐺) − |𝑍| = 𝑏 + 1 − 1 = 𝑏, according to the 

theorem. Every circular set of 𝐺, of which 𝑍 is a subset, has the form 𝑊1 = 𝑍 ∪ {𝑐1, 𝑐2, … , 𝑐𝑎} ∪

{𝑑1, 𝑑2, … , 𝑑𝑏−𝑎}, where 𝑑𝑗 ∈ 𝑄𝑗  (1 ≤ 𝑗 ≤ 𝑏 − 𝑎) and 𝑐𝑖 ∈ 𝐻𝑖  (1 ≤ 𝑖 ≤  𝑎). Given |𝑇| < 𝑏, let 𝑇 

be any proper subset of 𝑊1. After that, 𝑐𝑗, 𝑑𝑗 ∉ 𝑇 since there are vertices 𝑐𝑗 ∈ 𝐻𝑖 and 𝑑𝑗 ∈ 𝑄𝑗. Assume 

that 𝑓𝑗 is a vertex of 𝑄𝑗 that is separate from 𝑑𝑗 and that 𝑒𝑖 is a vertex of 𝐻𝑖 apart from 𝑐𝑖. 𝑊2 =
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(𝑊1 − {𝑐𝑗, 𝑑𝑗}) ∪ {𝑒𝑖, 𝑓𝑗}  is a 𝑐𝑟-set that correctly contains 𝑇 in this case. Such that 𝑇 is not a forced 

subset of 𝑊2 as a result. For every minimum 𝑐𝑟-set of 𝐺, this is true. Thus, 𝑓𝑐𝑟(𝐺) = 𝑏.   

Case (v) 0 < 𝑏 < 𝑎.  

First, we establish that 𝑓𝑐𝑟(𝐺) = 𝑏. Assume 𝑍 = {𝑡1, w}. Thus 𝑍 is therefore a subset of 𝐺's 𝑐𝑟-set. 

Assume “𝐻𝑖e: {𝑟𝑖 e, e𝑠𝑖} (1 ≤ 𝑖e ≤ 𝑏)be given. It is simple to see that 𝑐𝑟(𝐺) ≥ 𝑏 + 2 as every circular set 

of 𝐺 has at least one vertex from each 𝐻𝑖(1 ≤ 𝑖 ≤ 𝑎). Consider 𝑆 = 𝑍1 ∪ {e𝑟1, e𝑟2, … , e𝑟𝑏}. 

Consequently, 𝑆 is a circular set of e𝐺 since 𝐼[e𝑆] = 𝑉(𝐺), and 𝑐𝑟(𝐺) = 𝑏 + 2. Given that e𝑍 is a subset 

of each 𝐺 𝑐𝑟-set. According to Theorem 𝑓𝑐𝑟(𝐺) ≤ 𝑐𝑟(𝐺) − |𝑍| = +2 − 2 = e𝑏. Thus, 𝑓𝑐𝑟(𝐺) ≤ 𝑏. It 

is clear that every 𝑐𝑟-set of 𝐺 is of the type 𝑆 = e𝑍1 ∪ {𝑐1, e𝑐2, … , e𝑐𝑎}, where 𝑐𝑖 ∈ 𝐻𝑖(1 ≤ 𝑖 ≤ 𝑎), since 

𝑐𝑟(𝐺) = 𝑏 + 2 and every 𝑐𝑟-set of 𝐺 contains 𝑍. Given |𝑇| < 𝑎, let 𝑇 be any proper subset of 𝑆. After 

that, e𝑐𝑗  (1 ≤ e𝑗 ≤ e𝑎) is a vertex such that e𝑐
𝑗
∉ e𝑇. Assume that 𝑏𝑗, a vertex of 𝐻𝑗,” is different from 𝑐𝑗. 

Following that, 𝑆1 = (𝑆 − {𝑐𝑗}) ∪ {𝑏𝑗} is a 𝑐𝑟-set that correctly contains e𝑇. Such that 𝑇 is not a forced 

subset of 𝑆 as a result. For every minimum 𝑐𝑟-set of 𝐺, this is true. Hence, 𝑓𝑐𝑟(𝐺) = 𝑎. 

We then demonstrate that 𝑓𝑔(𝐺) = 𝑎. Let 𝑍 = {𝑡1, 𝑡3, 𝑤1, 𝑤3} represent all of 𝐺's extreme vertices. 

Consider 𝑍 is a subset of each geodetic set in 𝐺, according to Theorem 3.4. 𝑍 should be 𝑍 = 𝑍1 ∪ {𝑤}. 

Therefore 𝑍1  is clearly a subset of each and every geodetic set in 𝐺. Assume 𝑄𝑗: {𝑢𝑗 , 𝑣𝑗} (1 ≤ 𝑗 ≤ 𝑎 −

𝑏). Every geodetic set of 𝐺 has at least one vertex from each of the 𝐻𝑗  (1 ≤ 𝑗 ≤ 𝑎) and each of the 𝑄𝑗, 

as can be clearly recognised; so, 𝑔(𝐺) ≥ 4 + 𝑎 − 𝑏 + 𝑏 = 4 + 𝑎. Assume 𝑊 = 𝑍1 ∪

{𝑟1, 𝑟2, … , 𝑟𝑏 , 𝑢1, 𝑢2, … , 𝑢𝑎−𝑏}. Consequently, 𝑔(𝐺) = 𝑎 + 4 since 𝐼[𝑊] = 𝑉(𝐺) and 𝑊 is a geodetic 

set of 𝐺. 𝑓𝑔(𝐺) ≤ 𝑔(𝐺) − |𝑍| = 𝑎 + 4 − 4 = 𝑎 according to Theorem 1.2. It is evident that every 𝑔-

set of 𝐺 is of the form 𝑊1 = 𝑍 ∪ {e𝑐1, e𝑐2, … , e𝑐𝑏} ∪ {𝑑1, 𝑑2, … , 𝑑𝑎−𝑏} since 𝑍 is a subset of every 𝑔-set 

of e𝐺. In this case, 𝑑𝑗 ∈ 𝑄𝑗  (1 ≤ 𝑗 ≤  𝑎 − 𝑏) and 𝑐𝑖 ∈ 𝐻𝑖  (1 ≤ 𝑖 ≤  𝑏). Given |𝑇| < 𝑏, let 𝑇 be any 

proper subset of 𝑊1. After that, 𝑐𝑗 , 𝑑𝑗 ∉ 𝑇 since there are vertices 𝑐𝑖 ∈ 𝐻𝑖 and 𝑑𝑗 ∈ 𝑄𝑗. Assume 𝑄𝑗 is a 

vertex of 𝐻𝑖 that is different from 𝑑𝑗 and 𝑐𝑖. 𝑊2 = (𝑊1 − {𝑐𝑗, 𝑑𝑗}) ∪ {𝑒𝑗, 𝑓𝑗} is a 𝑐𝑟-set that correctly 

contains 𝑇 in this case. Such that 𝑇 is not a forced subset of 𝑆 as a result. For every minimum 𝑐𝑟-set 

of 𝐺, this is true. Therefore, 𝑓𝑔(𝐺) = 𝑎.  

 
Figure 3.6 
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