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1. Introduction and Preliminaries

A graph G = (V,E) is a connected, finite graph that does not have loops or numerous edges. G is
represented by the symbolsn and m, respectively, for order and size. We use [1,6] for basic
terminology in graph theoretic. If uv € E(G), then two vertices, u and v, are considered nearby in
G. The collection of vertices next to a vertex v in G is called its neighbourhood, or N(v). The vertex
v has a degree of deg(v) = |N(v)|. We refer to u as an end edge, u as a leaf, and v as a support
vertex if e = {u, v} isanedge of agraph G with deg(u) = 1anddeg(v) > 1. The greatest degree
of a graph G is shown by A(G). G[S] is the representation of the subgraph that a set S of vertices of a
graph G induces, where V (G[S]) = S and E(G[S]) = {uv € E(G): u,v € S}. Avertex visan
extreme vertex of G if and only if G[N(v)] is complete.

The length of the shortest path between two vertices u, v € V(G) is the distance d(u,v). Au—v
geodesic of G is any u — v path of length d(u, v). If x is a vertex of P and x # u, v, then x is an
internal vertex of a u— v path P. I[u, v] is the closed interval consisting of u, v and all vertices that
are on a u— v geodesic of G. The closure of a non-empty set S < V (G) is given by the set I[S] =
Uwves I[u,v]. IfI[S] = V (G),thenaset S S V (G) is a geodetic set. The geodetic number of G,
represented by g(G), is the lowest cardinality of a geodetic set of G. A g —set of G is a geodetic set
of minimum cardinality. See [3,4,8] for references on geodetic parameters in graphs.

The longest path between two vertices u, v € V(G) is the detour distance D(u, v). A u — v detour of
G is any u— v path of length D(u, v). All vertices of the closed interval I [u, v] lie on some u — v
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detour of G, and the interval itself consists of u, v. The closure of a non-empty setS < V (G) is given
by the set Ip[S] = Uypes Ip[u, v]. A detour set is then defined as a set S € V (G). The detour
number of G, represented by dn(G), is the lowest cardinality of a detour set of G. A dn-set of G is a
diversion set with minimum cardinality. Hence [5,7] covered the study of these ideas.

D€ (u, v) represents the circular distance between u and v, which is represented as

DE(u, v) = {D(u, v) +d(u,v) .1f u#v

0 ifu=v

The detour distance and the distance between u and v are denoted by D(w,v)andd(u,v),
respectively. The circular diameter D€ is the longest circular distance between 2 vertices on G. Anu —
v circular of G is any u — v path of length D€ (u, v). The circular diameter D¢ is the longest circular
distance between 2 vertices on G. For u,v € V, I.[u, v] represents group of every vertex positioned
on au — v circular in G. For S € V(G), let I.[S] = Uy esI:[u, v]. These concepts were studied in
[2,9,10].

Theorem 1.1. [2] In a connected graph, every geodetic set of G has an extreme vertex.
Theorem 1.2. [2] Let W be the set of all geodetic sets in graph G. Then f,(G) < g(G)-|W]|.
2. The forcing circular number of a graph

Definition 2.1. A subset T < S is referred to as a forcing subset for S, if S is the only cr-set that
contains T. A forcing subset of minimum cardinality for S is known as a minimum forcing subset of
S. The forcing circular number of G is denoted by the notation f,,.(G) = min{f,.(S)}, where the
minimum is established over all cr-sets S in G. The cardinality of a minimum forcing subset of S is
the forcing circular number of S.

Example 2.2. The only two cr-sets of the graph G displayed in Figure 2.1 are S; = {v,, v4, v5} and
52 = {vl, v4,, 176} SUCh that f;-r(sl) = ]CCT'(SZ) = 1 and f;‘T(G) =1.
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Figure 2.1
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Observation 2.3. For each graph G that is connected, 0 < f.-(G) < cr(G).

Remark 2.4. Observation 2.3 has sharp bounds. For G=P;, f,(G)=0.
For G = C, with vertex set V(G) = {vq, V5, V3, U4}, S = {vq1, V2}, So = {Vy, v3}, S5 = {v3, 14}, S =
{v,, v}, Ss = {vy, v3}and Sg = {v,, v,} are the only six cr-sets of G there exists f,,.(S;) = 2,1 <
i < 6sothat f,,.(G) = cr(G) = 2.

Additionally, the limitations in Observation 2.3 may be extremely rigorous. The graph G shown in
Figure 2.1 has two values: cr(G) =2 and f.,(G) =1. Hence 0< f,(G) <cr(G).
Theorem 2.5. Consider a connected graph, G. Following that

1) fer (G) = O iff G has a unique minimum cr-set of G.

i) for (G) = 1 iff G possesses a minimum of two cr-sets, at least one of which is a distinct cr-et that
includes one of its elements.

iii) fz-(G) = cr(c) iff any proper subset of G that is not contained in any cr-set is the unique minimal
cr-set of G.

Definition 2.6. A vertex v of a connected graph G. If v belongs to each cr-set of G, then v(G) is
considered to be a circular vertex of G.

Example 2.7. For the graph G shown in Figure 2.2, the set of all circular vertices of G is represented
by {v,,v3,vs} since S; = {vy, v3, Vs, Vg} and S, = {vy, v3, Us, vo} are the only two cr-sets of G.

v

Figure 2.2

Theorem 2.8. Let W be the set of all circular vertices of connected graph G. Then f..(G) <
cr(6)-|W|.

Remark 2.9. The bounds in Theorem 2.8 are precise. Regarding the graph G shown in Figure 2.2,
|W| =3,cr(G) =4and f..(G) = 1. Thus f.-(G) = cr(G)-|W|. Moreover, the bounds in Theorem
2.8 may be rigid. With respect to graph G displayed in Figure 2.3, S; = {vy, vy, Vs, U7}, S, =
{v1, va, Vs, g}, S5 = {v1, V4, Vs, Vo}, S4 = {3, V4, Vs, 7}, S5 = {3, vy, Vs, Vs} and Se =
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{v,, vy, Vs, Vo} are the six cr-sets of G so that {v,, v,, vs} is the set of all circular vertices of G there
exists f,,.(G) = 1and cr(G) = 3.

Figure 2.3

Theorem 2.10. For the complete bipartite graph ¢ = K, 5, (1 < r < ),

(0 ifr=15>2
f"(G)_{Z if2<r<s

Proof. Let U = {uy, uy,...,u,.yand W = {w;, w,,..., wy} be the bipartite sets of G.

For s > 2andr =1, S =W is the distinct cr-set of G so that f..(G) = 0. Hence 2 < r < s. Let
w e W and u € U. Such that S = {u,w} is a cr-set of G. Since this is true for all ue U and we W,
S is not unique cr-set of G containing u or w. Therefore f.,.(G) = 2. As this holds true for every cr-
sets S of G, f.-(G) = 2.

Theorem 2.11. For the non-trivial tree T, f,,.(T) = 0.

Proof. Considering S to be the collection of all end vertices in G, S is the only cr-set in G such that
fcr(G) = 0.

Theorem 2.12. For the cycle G =C,,(n=>4), f.(G) = 2.

Proof. Let x and y represent any two vertices of G. There exists S = {x, y} is a cr-set of G. Hence x

and y are arbitrary, S is not a unique cr-set containing x or y. Therefore f,.(G) = 2. As this holds true
for all cr-sets S of G therefore f.,.(G) = 2.

Theorem 2.13. For the wheel ¢ =K, +C, _,,(n=5), f-(G) = 1.

Proof. Assume that x represents the central vertex of G and C,,_; be v, v,,...,v_1,v;. Then S; =
{x,v;}(1<i<n-1)and S = {u, v} where u and v are any two vertices in C,_, are the cr-sets of
G.Now f..(S;) =1 (1 <i<n-—1).Since u and v are arbitrary, S is not a dsitinct cr-set containing
u or v. Therefore f.,.(G) = 2. Hence it follows that f,.(G) = 1.

Theorem 2.14. For the fan graph F,, = K; + P,_1,(n = 5), f.,(G) = 1.
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Proof. Suppose that x represents the central vertex of of G and V(P,,_;) = {v{, vy, ..., Vy_1}. Then
Si={x,v;} 1<i<n-1)and S = {u, v} where u and v are any two vertices in P,,_, are the cr-
sets of G. Now f,,.(S;) =1 (1 <i <n-—1). Since u and v are arbitrary, S is not a unique cr-set
containing u or v. Therefore f,,.(G) = 2. Hence it follows that f,,.(G) = 1.

3. The Forcing Geodetic Numbers and the Forcing Circular Number of a Graph

The forcing geodetic numbers and the forcing circular number of a graph have no relationship,
as the example below demonstrates.

Vs
[ L
(21 (%) V3
G
Figure 3.1 Ve

Example 3.1. The unique g-set of the graph G shown in Figure 3.1 is indicated as , S = {vy, v,, vs}.
Therefore f,(G) = 0. Also S; = {vy,v,} and S, = {v;, vs} are the only two cr-sets of G such that
fer (G) = 1. Thus £, (G) < fr (G).

Example 3.2. The unique cr-set of the graph G shown in Figure 3.2 is represented as S = {v, v,}.
Therefore f.,.(G) = 0. Also S; = {v,,v3,v6} and S, = {v,, v, ¢} are the only g-sets of G so that
fg(G) =1. Thus f3(G) > fr(G).

%1 Uy Vg
°
Uy V3 Uy Us
G
Figure 3.2

Theorem 3.3. In a connected graph G, f,(G) = a and f,,.(G) = 0 exist for each integer a > 0.

Proof. Assume that P:u, v,w, x is an order four path. Consider P;:u;, v; (1 <i < a) represent an
identical pair of vertices. Let G be the graph generated by adding the edges vu; and wv; to P and
P; (1 <i < a). The figure 3.3 displays the graph G.
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We first establish that f;,(G) = a. Let Z = {u, x} represent all of G's end vertices. Z is a subset of
every g-setin G, according to Theorem 1.1. For (1 < i < a), consider H; = {u;, v;}. Itis easily shown
that g(G) > asince every vertex in the g-set of G contains exactly one vertex from each
H(1<i<a).letS=ZU{u,uy, .., u}. Asaresult,Sisa g-setof G and g(G) = a + 2,asI[S] =
V(G). For every g-set of G contains a subset, Z. By Theorem 1.2, f,(G) < g(G) — |Z| =a+2 -2 =
a. Therefore f,(G) < a.

Considering that g(G) = a + 2 and that Z exists in every g-set of G, following that each g-set of G,
if so, has the form S = Z U {¢y, ¢y, ..., ¢z}, Where ¢; € H;(1 < i < a). Given |T| < a, let T be any
proper subset of S. After that, ¢; (1 < j < a) is a vertex such that cje T. Assume that b;, a vertex

of Hj, is distinct from ¢ Consequently, Slz(S—{cj})U;’b].‘g is a g-set that properly contains T. As a

result, T is not a forcing subset of S. For every minimum g-set of G, this holds true. Therefore f,(G) =
a.

Next we prove that f,,.(G) = 0. Since Z is the distinct cr-set of G, f,,.(G) = 0.

u x
v w
U %1
Uy . Uz
Uy C Ya
Figure 3.3

Theorem 3.4. For every integer a > 0, there exists a connected graph G such that f,(G) = 0 and
fcr(G) = a.

For every integer a > 0, there exists a connected graph G such that f;,(G) = a and f,-(G) = a.

Proof. Let P": w;, w,, w; be a path of order 3, and consider P;: t,, t,, t3, t4, ts be a path of order 5. Let
P;:r;,s; (1 <i < a)bean order 2 replica of the path. Let G be the graph created by adding the edges
LWy, LWy, taWsy, taws, tor; (1 <i<a)and t,5; (1<i<a)toP'and P, (1 <i<a). The Figure
3.4 displays the graph G.

First, we establish that f.,.(G) = a. Let the set of all of G's end vertices be Z = {t;, ts}. Such

that Z is therefore a subset of each cr-set of G according to Theorem 1.1. H;: {r;,s;} (1 < i < a) be
given. Then, it is evident that cr(G) = a + 2 since every circular set of G has at least one vertex from
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each H;(1<i<a). Let S=ZuU{r,n,.., 17} Ip<[S] = V(G) in this case, indicating that S is a
circular set of G and hence cr(G) = a + 2. As Z is a subset of each cr-set of G, f,,.(G) < cr(G) —
|Z| = a + 2 — 2 = a, according to Theorem 2.3. Consequently, f,,.(G) < a. Giventhat cr(G) = a =
2, Furthermore, it is evident that every cr-set of G that contains Z has the form S = Z U {c,, c3, ..., ¢4},
where ¢; € H; (1 <i < a). Given |T|<a, let T be any suitable subset of S. After that,
¢i (1 < j < a)is a vertex such that ¢;  T. Assume that b;, a vertex of H;, is different from c;.
Subsequently, S; = (S —{c;}) U {b;} is a cr-set that correctly contains T. T is not a forced subset of
S as aresult. For every minimum cr-set of G, this is true. Consequently, f.-(G) = a.

Next, we prove that f;(G) = a. The representation of every extreme vertex in G is Z; = Z U
{w;,ws}. Theorem 1.1 states that every g-set in G is a subset of Z;. Give H;: {r;,s;} (1 <i < a).
Since every g-set of G contains at least one vertex fromevery H;(1 <i < a), itis easy to demonstrate
that g(G) > a+4.S =Z, U {r, 1y, ..., 1} is assumed. Consequently, since I[S] = V(G), S is a g-set
of Gand g(G) = a + 4. All of the g-sets in G have asubset called Z;. The f,(G) < a Theorem applies.
Z, appears in every g-set of G, and since g(G) = a + 4, it follows that every g-set of G has the form
S=27Z,U{c,¢z,...,Ccq}, Where ¢c; € H(1 <i < a). Let T be any appropriate subset of S such that
IT| < a. After that, a vertex such that is ¢; € T is ¢; (1 < j < a). Presume that t;, one of H;'s
vertices, is distinct from c;. Consequently, a g-set that suitably contains T is S; = (S — {¢;}) U {b;}.
As such, T is not a forced subset of S. This is valid for any smallest g-set of G. As aresult, f,(G) = a.

Figure 3.4

Theorem 3.5. Let G be a connected graph. For every integer a > 0, and b > 0, there exists f,(G) = a
and f,,.(G) = b.

Proof. Case (i) a = 0, b = 1. The graph produced in Theorem 3.3 meets the requisite requirement.
Case (il) a = 1,b = 0. The graph constructed Theorem 3.3, satisfies the required condition.

Case (iii) a = b = 1. The graph constructed Theorem 3.4, satisfies the required condition.

https://internationalpubls.com 225



Communications on Applied Nonlinear Analysis
ISSN: 1074-133X
Vol 31 No. 4s (2024)

Case (iv) 0 < a < b. Consider the graph G given in Figure 3.5.

We first establish that f,(G) = a. The set of all extreme vertex of G is denoted by Z =
{t, w1, W3, X1, X2, e, Xp—a» V1, Y2, > Yb—a)- THUS Z IS a subset of each geodetic set in G, according to
Theorem 3.4. H;: {r;,s;} (1 < i < a) be given. Every geodetic set of G has exactly one vertex from
each H; (1 <i < a), as can be seen easily. Asaresult, (G) 23+b—a+b—a+a=2b—a+3.
LetS =Z U {ry, 1y, ..., 175} Thus, S is a geodetic set of G since I[S] = V(G). Consequently, g(G) =
2b—a+3. f3(6G) <g(G)—|Z| =2b—a+3—(2b—2a+3) =a, according to the theorem.
Given that g(G) = 2b — a + 3 and that Z; appears in every g-set of G, it is clear that every g-set of
G has the form S =Z U {cy, ¢y, ..., cgywhere ¢; € H; (1 <i < a). Given |T| <a, let T be any
suitable subset of S. After that, c; (1 < j < a) isavertex such that ¢; ¢ T. Assume that bj, a vertex

of H;, is different from c;. Subsequently, S; = (S — {c;}) U {b;} is a g-set that correctly contains T.
Such that T is not a forced subset of S as a result. For every smallest g-set of G, this holds true. Hence,

fg(G) = a.

Figure 3.5

We then demonstrate that f,,.(G) = b. Let Z; = {t} represent G's end vertex. Such that Z is a
subset of every cr-set in G according to Theorem 1.1. Q;: {x;,y;} (1 < j < b — a) be given. Every
circular set of G has exactly one vertex from every Q; (1 < j < b — a) and exactly one vertex from
every H; (1 <i < a), as can be seen easily. Therefore, cr(G) =1+ a+ b —a = b + 1. Assume that
S=ZU{r,nr, .., U{x, x5, ..., xp_o}. As a result, S is a circular set of G since I[S] =V (G).
Consequently, cr(G) = b + 1. Therefore f,,.(G) < cr(G) —|Z| = b+ 1 —1 = b, according to the
theorem. Every circular set of G, of which Z is a subset, has the form W, = Z U {c;,¢;, ...,c } U
{dy,dy, ..., dp_g}, Where d; € Q; (1 <j <b—-a)and¢; €EH; (1 <i < a). Given |[T| <b, letT
be any proper subset of W;. After that, c;, d; & T since there are vertices ¢; € H; and d; € Q;. Assume
that f; is a vertex of Q; that is separate from d; and that e; is a vertex of H; apart from ¢;. W, =
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(W, —{c;,d;}) u{e;, f;} is a cr-set that correctly contains T in this case. Such that T is not a forced
subset of W, as a result. For every minimum cr-set of G, this is true. Thus, f..(G) = b.

Case (v) 0<b<a.

First, we establish that f,,.(G) = b. Assume Z = {t,,w}. Thus Z is therefore a subset of G's cr-set.
Assume H;:{r;, s;} (1 < i < b)be given. It is simple to see that cr(G) = b + 2 as every circular set
of G has at least one vertex from each H;(1<i<a). Consider S=27Z,U{r,r,.., n}
Consequently, S is a circular set of G since I[S] = V(G), and cr(G) = b + 2. Given that Z is a subset
of each G cr-set. According to Theorem f,.(G) < cr(G) — |Z| = +2 —2 = b. Thus, f..(G) < b. It
is clear that every cr-set of G is of the type S = Z; U {cy, ¢, ..., ¢4}, Where ¢; € H;(1 < i < a), since
cr(G) = b + 2 and every cr-set of G contains Z. Given |T| < a, let T be any proper subset of S. After
that, ¢; (1 < j < a) is a vertex such that c].ez T. Assume that b;, a vertex of H;, is different from c;.

Following that, S; = (S — {¢;}) U {b;} is a cr-set that correctly contains T. Such that T is not a forced
subset of S as a result. For every minimum cr-set of G, this is true. Hence, f.,.(G) = a.

We then demonstrate that f,(G) = a. Let Z = {t,, t3, w;, w3} represent all of G's extreme vertices.
Consider Z is a subset of each geodetic set in G, according to Theorem 3.4. Z should be Z = Z; U {w}.
Therefore Z; is clearly a subset of each and every geodetic setin G. Assume Q;: {u;, v;} (1 <j <a -
b). Every geodetic set of G has at least one vertex from each of the H; (1 < j < a) and each of the Q;,
as can be clearly recognised; so, g(G)=>4+a—b+b=4+a Assume W =2Z;U
{r, 1y, o, T, Ug, Uy, .o, Ug—p . Consequently, g(G) = a + 4 since I[W] = V(G) and W is a geodetic
setof G. f,(G) < g(G) — |Z] = a + 4 — 4 = a according to Theorem 1.2. It is evident that every g-
set of G is of the form W, = Z U {cy, ¢y, ..., cp} U {d4,d>, ..., dq_p} Since Z is a subset of every g-set
of G.Inthiscase,d; € Q; (1 <j < a—b)andc; €H; (1 <i < b).Given |T| <b, let T be any
proper subset of W;. After that, c;, d; & T since there are vertices ¢; € H; and d; € Q;. Assume Q; isa
vertex of H; that is different from d; and c;. W, = (W; — {c;, d;}) U {e;, f;} is a cr-set that correctly

contains T in this case. Such that T is not a forced subset of S as a result. For every minimum cr-set
of G, this is true. Therefore, f,(G) = a.

51

Figure 3.6
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