ISSN: 1074-133X Vol 31 No. 4s (2024)

The Forcing Circular Number of a Graph

¹S. Sheeja, ^{2,*}K. Rajendran

¹Research Scholar, Vels Institute of Science Technology and Advanced Studies, Chennai, Tamil Nadu, India.

²Associate Professor, Vels Institute of Science Technology and Advanced Studies, Chennai, Tamil Nadu, India

¹Email id: sheeja1304@gmail.com

² Corresponding author: gkrajendra59@gmail.com

Article History:

Received: 18-04-2024

Revised: 08-06-2024

Accepted: 20-06-2024

Abstract:

Let S be a cr-set of graph G and let G be a connected graph. If S is the only cr-set that contains T, then a subset $T \subseteq S$ is referred to be a forcing subset for S. A minimum forcing subset of S is a forcing subset for S of minimum cardinality. The cardinality of a minimum forcing subset of S is the forcing circular number of S, represented by the notation $f_{cr}(S)$. $f_{cr}(G) = \min \{f_{cr}(S)\}$ is the forcing circular number of G, where the minimum is the sum of all minimum forcing circular-sets S in G. For several standard graphs, the forcing circular number is identified. It is demonstrated that there exists a connected graph G such that $f_{G}(G) = a$ and $f_{cr}(G) = b$ for every integer $a \ge 0$, and $b \ge 0$.

Keywords: *cr*-set, circular number, forcing circular number.

AMS Subject Classification: 05C12.

1. Introduction and Preliminaries

A graph G = (V, E) is a connected, finite graph that does not have loops or numerous edges. G is represented by the symbols n and m, respectively, for order and size. We use [1,6] for basic terminology in graph theoretic. If $uv \in E(G)$, then two vertices, u and v, are considered nearby in G. The collection of vertices next to a vertex v in G is called its neighbourhood, or N(v). The vertex v has a degree of deg(v) = |N(v)|. We refer to u as an end edge, u as a leaf, and v as a support vertex if $e = \{u, v\}$ is an edge of a graph G with deg(u) = 1 and deg(v) > 1. The greatest degree of a graph G is shown by $\Delta(G)$. G[S] is the representation of the subgraph that a set S of vertices of a graph G induces, where V(G[S]) = S and $E(G[S]) = \{uv \in E(G) : u, v \in S\}$. A vertex v is an extreme vertex of G if and only if G[N(v)] is complete.

The length of the shortest path between two vertices $u, v \in V(G)$ is the distance d(u, v). A u - v geodesic of G is any u - v path of length d(u, v). If x is a vertex of P and $x \neq u, v$, then x is an internal vertex of a u - v path P. I[u, v] is the closed interval consisting of u, v and all vertices that are on a u - v geodesic of G. The closure of a non-empty set $S \subseteq V(G)$ is given by the set $I[S] = \bigcup_{u,v \in S} I[u,v]$. If I[S] = V(G), then a set $S \subseteq V(G)$ is a geodetic set. The geodetic number of G, represented by g(G), is the lowest cardinality of a geodetic set of G. A G -set of G is a geodetic set of minimum cardinality. See [3,4,8] for references on geodetic parameters in graphs.

The longest path between two vertices $u, v \in V(G)$ is the detour distance D(u, v). A u - v detour of G is any u - v path of length D(u, v). All vertices of the closed interval $I_D[u, v]$ lie on some u - v

ISSN: 1074-133X Vol 31 No. 4s (2024)

detour of G, and the interval itself consists of u, v. The closure of a non-empty set $S \subseteq V(G)$ is given by the set $I_D[S] = \bigcup_{u,v \in S} I_D[u,v]$. A detour set is then defined as a set $S \subseteq V(G)$. The detour number of G, represented by dn(G), is the lowest cardinality of a detour set of G. A dn-set of G is a diversion set with minimum cardinality. Hence [5,7] covered the study of these ideas.

 $D^{c}(u, v)$ represents the circular distance between u and v, which is represented as

$$D^{c}(u, v) = \begin{cases} D(u, v) + d(u, v) & \text{if } u \neq v \\ 0 & \text{if } u = v \end{cases}$$

The detour distance and the distance between u and v are denoted by D(u,v) and d(u,v), respectively. The circular diameter D^c is the longest circular distance between 2 vertices on G. An u-v circular of G is any u-v path of length $D^c(u,v)$. The circular diameter D^c is the longest circular distance between 2 vertices on G. For $u,v \in V$, $I_c[u,v]$ represents group of every vertex positioned on a u-v circular in G. For $S \subseteq V(G)$, let $I_c[S] = \bigcup_{u,v \in S} I_c[u,v]$. These concepts were studied in [2,9,10].

Theorem 1.1. [2] In a connected graph, every geodetic set of *G* has an extreme vertex.

Theorem 1.2. [2] Let W be the set of all geodetic sets in graph G. Then $f_g(G) \leq g(G) - |W|$.

2. The forcing circular number of a graph

Definition 2.1. A subset $T \subseteq S$ is referred to as a forcing subset for S, if S is the only cr-set that contains T. A forcing subset of minimum cardinality for S is known as a minimum forcing subset of S. The forcing circular number of S is denoted by the notation $f_{cr}(S) = \min\{f_{cr}(S)\}$, where the minimum is established over all cr-sets S in S. The cardinality of a minimum forcing subset of S is the forcing circular number of S.

Example 2.2. The only two cr-sets of the graph G displayed in Figure 2.1 are $S_1 = \{v_1, v_4, v_5\}$ and $S_2 = \{v_1, v_4, v_6\}$ such that $f_{cr}(S_1) = f_{cr}(S_2) = 1$ and $f_{cr}(G) = 1$.

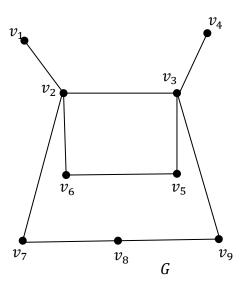


Figure 2.1

ISSN: 1074-133X Vol 31 No. 4s (2024)

Observation 2.3. For each graph G that is connected, $0 \le f_{cr}(G) \le cr(G)$.

Remark 2.4. Observation 2.3 has sharp bounds. For $G = P_3$, $f_{cr}(G) = 0$. For $G = C_4$ with vertex set $V(G) = \{v_1, v_2, v_3, v_4\}$, $S_1 = \{v_1, v_2\}$, $S_2 = \{v_2, v_3\}$, $S_3 = \{v_3, v_4\}$, $S_4 = \{v_7, v_4\}$, $S_5 = \{v_1, v_3\}$ and $S_6 = \{v_2, v_4\}$ are the only six cr-sets of G there exists $f_{cr}(S_i) = 2$, $1 \le i \le 6$ so that $f_{cr}(G) = cr(G) = 2$.

Additionally, the limitations in Observation 2.3 may be extremely rigorous. The graph G shown in Figure 2.1 has two values: cr(G) = 2 and $f_{cr}(G) = 1$. Hence $0 < f_{cr}(G) < cr(G)$. **Theorem 2.5.** Consider a connected graph, G. Following that

- i) $f_{cr}(G) = 0$ iff G has a unique minimum cr-set of G.
- ii) $f_{cr}(G) = 1$ iff G possesses a minimum of two cr-sets, at least one of which is a distinct cr-et that includes one of its elements.
- iii) $f_{cr}(G) = cr(G)$ iff any proper subset of G that is not contained in any cr-set is the unique minimal cr-set of G.

Definition 2.6. A vertex v of a connected graph G. If v belongs to each cr-set of G, then v(G) is considered to be a circular vertex of G.

Example 2.7. For the graph G shown in Figure 2.2, the set of all circular vertices of G is represented by $\{v_1, v_3, v_5\}$ since $S_1 = \{v_1, v_3, v_5, v_6\}$ and $S_2 = \{v_1, v_3, v_5, v_9\}$ are the only two cr-sets of G.

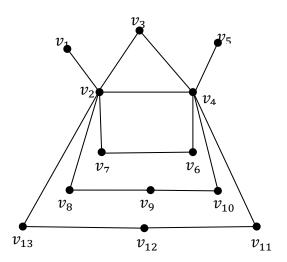


Figure 2.2

Theorem 2.8. Let W be the set of all circular vertices of connected graph G. Then $f_{cr}(G) \le cr(G) - |W|$.

Remark 2.9. The bounds in Theorem 2.8 are precise. Regarding the graph G shown in Figure 2.2, |W| = 3, cr(G) = 4 and $f_{cr}(G) = 1$. Thus $f_{cr}(G) = cr(G) - |W|$. Moreover, the bounds in Theorem 2.8 may be rigid. With respect to graph G displayed in Figure 2.3, $S_1 = \{v_1, v_4, v_5, v_7\}$, $S_2 = \{v_1, v_4, v_5, v_8\}$, $S_3 = \{v_1, v_4, v_5, v_9\}$, $S_4 = \{v_2, v_4, v_5, v_7\}$, $S_5 = \{v_2, v_4, v_5, v_8\}$ and $S_6 = \{v_1, v_2, v_3, v_4, v_5, v_8\}$

ISSN: 1074-133X Vol 31 No. 4s (2024)

 $\{v_2, v_4, v_5, v_9\}$ are the six cr-sets of G so that $\{v_1, v_4, v_5\}$ is the set of all circular vertices of G there exists $f_{cr}(G) = 1$ and cr(G) = 3.

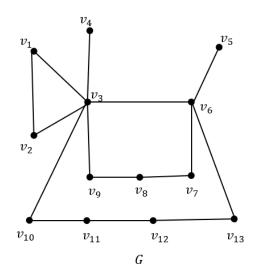


Figure 2.3

Theorem 2.10. For the complete bipartite graph $G = K_{r,s}$, $(1 \le r \le s)$,

$$f_{cr}(G) = \begin{cases} 0 & if \ r = 1, s \ge 2\\ 2 & if \ 2 \le r \le s \end{cases}$$

Proof. Let $U = \{u_1, u_2, \dots, u_r\}$ and $W = \{w_1, w_2, \dots, w_s\}$ be the bipartite sets of G.

For $s \ge 2$ and r = 1, S = W is the distinct cr-set of G so that $f_{cr}(G) = 0$. Hence $0 \le r \le s$. Let $0 \le W$ and $0 \le U$. Such that $0 \le U$ and $0 \le U$ are $0 \le U$ and $0 \le U$ and $0 \le U$ and $0 \le U$ and $0 \le U$ are $0 \le U$ and $0 \le U$ and $0 \le U$ are $0 \le U$ and $0 \le U$ and $0 \le U$ are $0 \le U$ and $0 \le U$ and $0 \le U$ are $0 \le U$ and $0 \le U$ are $0 \le U$ and $0 \le U$ are $0 \le U$ and $0 \le U$ and $0 \le U$ are $0 \le U$ are $0 \le U$ are $0 \le U$ and $0 \le U$ are $0 \le U$ are $0 \le U$ and $0 \le U$ are $0 \le U$ and $0 \le U$ are $0 \le$

Theorem 2.11. For the non-trivial tree T, $f_{cr}(T) = 0$.

Proof. Considering S to be the collection of all end vertices in G, S is the only cr-set in G such that $f_{cr}(G) = 0$.

Theorem 2.12. For the cycle $G = C_n$, $(n \ge 4)$, $f_{cr}(G) = 2$.

Proof. Let x and y represent any two vertices of G. There exists $S = \{x, y\}$ is a cr-set of G. Hence x and y are arbitrary, S is not a unique cr-set containing x or y. Therefore $f_{cr}(G) = 2$. As this holds true for all cr-sets S of G therefore $f_{cr}(G) = 2$.

Theorem 2.13. For the wheel $G = K_1 + C_{n-1}, (n \ge 5), f_{cr}(G) = 1.$

Proof. Assume that x represents the central vertex of G and C_{n-1} be $v_1, v_2, ..., v_{n-1}, v_1$. Then $S_i = \{x, v_i\}$ $(1 \le i \le n-1)$ and $S = \{u, v\}$ where u and v are any two vertices in C_{n-1} are the cr-sets of G. Now $f_{cr}(S_i) = 1$ $(1 \le i \le n-1)$. Since u and v are arbitrary, S is not a distinct cr-set containing u or v. Therefore $f_{cr}(G) = 2$. Hence it follows that $f_{cr}(G) = 1$.

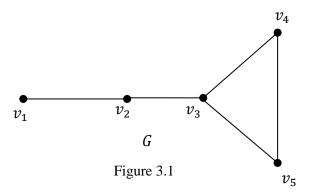
Theorem 2.14. For the fan graph $F_n = K_1 + P_{n-1}$, $(n \ge 5)$, $f_{cr}(G) = 1$.

ISSN: 1074-133X Vol 31 No. 4s (2024)

Proof. Suppose that x represents the central vertex of of G and $V(P_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. Then $S_i = \{x, v_i\}$ $(1 \le i \le n-1)$ and $S = \{u, v\}$ where u and v are any two vertices in P_{n-1} are the cr-sets of G. Now $f_{cr}(S_i) = 1$ $(1 \le i \le n-1)$. Since u and v are arbitrary, S is not a unique cr-set containing u or v. Therefore $f_{cr}(G) = 2$. Hence it follows that $f_{cr}(G) = 1$.

3. The Forcing Geodetic Numbers and the Forcing Circular Number of a Graph

The forcing geodetic numbers and the forcing circular number of a graph have no relationship, as the example below demonstrates.



Example 3.1. The unique g-set of the graph G shown in Figure 3.1 is indicated as , $S = \{v_1, v_4, v_5\}$. Therefore $f_g(G) = 0$. Also $S_1 = \{v_1, v_4\}$ and $S_2 = \{v_1, v_5\}$ are the only two cr-sets of G such that $f_{cr}(G) = 1$. Thus $f_g(G) < f_{cr}(G)$.

Example 3.2. The unique cr-set of the graph G shown in Figure 3.2 is represented as $S = \{v_1, v_2\}$. Therefore $f_{cr}(G) = 0$. Also $S_1 = \{v_1, v_3, v_6\}$ and $S_2 = \{v_1, v_4, v_6\}$ are the only g-sets of G so that $f_g(G) = 1$. Thus $f_g(G) > f_{cr}(G)$.

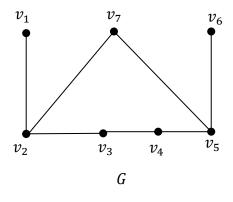


Figure 3.2

Theorem 3.3. In a connected graph G, $f_g(G) = a$ and $f_{cr}(G) = 0$ exist for each integer $a \ge 0$.

Proof. Assume that P: u, v, w, x is an order four path. Consider $P_i: u_i, v_i$ $(1 \le i \le a)$ represent an identical pair of vertices. Let G be the graph generated by adding the edges vu_i and wv_i to P and P_i $(1 \le i \le a)$. The figure 3.3 displays the graph G.

ISSN: 1074-133X Vol 31 No. 4s (2024)

We first establish that $f_g(G) = a$. Let $Z = \{u, x\}$ represent all of G's end vertices. Z is a subset of every g-set in G, according to Theorem 1.1. For $(1 \le i \le a)$, consider $H_i = \{u_i, v_i\}$. It is easily shown that $g(G) \ge a$ since every vertex in the g-set of G contains exactly one vertex from each $H_i(1 \le i \le a)$. Let $S = Z \cup \{u_1, u_2, ..., u_a\}$. As a result, S is a g-set of G and g(G) = a + 2, as I[S] = V(G). For every g-set of G contains a subset, G. By Theorem 1.2, G0 subset G1 and G2 subset G3. Therefore G3 subset G4 subset G5 subset G5 subset G6 subset G6

Considering that g(G) = a + 2 and that Z exists in every g-set of G, following that each g-set of G, if so, has the form $S = Z \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in H_i (1 \le i \le a)$. Given |T| < a, let T be any proper subset of S. After that, c_j ($1 \le j \le a$) is a vertex such that $c_j \notin T$. Assume that b_j , a vertex of H_j , is distinct from c_j . Consequently, $S_1 = (S - \{c_j\}) \cup \{b_j\}$ is a g-set that properly contains T. As a result, T is not a forcing subset of S. For every minimum g-set of G, this holds true. Therefore $f_g(G) = a$.

Next we prove that $f_{cr}(G) = 0$. Since Z is the distinct cr-set of G, $f_{cr}(G) = 0$.

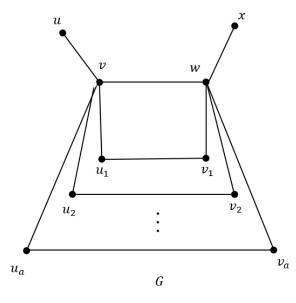


Figure 3.3

Theorem 3.4. For every integer $a \ge 0$, there exists a connected graph G such that $f_g(G) = 0$ and $f_{cr}(G) = a$.

For every integer $a \ge 0$, there exists a connected graph G such that $f_g(G) = a$ and $f_{cr}(G) = a$.

Proof. Let $P': w_1, w_2, w_3$ be a path of order 3, and consider $P_i: t_1, t_2, t_3, t_4, t_5$ be a path of order 5. Let $P_i: r_i, s_i$ $(1 \le i \le a)$ be an order 2 replica of the path. Let G be the graph created by adding the edges $t_2w_1, t_2w_2, t_4w_2, t_4w_3, t_2r_i$ $(1 \le i \le a)$ and t_4S_i $(1 \le i \le a)$ to P' and P_i $(1 \le i \le a)$. The Figure 3.4 displays the graph G.

First, we establish that $f_{cr}(G) = a$. Let the set of all of G's end vertices be $Z = \{t_1, t_5\}$. Such that Z is therefore a subset of each cr-set of G according to Theorem 1.1. $H_i: \{r_i, s_i\}$ $(1 \le i \le a)$ be given. Then, it is evident that $cr(G) \ge a + 2$ since every circular set of G has at least one vertex from

ISSN: 1074-133X Vol 31 No. 4s (2024)

each H_i $(1 \le i \le a)$. Let $S = Z \cup \{r_1, r_2, ..., r_a\}$. $I_{D^c}[S] = V(G)$ in this case, indicating that S is a circular set of G and hence cr(G) = a + 2. As Z is a subset of each cr-set of G, $f_{cr}(G) \le cr(G) - |Z| = a + 2 - 2 = a$, according to Theorem 2.3. Consequently, $f_{cr}(G) \le a$. Given that cr(G) = a = 2, Furthermore, it is evident that every cr-set of G that contains G has the form G is a vertex of G that G is a vertex of G that G is a vertex of G is a vertex such that G is a vertex such that G is a vertex of G is a cr-set that correctly contains G is not a forced subset of G as a result. For every minimum G is a vertex of G, this is true. Consequently, G is a cr-set of G.

Next, we prove that $f_g(G) = a$. The representation of every extreme vertex in G is $Z_1 = Z \cup \{w_1, w_3\}$. Theorem 1.1 states that every g-set in G is a subset of Z_1 . Give $H_i: \{r_i, s_i\}$ $(1 \le i \le a)$. Since every g-set of G contains at least one vertex from every $H_i(1 \le i \le a)$, it is easy to demonstrate that $g(G) \ge a + 4$. $S = Z_1 \cup \{r_1, r_2, ..., r_a\}$ is assumed. Consequently, since I[S] = V(G), S is a g-set of G and g(G) = a + 4. All of the g-sets in G have a subset called G. The G is a Theorem applies. G appears in every G-set of G, and since G is an every G-set of G has the form G is an every G-set of G. As the form G is a first that, a vertex such that is G is a G-set that suitably contains G is G is a result, G is not a forced subset of G. This is valid for any smallest G-set of G. As a result, G is G is a such, G is not a forced subset of G. This is valid for any smallest G-set of G. As a result, G is G in the form G is not a forced subset of G. This is valid for any smallest G-set of G.

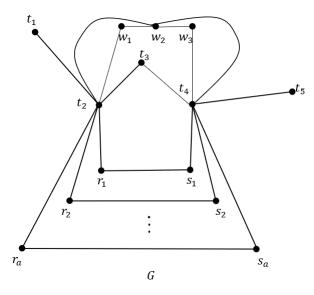


Figure 3.4

Theorem 3.5. Let G be a connected graph. For every integer $a \ge 0$, and $b \ge 0$, there exists $f_g(G) = a$ and $f_{cr}(G) = b$.

Proof. Case (i) $a = 0, b \ge 1$. The graph produced in Theorem 3.3 meets the requisite requirement.

Case (ii) $a \ge 1$, b = 0. The graph constructed Theorem 3.3, satisfies the required condition.

Case (iii) $a = b \ge 1$. The graph constructed Theorem 3.4, satisfies the required condition.

ISSN: 1074-133X Vol 31 No. 4s (2024)

Case (iv) 0 < a < b. Consider the graph G given in Figure 3.5.

We first establish that $f_g(G) = a$. The set of all extreme vertex of G is denoted by $Z = \{t, w_1, w_3, x_1, x_2, ..., x_{b-a}, y_1, y_2, ..., y_{b-a}\}$. Thus Z is a subset of each geodetic set in G, according to Theorem 3.4. $H_i \colon \{r_i, s_i\} \ (1 \le i \le a)$ be given. Every geodetic set of G has exactly one vertex from each H_i $(1 \le i \le a)$, as can be seen easily. As a result, $(G) \ge 3 + b - a + b - a + a = 2b - a + 3$. Let $S = Z \cup \{r_1, r_2, ..., r_a\}$. Thus, S is a geodetic set of G since I[S] = V(G). Consequently, g(G) = 2b - a + 3. $f_g(G) \le g(G) - |Z| = 2b - a + 3 - (2b - 2a + 3) = a$, according to the theorem. Given that g(G) = 2b - a + 3 and that Z_1 appears in every g-set of G, it is clear that every g-set of G has the form $S = Z \cup \{c_1, c_2, ..., c_a\}$ where $c_i \in H_i$ $(1 \le i \le a)$. Given |T| < a, let T be any suitable subset of G. After that, G G is a vertex such that G G is a G-set that correctly contains G. Subsequently, G G is a result. For every smallest G-set of G, this holds true. Hence, G G G is not a forced subset of G as a result. For every smallest G-set of G, this holds true. Hence, G G G G G is not a forced subset of G as a result. For every smallest G-set of G, this holds true. Hence, G G G is not a forced subset of G as a result. For every smallest G-set of G, this holds true.

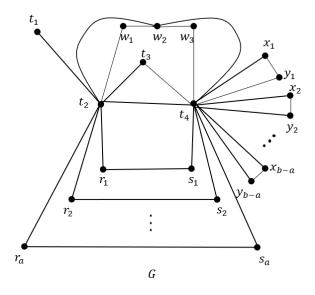


Figure 3.5

We then demonstrate that $f_{cr}(G) = b$. Let $Z_1 = \{t\}$ represent G's end vertex. Such that Z is a subset of every cr-set in G according to Theorem 1.1. $Q_j: \{x_j, y_j\}$ $(1 \le j \le b - a)$ be given. Every circular set of G has exactly one vertex from every Q_j $(1 \le j \le b - a)$ and exactly one vertex from every H_i $(1 \le i \le a)$, as can be seen easily. Therefore, $cr(G) \ge 1 + a + b - a = b + 1$. Assume that $S = Z \cup \{r_1, r_2, ..., r_a\} \cup \{x_1, x_2, ..., x_{b-a}\}$. As a result, S is a circular set of G since I[S] = V(G). Consequently, cr(G) = b + 1. Therefore $f_{cr}(G) \le cr(G) - |Z| = b + 1 - 1 = b$, according to the theorem. Every circular set of G, of which G is a subset, has the form G0, where G1 is a subset of G2, G3. Given G3 is a subset of G4, G5, G6, G7 is an expression of G8. Assume that G9 is a vertex of G9, that is separate from G9 and that G9 is a vertex of G9. Assume that G9 is a vertex of G9, that is separate from G9 and that G9 is a vertex of G9 apart from G9.

ISSN: 1074-133X Vol 31 No. 4s (2024)

 $(W_1 - \{c_j, d_j\}) \cup \{e_i, f_j\}$ is a cr-set that correctly contains T in this case. Such that T is not a forced subset of W_2 as a result. For every minimum cr-set of G, this is true. Thus, $f_{cr}(G) = b$.

Case (v)
$$0 < b < a$$
.

First, we establish that $f_{cr}(G) = b$. Assume $Z = \{t_1, w\}$. Thus Z is therefore a subset of G's cr-set. Assume $H_i: \{r_i, s_i\}$ $(1 \le i \le b)$ be given. It is simple to see that $cr(G) \ge b + 2$ as every circular set of G has at least one vertex from each $H_i(1 \le i \le a)$. Consider $S = Z_1 \cup \{r_1, r_2, ..., r_b\}$. Consequently, S is a circular set of G since I[S] = V(G), and cr(G) = b + 2. Given that Z is a subset of each G cr-set. According to Theorem $f_{cr}(G) \le cr(G) - |Z| = +2 - 2 = b$. Thus, $f_{cr}(G) \le b$. It is clear that every cr-set of G is of the type $S = Z_1 \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in H_i(1 \le i \le a)$, since cr(G) = b + 2 and every cr-set of G contains G. Given |T| < a, let G be any proper subset of G. After that, G is a vertex such that G is a vertex of G is a vertex of G contains G. Assume that G is a vertex of G is a forced subset of G as a result. For every minimum G is a cr-set that correctly contains G. Such that G is not a forced subset of G as a result. For every minimum G is a cr-set of G, this is true. Hence, G is G is an analysis of G is a cr-set of G, this is true. Hence, G is G is an analysis of G is an analysis of G is a cr-set of G.

We then demonstrate that $f_g(G) = a$. Let $Z = \{t_1, t_3, w_1, w_3\}$ represent all of G's extreme vertices. Consider Z is a subset of each geodetic set in G, according to Theorem 3.4. Z should be $Z = Z_1 \cup \{w\}$. Therefore Z_1 is clearly a subset of each and every geodetic set in G. Assume $Q_j \colon \{u_j, v_j\}$ $\{1 \le j \le a - b\}$. Every geodetic set of G has at least one vertex from each of the H_j $\{1 \le j \le a\}$ and each of the Q_j , as can be clearly recognised; so, $g(G) \ge 4 + a - b + b = 4 + a$. Assume $W = Z_1 \cup \{r_1, r_2, \ldots, r_b, u_1, u_2, \ldots, u_{a-b}\}$. Consequently, g(G) = a + 4 since I[W] = V(G) and W is a geodetic set of G. $f_g(G) \le g(G) - |Z| = a + 4 - 4 = a$ according to Theorem 1.2. It is evident that every g-set of G is of the form $W_1 = Z \cup \{c_1, c_2, \ldots, c_b\} \cup \{d_1, d_2, \ldots, d_{a-b}\}$ since Z is a subset of every g-set of G. In this case, $d_j \in Q_j$ $\{1 \le j \le a - b\}$ and $\{i \in H_i\}$ $\{i \in H_i\}$ and $\{i \in H_i\}$ are vertex of $\{i \in H_i\}$ that is different from $\{i \in H_i\}$ and $\{i \in H_i\}$ are vertex of $\{i \in H_i\}$ that is different from $\{i \in H_i\}$ and $\{i \in H_i\}$ are vertex of $\{i \in H_i\}$ and $\{i \in H_i\}$ are vertex of $\{i \in H_i\}$ that is different from $\{i \in H_i\}$ and $\{i \in H_i\}$ are vertex of $\{i \in H_i\}$ that is different from $\{i \in H_i\}$ and $\{i \in H_i\}$ are vertex of $\{i \in H_i\}$ that is different from $\{i \in H_i\}$ and $\{i \in H_i\}$ are verticed of $\{i \in H_i\}$ and $\{i \in H_i\}$ are vertex of $\{i \in H_i\}$ that is different from $\{i \in H_i\}$ and $\{i \in H_i\}$ are vertex of $\{i \in H_i\}$ that is different from $\{i \in H_i\}$ and a forced subset of $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H_i\}$ and $\{i \in H_i\}$ are very minimum $\{i \in H$

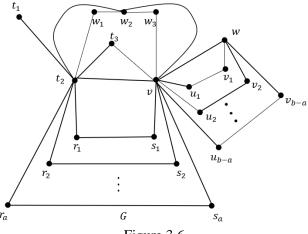


Figure 3.6

ISSN: 1074-133X Vol 31 No. 4s (2024)

References

- [1] F. Buckley and F. Harary, Distance in Graphs, Addision-Weseely, Reading MA, (1990).
- [2] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Graph Theory, 19, (1999), 45-58.
- [3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(1), (2002), 1 6.
- [4] G. Chartrand, E. M. Palmer and P. Zhang, The geodetic number of a graph, A Survey, Congressus Numerantium, 156, (2002), 37 58.
- [5] G. Chartrand, L. Johns and P. Zang, Detour Number of graph, Utilitas Mathematics, 64 (2003), 97-113.
- [6] G. Chartrand, H. Escuadro and P. Zhang, Distance in Graphs, Taking the Long View, AKCE J. Graphs and Combin., 1(1) (2004), 1-13.
- [7] G. Chartrand, H. EScuadro and B. Zang, Detour distance in graph, J. Combin, mathcombin, compul 53 (2005) 75-94.
- [8] A. Hansberg, L. Volkmann, On the geodetic and geodetic domination numbers of a graph, Discrete Mathematics, 310 (15-16), (2010), 2140-2146.
- [9] P. Lakshmi Narayana Varma and J. Veeranjaneyulu, Study of circular distance in graphs, *Turkish Journal of Computer and Mathematics Education* 12(2), (2021),2437-2444.
- [10] S. Sheeja and K. Rajendran, The Circular Number of a Graph (Communicated).