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Abstract— Progressive cartilage breakdown and joint 

inflammation are hallmarks of the common joint disease known 

as osteoarthritis (OA). The timely intervention and management 

of osteoarthritis (OA) depend on early detection. However, this 

can be difficult to achieve because labelled medical imaging data 

is scarce, and the disease's presentations are complex. A notable 

skew between the proportion of healthy and OA knee images 

can be seen in knee OA datasets, a phenomenon known as class 

imbalance. As a result, the model may underperform on the 

minority class (OA) and prioritize the majority class during 

training. The goal of the research is to further the development 

of more accurate and reliable techniques for knee OA detection. 

A novel method for knee osteoarthritis detection that first uses 

ResNet, DenseNet, VGG16, and VGG19 convolutional neural 

network (CNN) architectures for classification after generative 

adversarial networks (GANs) for data augmentation and 

pseudo-labeling is predicted. The aim of the work is to use 

labeled and unlabeled data to develop the robustness and 

accuracy of osteoarthritis detection. It is shown via thorough 

experimentation that the strategy is beneficial in enhancing 

classification performance, with ResNet obtaining the greatest 

accuracy and F1 score among the networks we studied. 

According to the research, pseudo-labeling and GAN-based 

data augmentation strategies can greatly improve osteoarthritis 

diagnosis accuracy and clinical significance. This work advances 

the field of medical image analysis and has potential benefits for 

bettering osteoarthritis patient treatment. The proposed 

approach performs well with an accuracy of 96.23%, precision 

of 0.963, recall of 0.959, and F1 score of 0.9246. 

Keywords— Osteoarthritis (OA), Generative Adversarial 

Networks (GANs), Convolutional Neural Networks(CNNs), 

Residual Networks(ResNet), Dense Convolutional 

Networks(DenseNet), Visual Geometry Group Network(VGGNet). 

I. INTRODUCTION 

The most prevalent type of arthritis and a leading global 

cause of disability is osteoarthritis (OA). It mostly affects the 

joints, resulting in discomfort, stiffness, and reduced range of 

motion. Osteoarthritis is frequently linked to aging and 

usually occurs gradually over time, though obesity or joint 

injuries can occasionally cause it. Osteoarthritis can cause 

discomfort, stiffness, edema, and reduced range of motion in 

the impacted joints [1]. The intensity of these symptoms 

varies, and they could worsen with time. A person's capacity 

to carry out everyday tasks and quality of life can be greatly 

impacted by osteoarthritis. Osteoarthritis treatment aims to 

reduce pain, enhance joint function, and impede the disease's 

advancement. A mix of medicine, physical therapy, lifestyle 

changes, and, in certain situations, surgery may be used to 

treat this. Osteoarthritis has no known treatment, but people 

with the illness can live active, satisfying lives by controlling 

their symptoms and caring for their joints. The tissue 

covering the ends of the bones in the joint, called cartilage, 

begins to deteriorate in osteoarthritis, a degenerative joint 

condition. Over time, bone rubbing on bone can cause the 

cartilage to deteriorate and cause pain, edema, and loss of 

joint function.  

People who work in jobs or engage in activities requiring 

frequent joint motions are also more vulnerable. While the 

exact cause of osteoarthritis remains unknown, it is believed 

to result from a combination of mechanical, metabolic, and 

genetic factors. Cartilage serves as a cushion in healthy joints, 

reducing shock and facilitating smooth joint movement. 

However, cartilage degrades and becomes less elastic in 

osteoarthritis, which causes friction between the bones and 

the development of osteophytes, or bone spurs [2]. A 

combination of clinical assessment, medical history, physical 

examination, and imaging tests like MRIs, ultrasounds, and 

X-rays are used to diagnose osteoarthritis. Blood testing can 

rule out rheumatoid arthritis and other types of arthritis. 

Although osteoarthritis cannot be cured, several therapy 

options can help control symptoms and enhance joint 

function. Some examples are medication, physical therapy, 

dietary changes, assistive technology, and, in extreme 

circumstances, surgery. Grading schemes are frequently used 

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1022

20
24

 2
nd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

us
ta

in
ab

le
 C

om
pu

tin
g 

an
d 

Sm
ar

t S
ys

te
m

s (
IC

SC
SS

) |
 9

79
-8

-3
50

3-
79

99
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
SC

SS
60

66
0.

20
24

.1
06

25
60

8

Authorized licensed use limited to: National Institute of Technology - Puducherry. Downloaded on August 28,2024 at 06:14:38 UTC from IEEE Xplore.  Restrictions apply. 



in osteoarthritis (OA) to categorize the degree of joint 

degradation according to radiographic data, such as X-rays or 

MRI scans. Healthcare professionals can use these grading 

systems to guide treatment decisions and predict the course 

of a disease by evaluating the degree of cartilage loss, bone 

alterations, and joint space narrowing.  

One popular technique for radiographic evaluation of 

osteoarthritis (OA) severity, especially in the knee joint, is the 

Kellgren-Lawrence (KL) grading system—this grading 

system, which was created in 1957 by Drs. John Kellgren and 

Jeffrey Lawrence classify OA according to the degree of 

structural alterations seen in X-ray pictures. A consistent 

method for measuring the degree of joint degeneration is 

provided by the KL grading system, which helps with 

diagnosis, prognosis, and therapy planning. There are five 

grades in the KL grading system: 

 

• Grade 0: There are no signs of osteoarthritis on 

radiographs. There is no sign of cartilage loss or other 

structural anomalies since the joint space is normal.  

• Grade 1: Osteoarthritis with doubt. Minor osteophytes, or 

bone spurs, could be present, but the joint space is normal 

or slightly narrowed. 

• Grade 2: Mild osteoarthritis. There are distinct 

osteophytes and possible modest narrowing of the joint 

space, which are early indicators of cartilage loss.  

• Grade 3: Osteoarthritis of moderate severity. Significant 

joint space narrowing and more noticeable osteophytes 

indicate mild cartilage degradation and possible bone-on-

bone contact.  

• Grade 4: Severe osteoarthritis. There are large 

osteophytes, widespread joint space constriction, and 

subchondral sclerosis (hardening of the bone beneath the 

cartilage). Joint deformity and severe cartilage loss could 

be observed. 

Clinicians can assess the course of the disease, choose a 
course of treatment, and track patient response to treatment 
using the KL grade. It is crucial to remember that the KL 
grading system should only be used in conjunction with other 
clinical examinations because of its limitations, which include 
subjective interpretation and the possibility of discrepancies 
between radiographic findings and clinical complaints. 

A. Challenges 

The expenses related to OA's diagnosis, treatment, and 

management significantly strain healthcare systems. Medical 

visits, prescription drugs, imaging tests, physical therapy, 

assistive technology, and occasionally surgical procedures 

are included in these expenses. People with OA might need 

surgery, rehabilitation, and medical consultations more 

frequently, increasing their use of healthcare resources and 

lengthening their hospital stays [3]. A comprehensive 

strategy emphasizing prevention, early detection, patient 

education, multidisciplinary management, and access to 

inexpensive, evidence-based interventions is needed to 

address the effects of OA on people and healthcare systems 

[4]. The burden of OA can be lessened, and the outcomes for 

those impacted by it can be improved by strategies that 

support healthy lifestyle choices, weight control, physical 

exercise, joint protection, and self-management abilities. 

Effective management of osteoarthritis (OA) and better 

patient outcomes depend heavily on early identification. 

Early OA detection enables prompt therapies targeted at 

stopping or delaying the disease's progression. Healthcare 

professionals can put procedures into place to prevent 

additional joint damage and maintain joint function by 

identifying people who are at risk or who exhibit early 

indicators of OA. Early detection can result in financial 

savings for patients, healthcare systems, and society by 

stopping disease progression, reducing the need for intrusive 

therapies, and improving patient outcomes. 

The convergence of deep learning and osteoarthritis (OA) 

offers promising prospects for enhancing this common joint 

ailment's identification, assessment, and treatment. Clinical 

decision support, predictive modelling, and medical imaging 

analysis are just a few medical applications where deep 

learning, a subsection of AI and machine learning, has shown 

perspective. Deep learning algorithms can identify and 

measure changes in joint anatomy, tissue integrity, and bone 

structure associated with osteoarthritis by analyzing medical 

images such as X-rays, MRI scans, and ultrasound images 

[5]. These algorithms help radiologists and doctors diagnose 

and treat patients accurately by automatically recognizing 

small irregularities symptomatic of osteoarthritis in its early 

stages. Even though deep learning has a lot of potential for 

treating osteoarthritis, there are still several obstacles to 

overcome, such as the requirement for sizable and varied 

datasets, strong model validation, results that are easy to 

understand, and integration with clinical workflows. 

Translating technology discoveries into real clinical 

advantages for patients with osteoarthritis and expanding the 

area of deep learning in that field requires concerted efforts 

by researchers, doctors, industry partners, and regulatory 

bodies. The following are the issues that this study aims to 

address: 

• The difficulty of diagnosing knee osteoarthritis in its early 

stages, when symptoms may be moderate or non-specific, 

is one major problem. Early detection is essential for 

starting prompt interventions and therapies to stop long-

term joint damage and limit the condition's progression. 

• Osteoarthritis in the knee is linked to high medical 

expenses and patient morbidity. Enhancing detection 

techniques can ease the strain on healthcare systems and 

increase cost-effectiveness by enabling early intervention 

and individualized treatment plans, which can improve 

patient outcomes. 

• Technological developments in computer vision, deep 

learning, and machine learning present a chance to create 

novel detection models that take advantage of these tools 

to improve the precision and effectiveness of knee 

osteoarthritis detection. Using such cutting-edge 

technology in clinical settings can completely change 

how osteoarthritis is identified and treated. 

The upcoming part of the document is structured in the 

following order: Section 2 examines a few previous relevant 

research; Section 3 offers a methodology; Section 4 shows 
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the experimental results along with a thorough explanation of 

the findings. The study is finally concluded in Section 5, 

which also addresses future work. 
 

II. LITERATURE REVIEW 

This study uses X-ray and MRI data to assess knee 

morphology's discriminative ability in automatically 

detecting osteophytes. A deep learning-based model is 

created to fragment the femur and tibia for the X-ray 

examination [6]. The models produced stable accuracy values 

of 0.73, 0.69, 0.74, and 0.74 for FM, FL, TM, and TL, 

respectively, based on X-ray-based 2D morphology. In that 

order, stable accuracy using 3D bone morphology from MRI 

was 0.80, 0.77, 0.71, and 0.76. All the compartments except 

for TM performed better than in 2D, with the femoral 

compartments showing particularly notable gains. 2D has the 

advantage of using less power. This imaging modality is more 

widely used and accessible, which could result in larger 

datasets. MRI offers comprehensive three-dimensional data 

regarding soft tissues, cartilage, and bones. One of the 

drawbacks of 2D images is their lack of depth, which makes 

it difficult to fully convey the intricacy of the shape and 

position of osteophytes, particularly when there are 

overlapping structures. 3D volume analysis is resource-

intensive and demands much more processing power and 

training time. The study presents a deep learning-based 

technique using a U-Net model and VGG11 encoder to 

automatically identify joints and segment bones in knee 

radiographs. The suggested method can efficiently identify 

and extract joints from radiography images. It also segments 

bones accurately, achieving an Intersection over Union (IOU) 

segmentation mean score of 0.963. The joint space width 

between the femur and tibia bones can be calculated by 

measuring vertical distances using an algorithmic method 

that is introduced [7]. The photos are consistently categorized 

as either normal or showing osteoarthritis, with an accuracy 

score of 89%. 

This study introduces a 3D CNN model and a semi-

supervised multi-view framework for identifying knee OA 

using 3D MRI data. We present a semi-supervised learning 

strategy that combines labeled and unlabeled data to enhance 

the suggested model's interpretation and relevancy. The 

contributions of the various parts of the proposed structure 

were examined by ablation research, which shed light on the 

best way to construct the model. The findings suggest that the 

method can potentially increase the precision and 

effectiveness of OA diagnosis. An AUC of 93.20% was 

reported using the suggested framework for diagnosing knee 

OA. One advantage is that radiologists can spend much less 

time segmenting bones by hand when they automate the 

process. More uniform assessments of bone features can be 

achieved by AI-based segmentation, which will improve 

study comparability and treatment tracking. The drawbacks 

consist of the standard and volume of training data, which 

significantly impact the accuracy of AI models. This paper 

introduces an ensemble network that uses a deep learning 

approach to expect a reliable and precise KL grade for the 

severity of knee osteoarthritis. Rather than using datasets 

with one image's size, we trained separate models on knee X-

ray datasets using the best image size for each model in an 

ensemble network [8]. We used an 8260-image dataset from 

the Osteoarthritis Initiative public dataset to conduct some 

studies. The suggested ensemble network performed the best, 

with an F1-score of 0.7665 and an accuracy of 76.93%. The 

benefit of ensemble approaches is that they can lessen the 

possibility of overfitting, a phenomenon in which a model 

performs well on training data but adversely on unknown 

data. The advantages of several deep learning architectures 

can be combined using ensembles. The drawbacks of 

ensemble approaches include managing and training 

numerous models, which can be more time- and 

computationally intensive than employing a single model. 

 

This paper suggests a novel method for categorizing knee 

osteoarthritis using deep learning and a whale optimization 

technique. Efficientnet-b0 and Densenet201—have been 

used for the training and feature extraction. Both chosen 

models were trained using deep transfer learning with fixed 

hyperparameter values using knee X-ray images. 

Subsequently, a feature vector with greater information than 

the initial feature vector is created through fusion utilizing a 

canonical correlation technique. Subsequently, an enhanced 

approach for whale optimization is created to reduce 

dimensionality. The final step involves sending the chosen 

features to machine learning techniques for classification, 

like neural networks and SVM [9]. The trials were conducted 

on the publicly available dataset and attained an accuracy of 

90.1%. DNNs provide a more objective method, which can 

reduce the subjectivity of human diagnosis variability. DNNs 

can automatically extract pertinent features from X-ray 

images for OA classification, removing the need for labour-

intensive and domain-specific manual feature engineering. 

DNN training can take a lot of time and processing power, 

which could be a drawback in some situations. DNNs are 

vulnerable to overfitting and poor performance on unknown 

data if the training set is too small or undiversified. Using a 

solitary posteroanterior standing knee x-ray image, an 

automated deep learning-based ordinal classification method 

is used to grade and diagnose knee osteoarthritis in the early 

stages [10]. Important characteristics of osteoarthritis (OA) 

include narrowing of the joint space, the development of 

osteophytes, and bone sclerosis, which can be seen on X-rays 

and can help with diagnosis and severity categorization. Only 

two dimensions are shown on X-rays, leaving out depth 

information about soft tissues like cartilage, which is 

important in osteoarthritis. It may make it difficult to 

distinguish OA from other medical conditions. X-rays may 

not be sensitive enough to identify soft tissue changes in 

early-stage OA, which may occur prior to notable bone 

changes. The model's overall performance is enhanced by 

combining transfer learning with refined ResNet-34, VGG-

19, DenseNet 121, and DenseNet 161. With a 95% 

confidence interval and an overall accuracy of 98%, the 

proposed technique yielded a 0.99 Quadratic Weighted 

Kappa. 

 
The proposed models are split into two frameworks that 

use transfer learning (TL) to refine the pre-trained 
convolutional neural networks (CNNs) and use them for 
feature extraction. Furthermore, a conventional machine 
learning (ML) classifier utilizes the improved feature space to 
improve knee OA classification enactment. The pre-trained 
CNN from the first context was fine-tuned using the notion of 
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TL to fit the two classes, three classes, and fd classes-based 
models in the second framework, which made minor 
modifications to the processes in the first framework [11]. 
Grading OA severity more accurately can be possible when 
DL is used for feature extraction and ML is used for 
classification, compared to just one technique. It may be 
computationally more economical to use pre-trained DL 
models for feature extraction rather than building an intricate 
DL model from the beginning for both feature extraction and 
classification. Compared to a single approach, this one may 
need more development time and demand skills in both DL 
and ML. The experimental data demonstrated performance 
enhancement with fewer multiclass labels, with binary class 
labels surpassing all others, achieving an accuracy rate of 
90.8%. 

Generative Adversarial Networks (GANs) and pseudo-
labeling approaches can greatly improve patient outcomes in 
knee osteoarthritis identification. The following are some 
ways to put this approach into practice to enhance patient 
outcomes: 

• Increase Precision in Diagnosis: Create fake knee joint 
images to enhance the dataset, giving the detection model a 
more diverse training set. It lessens overfitting and increases 
the model's capacity to generalize to new data, which helps to 
improve the accuracy of diagnosis of knee osteoarthritis.  

• Address Imbalance in Data: GANs can produce more 
images for classes that are underrepresented, so the training 
dataset is balanced. It contributes to developing a model that 
works well in all classes, including uncommon or early knee 
osteoarthritis cases, resulting in more accurate and consistent 
diagnosis. 

• Promote Early Detection and Intervention: GANs and 
pseudo-labeling improve diagnostic capacity, making 
identifying knee osteoarthritis in its early stages easier. It is 
important for early intervention. Improved patient outcomes 
and a slower rate of illness development can result from early 
diagnosis and more effective treatment approaches. 

• Efficient Use of Medical Resources: GANs and pseudo-
labeling work together to maximize the use of medical 
resources by increasing diagnostic accuracy and lowering the 
requirement for additional diagnostic tests. It leads to cost 
savings and more efficient use of healthcare services 

III. PROPOSED MODEL 

Osteoarthritis (OA) is a chronic degenerative joint 
condition that leads to pain, stiffness, and impaired joint 
function due to the slow destruction of cartilage. This article 
presents a unique approach that combines pseudo-labeling 
approaches with Generative Adversarial Networks (GANs) to 
improve osteoarthritis detection. Strong deep learning models 
called generative adversarial networks (GANs) may produce 
realistic synthetic images that closely mimic genuine medical 
imaging [12]. The goal is to create fake images that depict the 
many manifestations of osteoarthritis, such as differences in 
joint structure, bone morphology, and cartilage deterioration, 
by training GANs on labeled data of existing knee joint 
images. Then, to enhance the labeled dataset, the artificial 
images produced by the GANs are combined with pseudo-
labelling methods. Pseudo-labeling is a semi-supervised 
learning technique in which the model uses its predictions to 
label unlabeled data [13]. We aim to produce a more 
comprehensive and varied dataset to train a discriminative 

model for osteoarthritis detection by merging the labeled data 
with the pseudo-labeled data produced by the GANs. Using 
labeled and pseudo-labeled samples, the discriminative model 
is trained on the combined dataset to increase detection 
resilience and accuracy. We hypothesise that the 
discriminative model will be more proficient in recognizing 
the complex characteristics of osteoarthritis and 
distinguishing between healthy and diseased joints. The 
detection model is built, and its efficiency in handling image 
data is assessed. Fig. 1 shows the workflow of the proposed 
method. 

 
Fig. 1. Workflow of the proposed methodology 

A. Knee Osteoarthritis Dataset 

The Osteoarthritis Initiative (OAI) dataset is one of the 
most popular datasets for knee osteoarthritis studies. The OAI 
dataset comprises clinical, radiographic, and MRI data from 
hundreds of people, providing a comprehensive longitudinal 
data collection on knee osteoarthritis. X-rays and other 
radiographic images can be used to evaluate the knee's degree 
of osteoarthritis and the joint's anatomy [14]. Researchers can 
use these images to assess characteristics, including 
osteophyte formation, aberrant alignment, and joint space 
narrowing. Research on knee osteoarthritis has advanced 
greatly because this dataset has made it possible to examine 
treatment outcomes, risk factors, and the course of the illness. 
The dataset contains comprehensive clinical data, including 
self-reported measures of knee pain, function, and quality of 
life, demographics, medical history, and physical examination 
results. The dataset comprises 8260 left and right knee X-ray 
images with posterior-anterior (PA) fixed flexion. An overall 
of 4796 participants, encompassing both male and female 
patients aged 45 to 79, were used to create these images. 
Following a 7:1:2 ratio, the original dataset comprises 1656 
images in the test set, 826 in the validation set, and 5778 in the 
training set. Fig. 2. Shows sample input images for each grade. 

 
Class 0 Class 1 

 
Class 2 

 
Class 3 

 
Class 4 

 

Fig. 2. Sample Input Images 

 

B. Preprocessing 

 Pre-processing is vital in preparing medical imaging data 
for analysis and model training. When generative adversarial 
networks (GANs) and pseudo-labeling are used to detect 
osteoarthritis, pre-treatment ensures that the input data is 
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standardized, normalized, and devoid of artefacts that could 
impair the detection model's performance. Z-score 
normalization [15] is a popular method for altering data with 
a mean of 0 and a standard deviation of 1. Z-score 
normalization is used in medical imaging to equalize the 
intensity levels of pixel values across several images or scans, 
including using GANs and pseudo-labelling to identify 
osteoarthritis. Subtract the mean intensity (μ) from the initial 
pixel value for each pixel in the image, then divide the result 
by the standard deviation (σ) as shown as in (1). This 
technique standardized the intensity value concerning the 
dataset's mean and distribution of intensity levels. 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑖𝑥𝑒𝑙−𝑀𝑒𝑎𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
  (1) 

C. Generative Adversarial Network 

In medical imaging, obtaining huge datasets is difficult 

owing to logistical and ethical issues. GANs are especially 

useful for producing realistic fake medical images of knee 

joints. The accuracy of knee osteoarthritis identification is 

increased by using this enhanced dataset to build more 

reliable and broad models. Class imbalance can be addressed, 

and the model's performance can be guaranteed throughout 

the disease's progression using GANs to provide more 

samples for underrepresented classes. Complex patterns in 

knee osteoarthritis images that may be challenging to model 

using conventional techniques can be learned and captured by 

GANs. The generator and discriminator are the two primary 

parts of a Generative Adversarial Network (GAN) that must 

be trained. The discriminator distinguishes actual and fake 

data, while the generator creates fake data. Both components 

improve repeatedly through adversarial training: the 

discriminator becomes more proficient at distinguishing real 

data from fake, while the generator produces real data [15]. 

GAN training aims to get the generator G to approach the 

genuine data distribution Pdata(x) by teaching it to create 

fake data samples from a latent space distribution p(z). Using 

a loss function like the Jensen-Shannon divergence or the 

Wasserstein distance, the generator is trained to reduce the 

variance between the generated Pgen(x) and genuine data 

distribution. Simultaneously, discriminator D undergoes 

training to distinguish between genuine data samples x 

derived from the genuine data distribution and fake data 

samples G(z) produced by the generator. The discriminator 

seeks to minimize its classification error by optimizing its 

capacity to distinguish between authentic and fraudulent 

samples. It is possible to describe the adversarial training 

process as a minimax game in which the discriminator 

maximizes its loss, and the generator reduces its loss. 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥≈𝑃𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑃(𝑧) [log (1 −

𝐷(𝐺(𝑧)))]          (2)  

The discriminator's loss in properly classifying real data 

is represented by the first component in this objective 

function, while the second term represents its loss in wrongly 

categorizing produced data. While the discriminator seeks to 

exhaust the possibilities of the objective function by 

precisely differentiating between actual and fake samples, 

the generator seeks to decrease the second term by enhancing 

the quality of the samples it generates.  

 
Fig. 3. Working of GAN 

 

The generator and discriminator arrive at a Nash 

equilibrium through iterative training, where the generator 

produces real data that is undetectable from genuine data, 

and the discriminator cannot consistently discern between 

real and fake samples [12]. Through this adversarial training 

process, the GAN can understand intricate data distributions 

and produce fake samples The GAN can understand intricate 

data distributions and produce fake samples through this 

adversarial training process. Fig. 3. Shows the working of 

GAN. 

D. Augmentation 

A key tactic for improving the efficacy of deep learning 

model training is to augment the dataset with synthetic 

images, especially for applications like osteoarthritis 

identification from medical imaging data. A Generative 

Adversarial Network (GAN) is used in this procedure to 

produce artificial images that closely resemble photographs 

of osteoarthritis. The generator part of the GAN learns to 

generate images that resemble real medical scans, complete 

with bone anomalies, cartilage deterioration, and joint 

deformities, through adversarial training [16]. After that, the 

original dataset is joined with these artificial images to 

produce an augmented dataset with a wider range of samples. 

Researchers want to progress the sturdiness and 

generalization capacity of the osteoarthritis recognition 

model by adding more diversity and complexity to the 

training data by enriching the dataset with fake images. The 

model's ability to detect osteoarthritis from medical images is 

improved by this augmentation procedure, which also makes 

the model more resilient to changes in imaging 

circumstances, disease symptoms, and patient demographics. 

To guarantee the dependability of the augmented dataset for 

model training, validation and quality control procedures are 

usually carried out to ensure the synthetic images correctly 

capture relevant osteoarthritis aspects and retain consistency 

with real medical images. 

E. Self-supervised Psudo-labeling 

Self-training, or pseudo-labeling of unlabeled data, is a 

semi-supervised learning strategy in which unlabeled data is 

labeled according to a trained model's predictions. This 

method uses the model to predict labels for the unlabeled data 

samples after training on a small labeled dataset [16]. The 

training dataset is essentially expanded by adding these 

pseudo-labels to the original labeled data and using them in 

conjunction. The following is a mathematical representation 

of pseudo-labeling: 

Let DL= {(xi,yi)} represent the labeled dataset, where xi 

represents a data sample and yi its corresponding true label. 
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Let DU = {xi} represent the pool of unlabeled data samples. 

After training the initial model M on DL, pseudo-labels 𝑦𝑖̂ are 

assigned to the unlabeled samples xi based on model 

predictions as in (3). 

𝑦𝑖̂ = M(𝑥𝑖) (3) 

The pseudo-labeled samples {(xi, 𝑦𝑖̂ ) are then added to the 

labeled dataset DL to create a composite dataset 𝐷𝐶 =
{(𝑥𝑖 , 𝑦𝑖)}⋃{(𝑥𝑖 , 𝑦̂𝑖)}   The model's parameters are then 

simplified by retraining it on the expanded dataset. During 

several epochs, the model iteratively improves its predictions 

and gains knowledge from the larger dataset. When obtaining 

labeled data is costly or limited, pseudo-labeling efficiently 

utilises the information in the unlabeled data to enhance the 

model's performance. To stop the spread of false labels and 

guarantee ongoing learning efficacy, it is crucial to closely 

check the eminence of the pseudo-labels and track the 

model's performance during training. Fig. 4. Shows working 

on pseudo-labeling. 

 
Fig. 4. Working of pseudo-labeling 

F. Detection 

The augmented dataset, which consists of both the original 

labeled data and the pseudo-labeled data produced by 

methods like pseudo-labeling or self-training, is used to 

enhance the parameters of the detection model during 

training. Through this procedure, the detection model can 

learn from a larger and more varied collection of samples, 

improving the model's ability to diagnose osteoarthritis from 

medical imaging data accurately. Osteoarthritis in medical 

imaging data can be detected using various detection models, 

and we compare the performance. 

• Residual Networks: ResNet-101 architectures are often 

used for image classification applications [17]. The 

vanishing gradient issue is partially resolved by residual 

connections, which makes it possible to train deeper 

networks efficiently. 

• Dense Convolution Networks: DenseNet-161 

topologies allow for feature transmission and reuse by 

dense layer connections [18]. DenseNet models are 

renowned for their robust enactment of image 

classification errands and effective parameter usage. 

• VGG16: As a deep convolutional neural network 

architecture, VGG16 can be applied to the detection of 

osteoarthritis using medical imaging data of the knee [19]. 

VGG16 can be used in various fields, including medical 

imaging, because it can extract hierarchical features from 

images. 

• VGG19: VGG19 can identify osteoarthritis from medical 

imaging data, such as knee X-rays [20]. The deeper layers 

of VGG19, an extension of VGG16 architecture, consist 

of 16 convolutional layers and three fully connected 

layers. 

IV. RESULTS AND DISCUSSION 

The X-ray radiographs that we obtained from the OAI 
library were used.  There are 4796 participants in the photos, 
both men and women. Since the work primary focus is on the 
KL grades, radiographs from the baseline cohort with 
annotated KL ratings are obtained to evaluate the work. The 
dataset consisted of 8260 radiographs, including left and right 
knee images.  Table 1. shows the dataset used for training and 
testing the system for each grade. 

Table 1.  Dataset Composition 

Dataset 
Total Number 

of Images 
KL Grade 

Number of 

Images 

Training 

Set(Training and 

Validation) 

6604 

0 2615 

1 1198 

2 1729 

3 862 

4 200 

Test Set 

 

1656 

 
 

0 638 

1 297 

2 448 

3 222 

4 51 

 

The learning rate, which regulates the step size during 

optimization and usually varies from 0.0001 to 0.001 for both 

the generator and discriminator, is one of the important 

hyperparameters for the GAN component. The number of 

samples processed before the model's parameters are changed 

is determined by the batch size, which is set at 32. 

Furthermore, the latent space dimension is often between 100 

and 200, affecting the resulting images' complexity. The 

trade-off between adding noisy labels and growing the 

training set is typically balanced by using a threshold of 

approximately 0.9 to guarantee that only high-confidence 

predictions are pseudo-labeled. The proportion of actual 

labeled data to pseudo-labeled data is also crucial since the 

right balance between noisy and non-noisy pseudo-labels can 

improve learning without overloading the model. Fine-tuning 

variables like the number of attention heads and the 

dimensionality of the attention layers is necessary for 

integrating attention mechanisms. These parameters increase 

detection accuracy by assisting the model in concentrating on 

the most important aspects of the knee joint images. Knee 

osteoarthritis detection models can be made much more 

effective by carefully adjusting these hyperparameters, 

combining the synergistic effects of GANs and pseudo-

labeling to improve patient outcomes and diagnosis accuracy. 

A GAN model's accuracy can be greatly impacted by its 

hyperparameters, which include the learning rate, batch size, 

and number of training epochs. The best values for these 

hyperparameters were found using the grid search technique. 

Cross-validation is a key method in machine learning for 

evaluating a model's generalization performance. Several 

subsets, sometimes called folds, are created from the 

provided data. These folds should ideally represent the 
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distribution of the complete dataset. The original dataset is 

divided into three sets: 1656 images for the test set, 826 

images for the validation set, and 5778 images for the training 

set, with a ratio of 7:1:2. A more reliable measure of the 

model's capacity for generalization is obtained by averaging 

the evaluation outcomes (such as accuracy, precision, and 

recall) from each iteration. Overfitting is lessened via cross-

validation. K-fold cross-validation is a flexible and popular 

method for evaluating the generalizability of a model. Ten is 

the K-value that is set. It provides a solid method for 

measuring how successfully the GAN-pseudo labeling 

system detects knee OA. 

In this work, we chose the image size of 224 × 224 pixels 

that yielded the greatest KL grade classification performance 

for ResNet-101, DenseNet-161, VGG16 and VGG19, four 

deep learning-based classification models. The Pytorch 

framework is used throughout the development of the code, 

and a 12GB Tesla K40c GPU has been used for every 

experiment. For the KL grade classification challenge, we 

choose the best model for each deep learning architecture 

based on performance criteria such as F1-score, precision, 

recall and classification accuracy (Accuracy). The objective 

is to discriminate between healthy knee joints and those 

affected by osteoarthritis based on medical imaging data; 

accuracy is a frequently used performance parameter for knee 

osteoarthritis diagnosis. Accuracy as in (4) gives a complete 

assessment of the model's rightness by counting the 

percentage of appropriately classified cases from all the 

instances in the dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100%    (4) 

The number of correct predictions is the number of knee 

joints accurately identified as osteoarthritic or healthy. The 

total number of predictions is the dataset's overall number of 

knee joints. 

Another critical performance indicator for knee 

osteoarthritis detection is precision as in (5), which is the 

ability to discriminate between knee joints in good condition 

and those impacted by the disease. Of all the model's positive 

predictions, precision indicates the percentage of accurate 

positive predictions. The following formula is used to 

determine precision when it comes to knee osteoarthritis 

detection: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
          (5) 

The number of knee joints accurately diagnosed as 

osteoarthritic is called True Positives (TP). The number of 

knee joints mistakenly diagnosed as having osteoarthritis 

(predicted as having osteoarthritis but healthy) is known as 

False Positives (FP). 

One crucial performance indicator for identifying knee 

osteoarthritis is recall as in (6). It computes the percentage of 

true positive predictions or correctly diagnosed cases of 

osteoarthritis. Recall is determined from the perspective of 

knee osteoarthritis recognition using the following formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (6) 

The number of knee joints accurately diagnosed as 

osteoarthritic is called True Positives (TP). The number of 

knee joints misclassified as healthy (i.e., anticipated as 

healthy but having osteoarthritis) is known as False Negatives 

(FN). 

A popular performance statistic for knee osteoarthritis 

identification that strikes a compromise between recall and 

precision is the F1 score. It is particularly useful when there 

is an inequity between the classes (for example, healthier 

knee joints than osteoarthritic knee joints) and where it is 

crucial to consider both false positives and false negatives. 

The harmonic mean of precision and recall is used to compute 

the F1 score in the perspective of knee osteoarthritis 

recognition as in (7). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

Precision represents the proportion of true positive 

predictions among all positive predictions made by the 

model. Recall, on the other hand, denotes the percentage of 

true positive predictions among all actual positive cases of 

osteoarthritis within the dataset. Table 2. Shows the 

evaluation values of all the models 

Table 2.  Evaluation Results 

Model / 

Metrics 

ResNet-

101 

DenseNet-

161 
VGG16 VGG19 

Training 

Accuracy 
0.9623 0.7846 0.8956 0.7274 

Training 

Loss 
0.1368 0.4737 0.3576 0.3492 

Testing 

Accuracy 
0.9248 0.6942 0.7035 0.7024 

Testing Loss 0.1758 0.3458 0.4357 0.3596 

Precision 0.963 0.7136 0.7383 0.7257 

Recall 0.959 0.726 0.7395 0.7217 

F1Score 0.9246 0.7036 0.7157 0.7168 

 Various models such as ResNet-101, DenseNet-151, 
VGG16, and VGG19 are Convolutional Neural Network 
(CNN) architectures for image classification tasks. The 
ResNet-101 has highest training accuracy of 0.9623, the 
highest testing accuracy of 0.9248, a low training loss of 
0.1368 and a low testing loss of 0.1758.  The ResNet-101 has 
high precision, recall and F1 score value.  

 The model loss in knee osteoarthritis detection is a 
measure of error between the actual labels applied to the 
training instances and the projected probability of 
osteoarthritis presence. Training machine learning models to 
correctly identify knee pictures as suggestive or non-
indicative of osteoarthritis depends heavily on this loss 
function.  
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Fig. 5. Model loss at every epoch 
Monitoring the model loss, one may evaluate how well 
training is going and steer the optimization process toward 
improved performance and generalization on untested data. 
Effective optimization of knee osteoarthritis detection models 
can be achieved by practitioners through experimentation with 
various loss functions and ongoing assessment of the model's 
performance metrics, including accuracy, precision, recall, 
and F1-score, for enhanced diagnostic accuracy and clinical 
value. Fig. 5 shows the model loss at every epoch. PyTorch 
and Keras, two deep learning frameworks, automatically 
record training and testing data. Metrics like accuracy for the 
training and test sets for each epoch are included in this 
timeline. With the help of Matplotlib, we can plot this data and 
produce a visual representation. 

Model accuracy in knee osteoarthritis detection is the 

percentage of correctly categorized knee images relative to 

the total number of analyzed images. This measure is 

essential for evaluating how well machine learning models 

perform when taught to detect osteoarthritic changes in knee 

images precisely. Reaching a high level of model accuracy is 

essential to guaranteeing the validity of the diagnostic 

procedure and supporting medical practitioners in making 

well-informed decisions about patient care. The model's 

predictions are compared to the ground truth labels connected 

to the knee images to calculate the model's accuracy. The 

accuracy score is positively impacted by the model's ability 

to accurately identify osteoarthritis (positive cases) or the 

absence of osteoarthritis (negative cases). On the other hand, 

incorrect classifications lower the accuracy rating. Figure 5. 

Shows the model accuracy at every epoch. 

The proposed work shows how sophisticated machine 

learning methods, such as pseudo-labeling and generative 

adversarial networks (GANs), can improve the robustness 

and accuracy of osteoarthritis identification from medical 

imaging data. The proposed models achieve good accuracy 

and performance across many datasets, demonstrating better 

generalization capabilities by utilizing semi-supervised 

learning with pseudo-labeling and GAN-generated false 

images. Additionally, the performance of the various models, 

such as ResNet-101, DenseNet-161, VGG16 and VGG19, is 

highlighted by the proposed comparative analysis of CNN 

architectures, where ResNet shows the highest accuracy, 

precision, recall, and F1-score. 

 

Fig. 6. Model Accuracy at every epoch 
These results highlight the importance of choosing model 

architectures suitable for identifying osteoarthritis. Despite 

the encouraging results, we endorse the limitations of the 

investigation, notably the reliance on specific datasets and the 

need for additional validation on bigger and more diverse 

cohorts. Future research should look into other data 

augmentation techniques, modify model hyperparameters, 

and assess the methodology in actual clinical settings to aid 

in its application in clinical settings. The research advances 

the medical image analysis field and can potentially enhance 

patient outcomes in the treatment of osteoarthritis. Table 3 

shows the comparative analysis of the existing approaches 

with the proposed approach. 
 

Table 3.  Comparative analysis between existing techniques and the 
proposed method 

 

Author Year Precision  Recall 
F1 

Score 

Ming Ni [21] 2021 0.5  NA 0.667 

Dilovan Asaad Zebari 

[22] 
2022 0.878 0.9 NA 

Sameh Abd El-Ghany 

[23] 
2023 0.8757 0.9129 0.8927 

Proposed Method 2024 0.963 0.959 0.9246 

V. CONCLUSION 

 The proposed work introduced a unique method for knee 

osteoarthritis detection that uses ResNet, DenseNet, VGG16, 

and VGG19 convolutional neural network (CNN) 

architectures for classification after generative adversarial 

networks (GANs) are used for data augmentation and pseudo-

labeling. We have shown via thorough experiments that this 

method works well to increase robustness and accuracy in the 

detection of osteoarthritis. The proposed models have 

benefited from labeled and unlabeled data by using GANs to 

create fake images and adding pseudo-labeling, improving 

generalization skills. Additionally, we compared the 

performance of other CNN designs and found that ResNet 

performed the best in accuracy and F1 score. The results 

highlighted how cutting-edge machine learning methods 

might improve osteoarthritis diagnosis effectiveness and 

clinical applicability. 
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