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Abstract— Ovarian cancer is the fifth most common cause of 

death from cancer in women. This is mainly because it is often 

diagnosed at a late stage, as the earliest symptoms are unclear 

and inconsistent. Existing diagnostic techniques, such as 

biomarkers, biopsies, and imaging tests, have notable 

drawbacks such as reliance on subjective interpretation, 

inconsistency across different observers, and time-consuming 

testing procedures. This research study introduces an 

innovative deep learning framework that employs a 

convolutional neural network (CNN) algorithm to accurately 

predict and diagnose ovarian cancer, thereby overcoming the 

existing constraints. The CNN was trained using a dataset of 

histopathology images. The dataset was partitioned into test and 

training subsets to enhance the model's performance. The 

algorithm demonstrated an impressive accuracy rate of 96%, 

successfully detecting 97.12% of malignant instances and 

precisely categorizing 95.02% of healthy cells. This method 

effectively mitigates the challenges related to human expert 

evaluation, including elevated rates of misclassification and 

variability across different observers, while also reducing the 

time required for analysis. The results underscore the capability 

of this CNN-based technique to offer a more precise, effective, 

and dependable strategy for forecasting and detecting ovarian 

cancer. Subsequent investigations will prioritize the integration 

of new breakthroughs in deep learning to further amplify the 

efficacy of the suggested approach. 

Keywords— Deep Learning, Prediction, Ovarian Cancer, 

Convolution neural network 

I. INTRODUCTION 

Ovarian cancer has an annual death rate of 151,900, 
making it the most lethal malignancy worldwide [1].  Miller 
reports that it is the sixth leading cause of mortality among 
women. Ovarian cancer is the most prevalent form of 
gynaecological carcinoma, originating from epithelial tissue. 
This kind accounts for 90% of all occurrences. Clear-cell  

 

 

 

cancer of the ovary (C-COC), high-grade saline ovary 
cancers (H-GS-OC), low-grade saline ovary cancer (L-GS-
OC), and endometrioid ovary cancer (E-O-C) are the five 
histologic carcinomas. Mucinous ovary cancers (M-OC) is the 
most common kind of ovarian cancer. These cancers have a 
bleak prognosis when diagnosed at an advanced stage [2].  

Ferraro et al. [3] found that individuals who take oral 
contraceptives had lower levels of HE4 (p = 0.008). Biopsy, 
ultrasound imaging CAT (CT), electromagnetic resonance 
imaging, and PET (positron emission tomography), combined 
with novel techniques for training deep CNN, have shown 
great precision in forecasting and diagnosing seriously 
epithelial cells ovarian cancer.   

There are some diagnostic methods for ovarian cancer 
include biomarkers, biopsies, and imaging tests 

Biomarkers: CA-125 biomarkers are commonly employed 
for the detection of ovarian cancer. Nevertheless, their ability 
to accurately identify and detect conditions, particularly in the 
first phases, is restricted. This frequently leads to incorrect 
positive findings, which can result in unneeded procedures, or 
incorrect negative results, where the presence of cancer goes 
undiscovered until it has reached an advanced stage. Elevated 
CA-125 levels can also occur in benign illnesses including 
infertility and pelvic inflammation, which might complicate 
its reliability as a diagnostic tool. 

Biopsies: Biopsies involve the microscopic examination 
of tissue samples and are considered the gold standard for 
cancer diagnosis. However, the process is invasive and subject 
to human interpretation, introducing variability and 
subjectivity. Different pathologists may interpret the same 
biopsy differently, leading to inconsistent results. 
Additionally, the invasive nature of biopsies can cause 
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discomfort and anxiety for patients, and there is a risk of 
complications such as infection and bleeding. 

Imaging Tests: Imaging techniques such as ultrasound, 
MRI, and CT scans are crucial for visualizing tumours and 
assessing their spread. However, these tests rely heavily on the 
skill and experience of the radiologist. The subjective nature 
of image interpretation can lead to varying diagnoses among 
different practitioners. Additionally, these methods can be 
time-consuming and resource-intensive. Ultrasound, while 
non-invasive, can be limited by the operator’s experience and 
the patient’s anatomy. MRI and CT scans, although more 
detailed, are expensive and not always readily available, 
especially in resource-limited settings. 

 Cell tumour prognosis and therapy depend on accurate 
prediction and diagnosis, improving patient outcomes. Deep 
learning has various advantages: 

• Handling Large Datasets: Deep learning 
processes large datasets and makes accurate 
predictions, reducing misdiagnosis. 

• Deep learning detects ovarian cancer early, 
improving treatment success. 

• Personalized therapy: Deep learning algorithms 
anticipate therapy responses, making care more 
efficient and individualized. 

DeepOva, a deep learning system for cell tumour prediction 

and diagnostics, is introduced in this research. The framework 

efficiently analyzes the pictures in less than 5 seconds, 

achieving a result score of 0.95 with the utilization of 

advanced approaches. Related work, materials and 

techniques, findings and discussion, and conclusions are 

organized. DeepOva, advances tumour diagnosis, improving 

patient treatment and outcomes. 

II. RELATED WORK 

Several advanced deep-learning methods have been 
researched to categorize ovarian cancer according to the 
specific cell type. Accurate identification of the specific kind 
of ovarian cancer is crucial for developing personalized 
treatment programs for patients. Over the last ten years, 
several research have sought to improve the results of cancer 
screening in the early stages by employing histopathological 
pictures and biomarkers, including CA-125 and HE-4 [4]. CA-
125 exhibits low precision and specificity in identifying 
ovarian cancer at its early stages, whereas imaging techniques 
like CT, US, and MRI are frequently employed to locate and 
identify characteristics of masses. Nevertheless, the analysis 
of pictures by skilled radiographers can be a lengthy process 
and susceptible to differences in interpretation among 
observers [5]. Recent research has prioritized the utilization of 
machine learning algorithms to forecast and detect ovarian 
cancer at an early stage. Various techniques have been 
suggested for extracting characteristics from ultrasound 
pictures and categorizing ovarian cancers. Several approaches 
that can be used include Support Vector Machines (SVM), 
classifiers based on shallow neural networks, and filters based 
on wavelet transforms. The extracted features from the images 
include textured and pathogenic features, polynomial values, 
uniformity histogram, which as well as dark grey variance 
multi-scaling. Subsequently, these characteristics are 
combined using a support-vector-machine (SVM) method to 
accurately categorize all categories of complete tumors [6].  

Belal et. al developed an extensive method to categorize 
cancer of the uterus by integrating gene expression data with 
clinical information, so creating a unified strategy for 
categorizing cancer stage. The rate of classification of 
Boosting and Ensemble SVM was 80%, whilst other machine 
learning classifiers had a lower accuracy of 70.77%. The 
suggested technique exhibited high values for recall, 
specificity, accuracy, F measure, and AUC [7]. A computer-
aided design (CAD) technique to diagnose moderate ovarian 
cancer by examining S-HG pictures. The researchers 
employed a k-NN classifier together with a technique for 
optimization known as T-POT, yielding a mean accuracy 
ranging from 0.976 to 0.96. A T-POT forecast achieved a 
predictive accuracy rating of 0.97 and the suggested as a way 
to obtain high-resolution images of the whole organ while also 
capturing certain indicators that are not detectable using 
MPM. Radiation and a model based on CNN in order to make 
a prediction about endometrioid cancer that shown promising 
therapeutic potential, despite the fact that the sample size was 
very small [9].  

The MTDL approach may be used to improve 
classification accuracy and solve challenges related to high-
dimensional feature spaces. Additionally, there is the 
possibility that this method could be used to new dataset 
categories. There have been a number of studies that have 
offered promising ways for detecting and forecasting 
gynaecological malignancies, such as ovarian and endometrial 
cancers [10]. Utilizing gene expression data, this study 
employs advanced deep learning and machine learning 
approaches to cluster and classify ovarian cancer subtypes 
[11].  Through the integration of ALO-optimized the LSTM 
technique and CNN networks, a deep learning model that 
combines the two is proposed. This model makes use of 
multiple modalities of data, namely gene and histopathology 
images.  Using a hybrid growing deep neural networks model 
that incorporates a variety of data sources and a large number 
of assessment markers, the objective is to arrive at a diagnosis 
of ovarian cancer. In the study, the effectiveness of the 
suggested method is evaluated in comparison to other 
different hybrid fused models that have been used in the past. 
[12].  

As opposed to advanced ovarian cancer, peritoneal 
tuberculosis (TBP) has symptoms that are akin to those of 
advanced cancer of the ovaries. About one percent to two 
percent of every case of tuberculosis are caused by TBP. The 
resemblance among TBP and cancer of the ovary poses 
difficulties in distinguishing between the two conditions [13]. 
The process of developing and validating MIA3G, an 
advanced neural network-based algorithm designed to identify 
ovarian cancer. The method underwent training using a 
dataset consisting of 1067 samples and was then verified using 
a distinct set of 2000 samples. The findings indicate that 
MIA3G has a sensitiveness of 89.8% and an accuracy of 
84.02% for the detection of cancers of the ovary [14].  

 

 

 

 

 

 

5th International Conference on Electronics and Sustainable Communication Systems (ICESC 2024)
IEEE XPlore Part Number: CFP24V66-ART; ISBN: 979-8-3503-7994-5

979-8-3503-7994-5/24/$31.00 ©2024 IEEE 1319
Authorized licensed use limited to: SRM Institute of Science and Technology. Downloaded on October 04,2024 at 11:55:10 UTC from IEEE Xplore.  Restrictions apply. 



 

TABLE I.  PREVIOUS STUDIES 

Author Methods Contribution Limitation 

Danaee et al. 

[6] 
Deep learning 

Cancer detection and relevant 

gene identification 

High computational cost and requires large datasets for 

training 

El-Bendary & 

Belal [7] 

Clinical and gene expression 

integrative approach 

Epithelial ovarian cancer stage 

subtype classification 

Lower accuracy (70.77%) with some machine learning 

classifiers; requires extensive data integration 

Wang et al. [8] 
Utilizing second-harmonic generation 

visuals for machine learning purposes. 

Detecting early ovarian cancer 

among individuals without delay 

Requires high-quality imaging equipment and expertise 

in image analysis 

Zhang et al. 

[9] 
CNN-based model 

Intelligent recognition and 

prediction of endometrial cancer 
Small sample size; limited generalizability 

Liao et al. [10] 
Multi-task deep convolutional neural 

network 
Cancer diagnosis 

High computational complexity; requires large labeled 

datasets 

Guo et al. [11] Deep learning with multi-omics data 
Ovarian cancer subtypes 

identification 

Data heterogeneity; integration challenges with multi-

omics data 

Ghoniem et al. 

[12] 

Multi-modal evolutionary deep 

learning model 
Ovarian cancer diagnosis 

High computational requirements; complexity in model 

training and optimization 

Arezzo et al. 

[13] 
Radiomics analysis 

Review on radiomics analysis in 

ovarian cancer 

Challenges in distinguishing peritoneal tuberculosis 

from advanced ovarian cancer; variability in imaging 

data quality 

Reilly et al. 

[14] 

Algorithm based on deep neural 

networks (MIA3G) 

Validation of algorithm for 

adnexal mass clinical 

management 

Sensitiveness of 89.8% and accuracy of 84.02%; 

potential for false positives and negatives 

Guo et al. [11] Deep learning with multi-omics data 
Ovarian cancer subtypes 

identification 

Data heterogeneity; integration challenges with multi-

omics data 

 

Fig. 1. The Architecture of DeepOva Model 

III. METHODOLOGY 

The purpose of this part is to present an overview of the 
methodology that was utilized in the research, which covers 
the collection of the dataset as well as the proposed design of 
the CNN [15]. In this experiment, the collection of data that 
was employed consists of two hundred photos, which are 
uniformly distributed as follows: one hundred photographs of 
superficial ovarian cancer and one hundred images of non-
cancerous samples. The Cancer Genome Atlas TCGA 
database was used to generate the original data set, which was 
subsequently enhanced with 11,040 photos to maximize the 
platform's deep learning capabilities. 80% of the dataset was 
designated for training, while 20 % was put aside for testing. 
The extracted dataset was subsequently utilized for the 
convolution procedure. The images offered were subjected to 
a pretreatment process that entailed the elimination of any 
images that were inadequate, such as those that were 
converted wrongly and lacked the jpg format extension. The 

data underwent a cleaning process to eliminate the photos that 
were distorted. Convolution is a mathematical operation that 
is used to extract a certain characteristic from a set of inputs. 
This is done by applying a set of feature detectors, also known 
as kernels, to the inputs. A tensor is a series of numbers that 
represents the inputs. The connection between each 
component of the kernel and the tensor that is being input is 
calculated separately in each region of the tensor. These 
calculations are then combined to determine the resulting 
quantity in the corresponding region of the output tensor, 
which is called the feature map. Which activation function to 
use is based on the fact that it does not simultaneously activate 
all neurons and does not uniformly excite all neurons. 
Therefore, not all neurons are engaged throughout the process 
of backpropagation. Subsequently, the data was transmitted 
through the pooled layer, which employed a conventional 
down-sampling technique to decrease the size of the feature 
map elements. This down sampling allowed for increased 
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flexibility in detecting small shifts and distortions, while also 
reducing the number of parameters that needed to be learnt in 
the future layers.  

 

TABLE I.   HYPERPARAMETERS FOR DEEPOVA MODEL 

 

 

The study employed the technique of Max-pooling. 
Subsequently, the data was inputted into the flattening layer, 
where it was transformed into an array with one dimension or 
vector of integers. In the subsequent step, this array was 
transmitted as an input to the second layer that was completely 
combined. Following that, the information is introduced into 
the completely linked layer of neural networks that are 
feedforward. Any node in a lower layer is connected to the 
cells in the one directly above it with adjustable weights, 
which may be adjusted throughout the learning process. The 
characteristics acquired from the pooling stages are linked to 
the outputs of the network. Finally, the outcome was sent to 
the result layer, where SoftMax was employed for 
categorization. In this study, the loss function that was utilized 
was connect entropy as which was determined by the ensuing 
formula for classifying binary data, which formally follows 
the equation 1. 

𝑙𝑓 = −(𝑦𝑏 log(𝑝𝑖) + (1 − 𝑦𝑏) log(1 − 𝑝𝑖))    (1)  

 

Where, 

             𝑙𝑓 − 𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

            𝑦𝑏 − 𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

           𝑝𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

 

A summary of the hyperparameters that are used in the 
CNN architecture [16] is provided in Table 1. 

 An analysis is conducted in each tensor area to calculate 
the element-wise product among every kernel component with 
the input vector. The computation is combined to determine 
the resulting value in the corresponding outgoing tensor area, 
which is reflected by the characteristic maps. Considering 

stride and padding, Equation 2 was utilized to compute the 
size of the produced image. 

 OID = [
𝑖𝑛 + 2𝑝 − 𝑓

𝑠𝑡
+ 1] × [

𝑖𝑛 + 2𝑝 − 𝑓

𝑠𝑡
+ 1]          (2) 

Where 

𝑖𝑛 -Input Pixel 

p – Padding 

f -filter 

st-stride 

OID- Output Image Dimensions 

The nonlinear activation function, technically represented 
as Equation 3, was given the convolutional result in order to 
simulate the mathematical behavior of actual neurons. 

f𝑓(𝑥) = max(0, 𝑥)                                                      (3) 

 

IV. RESULTS AND DISCUSSION 

The dataset consisted of 12,040 images, which were used 
to train the model. contains an equal number of healthy cells 
and cells that have been infected with the epithelial cancer 
group. In order to tune the hyperparameters, the number of 
epochs was chosen, and the amount was raised by fifty percent 
increments. The correctness of both the training and validation 
sets was documented. The procedure of testing was carried out 
once the training phase was completed. This was 
accomplished by uploading a image from the evaluation 
dataset, and the method would then provide the proportion of 
the image that included both effusion or normal cells. The 
Xception network succeeds in obtaining good training as well 
as validation reliability with a minimum number of intervals, 
as proven by this result, which shows the superiority of the 
Xception network. It is important to note that this particular 
type of network does not carry out channel-wise convolution 
in contrast to conventional generic convolutional neural 
networks. As a consequence of this, the number of 
associations is decreased, and the actual weight of the model 
is decreased. Consequently, it is possible to reach an 
exceptional level of accuracy with just 50 epochs. Figure 1 and 
2 illustrates the model loss and accuracy. 

 Overall Accuracy =
TP+TN

TP+TN+FP+FN
,

 Precision =
TP

TP+FN
,

 Recall =
TP

TP+FP
,

𝑓1-Score = 2 ⋅
 Precision × Recall 

 Precision + Recall 
,

              (2) 

 

Accuracy: Proportion of correct predictions, broadly 
indicating model fitness. However, it can be misleading in 
imbalanced datasets, favoring the majority class. 

Precision: Represents the proportion of predictions for a 
class that are actually correct for that class. High precision 
means the model rarely makes false positives. 

Recall: Represents the proportion of actual positive cases 
that were correctly identified by the model. High recall means 
the model rarely misses true positives. 

S.No 
Hyperparameter Value 

1.  Convolutional layers 4 

2 Kernel size 5 × 5 

3 Type of Pooling  Max pooling 

4 Size of Pooling 5*5 

5 Filters 32, 64 

6 Fully connected  128 

7 Activation function Relu 

8 Output of the activation functiont Sigmoid 

9 Loss function Cross-entropy 

10 Optimizer Adam 

11 Rate of learning 0.001 
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F1-Score: Harmonic mean of precision and recall, 
rewarding models that excel in both. A good balance between 
precision and recall is ideal in equation 2. Figure 4 illustrates 
the comparison Diagnostic Methods for Ovarian Cancer. 

 

 

  Fig. 2. Model loss  

 

  Fig. 3. Model Accuracy. 

 

The suggested CNN, especially when employing the 
Xception design, exhibited enhanced reliability in training and 
validation while requiring a limited number of epochs, 
resulting in an impressive accuracy of 96%. Unlike 
conventional convolutional neural networks, this architecture 
eliminates channel-wise convolution, thus decreasing the 
model's overall weight and the number of connections. 

This research introduces a Convolutional Neural Network 
(CNN) aimed at improving the accuracy and efficiency of 
diagnostic processes. The CNN, which was trained on 
histopathology images, achieved a high accuracy rate of 96%. 

 

Fig. 4. Comparison of Diagnostic Methods for Ovarian Cancer. 

 

V. CONCLUSION 

Ovarian cancer is a prominent contributor to women's 
cancer-related mortality, primarily because it is often 
diagnosed at an advanced stage due to the presence of non-
specific early symptoms. Existing diagnostic techniques, such 
as indicators of health, tissue samples, and scans, are plagued 
by issues of personality, inconsistency across observers, and 
long methods. This research presents a CNN as a means to 
enhance the precision and efficiency of diagnostic procedures. 
The CNN, which underwent training using histopathology 
pictures, obtained an impressive accuracy rate of 96%. It 
successfully detected 97.12% of malignant instances and 
accurately categorized 95.02% of healthy cells. As a result, the 
CNN significantly reduced both human error and the time 
required for evaluation. The results highlight the capability of 
CNN-based frameworks to provide a more accurate, efficient, 
and dependable approach for detecting ovarian cancer, 
enhancing the rates of early detection, and subsequently 
improving patient outcomes. Subsequent investigations will 
prioritize several crucial domains to better optimize the CNN-
based diagnostic tool. The use of recent developments in deep 
learning, such as transfer learning and reinforcement learning, 
will enhance the performance of the model. Increasing the 
scale and variety of the dataset will enhance the ability of the 
model to apply to various demographics and clinical 
environments.  
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