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Abstract 

 

Scientific research and commercial applications rely heavily on tabular data, yet efficiently modelling this data has constantly been a 

problem. For over twenty years, the standard method for machine learning has been based on traditional models, with gradient-boosted 

decision trees (GBDTs). Despite recent advancements in deep learning, neural networks often fail to provide satisfactory results on 

compact tabular datasets due to factors such as overfitting, insufficient data & intricate feature relationships. The study offers a Tabular 

Prior data Fitted Network, a foundation model developed by meta-learning on more than one million synthetic datasets generated 

sequentially, which is constructed on transformers to tackle these limitations. Without retraining or hyperparameter optimization, 

TabPFN learns to anticipate the best solutions for tabular problems, gaining inspiration from the achievements of GPT-like models in 

natural language processing. When applied to small to medium-sized datasets, its cutting-edge performance in inference speed & 

accuracy outperforms that of traditional methods. TabPFN redefines efficient and scalable tabular data modelling, including generative 

capabilities, few-shot learning, & rapid adaptation. 
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1. Introduction 

Various disciplines rely on tabular data, which consists of structured information organized in rows and columns. These subjects include 

healthcare, finance, physics & materials science among other applications [1]. The ability to make predictions, evaluate risks & uncover 

new information relies heavily on predictive tasks like classification and regression in these contexts. The benchmark for these tasks has 

long been tree-based ensemble algorithms like XGBoost, LightGBM & CatBoost because of their outstanding performance on 

heterogeneous features & small sample sizes [2-5These methods call for significant hyperparameter changing and domain-specific 

feature engineering, which could be computationally and time-consuming [2]. At the same time, domains like computer vision and 

natural language processing have been revolutionized by the advent of foundation models, which are big pretrained neural networks like 

ViT, GPT & BERT. These models often achieve contemporary performance in low-data regimes by learning general-purpose 

interpretations that transfer across problems with minimum extra training [3]. 

This paradigm is the basis for our proposed foundation model for tabular data, the Tabular Prior data Fitted Network (TabPFN). Using a 

combination of Bayesian networks, Gaussian processes & random forests, TabPFN is trained through meta-learning on millions of tiny 

synthetic datasets [4]. The model can make correct predictions on fresh data in a few-shot or zero-shot situation without needing gradient 

updates, since it has internalized generic learning techniques via this process [5]. Instead of working with tokens or picture patches, 

TabPFN uses a transformer architecture modified to process feature-label pair sequences. The model can handle generative tasks like 

density estimation and data synthesis because of its structure, which also captures complicated inter-feature connections. Especially in 

situations with little data and variability, TabPFN routinely outperforms deep learning models and conventional machine learning 
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baselines in tests using typical tabular benchmarks. The study lays out the steps to create TabPFN, dissects its novel architectural 

features, and compares it to other state-of-the-art methods. By moving away from task-specific learners and toward general-purpose 

foundation models, TabPFN competes with GBDTs and changes our perspective on tabular modelling [6]. 

Traditional tabular learning algorithms like XGBoost, LightGBM, and CatBoost have long-standing dominance in structured data 

challenges, particularly when working with tiny datasets. The key to their success is mastering engineering features and regularization 

procedures for tabular data [7]. On the other hand, they rely primarily on domain-specific and human hyperparameter changes, which 

may be computationally costly & time-consuming. On the other hand, models based on neural networks provide the prospect of end-to-

end learning via automated feature extraction and pattern modelling. However, they perform poorly in regimes with minimal data since 

effective generalization requires massive data [2]. By presenting a foundation model technique for handling tabular data, TabPFN meets 

this requirement. For generalization to new datasets without fine-tuning, TabPFN learns to represent the joint distribution of features & 

labels by using the capability of pretrained transformers trained via meta-learning on millions of synthetic jobs  Performance on small to 

medium datasets may now be redefined as being viable without compromising on speed or scalability, to this paradigm change that 

transfers the benefits of foundation models to the tabular domain, including efficiency, robustness & transferability as shown in table 1 

[8]. 

Table 1. Literature Review: Tabular Data Modelling 

Study / Model Year Approach Key Features Strengths Limitations 

XGBoost (Chen & 

Guestrin) 
2016 

Gradient 

Boosted Trees 

Boosting over 

decision trees 

with 

regularization 

High 

performance on 

structured data; 

handles missing 

data well 

Requires 

hyperparameter 

tuning; less 

efficient for small 

datasets 

LightGBM (Ke et 

al) 
2017 

Gradient 

Boosted Trees 

Leaf-wise 

growth; 

histogram-based 

training 

Fast training, low 

memory usage 

Can overfit on 

small data 

CatBoost 

(Prokhorenkova et 

al.) 

2018 
Gradient 

Boosted Trees 

Categorical 

feature 

encoding; 

ordered 

boosting 

Handles 

categorical data 

natively 

Limited 

generalization 

beyond specific 

tabular tasks 

TabNet (Arik & 

Pfister) 
2021 

Deep 

Learning 

Sequential 

attention-based 

feature selection 

Interpretability 

via attention; 

end-to-end 

learning 

Slower training 

requires more data 

NODE (Popov et 

al) 
2019 

Neural 

Oblivious 

Decision 

Ensembles 

Ensemble of 

differentiable 

decision trees 

A hybrid of tree 

and neural 

models 

Not robust to all 

tabular 

distributions 

SAINT (Somepalli 

et al) 
2021 

Self-Attention 

for Tables 

Transformer 

architecture 

with column 

masking 

Better 

performance than 

MLPs on 

classification 

tasks 

Needs large 

datasets; 

underperforms on 

small-data regimes 

FT-Transformer 

(Gorishniy et al) 
2021 

Transformer 

for Tabular 

Data 

Feature 

tokenization and 

row-wise 

transformers 

Leverages 

transformers; 

competitive 

results 

Requires careful 

tuning 

TabPFN 

(Hollenstein et al.) 
2023 

Meta-learned 

Transformer 

Pretrained on 

millions of 

synthetic tasks; 

zero-shot 

prediction 

SOTA 

performance on 

small data, no 

tuning, fast 

inference   

 

2. Methods 

This has become very rampant in the recent past, hence making flooding one of the areas of interest. In the past, the forecast was based 

on the hydrological models and a statistical approach that was slow and less accurate. Some of the rising trends witnessed in Artificial 

Intelligence and Machine learning regarding flood prediction are as follows. In [2], it is also stated that one can use AI to analyze the 

information gained from satellites and climate data in combination with historical records of floods [9]. 
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2.1. Foundation Model for Tabular Data 
Several disciplines rely on tabular data, consisting of rows representing samples and columns representing attributes, including physics, 

healthcare & finance [10]. Although deep learning models such as transformers have shown exceptional ability in processing 

unstructured data like text & pictures, their application directly to structured, tabular data has always lagged. The Tabular Prior data 

Fitted Network (TabPFN) closes this gap by applying the foundation model paradigm, a model previously trained on extensive, varied 

data to be flexible to many tasks, to the field of tabular learning [11]. 

The main idea is to view the prediction task as a meta-learning challenge in which the model is trained not only to fit data but also to 

learn from any new tabular dataset. As shown in the Figure, TabPFN is pretrained on a wide range of synthetic tabular datasets, as GPT 

is pretrained on a diverse corpus of text and can generalize to many language issues. Ranging in number of features, data kinds, 

distributions & underlying connections, these datasets let TabPFN adopt the inductive biases required for tabular tasks. Once pretrained, 

TabPFN is a genuine tabular foundation model as it can generalize to unobserved datasets with little or no further training. 

Let a tabular dataset be defined as     

 ………………………………………………………………………………………………………………………..(1) 

xi ∈ Rd is a feature vector, and yi is the corresponding label. A standard predictive model learns a function  

 ………………………………………………………………………………………………………………………..(2) 

In contrast, TabPFN learns a meta-function: 

 ………………………………………………………………………………………………………………………..(3) 

Where FΦ is trained over many synthetic datasets, learning how to generate a task-specific model fθ for a new dataset Dtrain, here, Φ 

represents the parameters of the foundation model (e.g., transformer weights).  

To learn a function fθ : Rd →Y by minimizing a loss over training data: 

………………………………………………………………………………………………………………………..(4) 

 

Fig 1. TabPFN workflow model 

2.2. Meta Learning Approach 
TabPFN's fundamental approach starts with creating millions of synthetic datasets to replicate the complexity and variety of actual 

tabular issues, as shown in Figure 2 [12]. Ensuring broad coverage of the problems a model may encounter in actual situations, these 

datasets differ in feature distributions, class counts, correlations & noise levels. Transformer-based foundation models are a generalized 

learning process, with any new tabular dataset using these fake tasks as input [13]. The model is taught to grasp the fundamental learning 

structure independently, rather than tackling one task. When the meta-learning phase is complete, the model may quickly generalize to 

new, unexplored tabular datasets, yielding extremely accurate predictions without conventional restructuring, fine-tuning & 

hyperparameter optimization techniques. This creates a strong zero-shot learner that significantly lowers the time & computer resources 

required for tabular data modelling purposes [14]. 

 

Fig 2. Transformer-Based Foundation Model 
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2.3. Transformer-based Architecture 
In a tabular dataset, rows represent data instances (examples), and columns are features x1,x2,..., xd, and a label y. The data is organized 

as pairs (x, y) (feature vector & matching label) as shown in Table 3. Millions of synthetic datasets like these are generated during pre-

training to mimic real-world categorization activities. In the transformer encoder, an embedding is created from every row of (xi,yi). 

These embeddings are fed into a Transformer architecture [15]. Models' dependencies between many feature-label pairings using multi-

head self-attention. It captures correlations among characteristics and samples, both intra-row & inter-row. The Transformer is designed 

to turn this list of tabular tokens into predictions. The Transformer gets new data (e.g., feature vectors in masked labels for inference 

prediction). The model then directly predicts (e.g, class probabilities) for such cases. Rather than training a new model for every dataset, 

the Transformer generates precise predictions in a single forward pass, avoiding conventional retraining [16]. 

 

Fig 3. High-level overview of TabPFN pretraining and usage 

 

The architectural diagram shown in Figure 4 describes the TabPFN (Tabular Prior data Fitted Network) pipeline's pretraining and 

inference workflows. The pipeline generates synthetic tabular data using Bayesian Networks, Gaussian Processes & Random Forests. 

These models are used to imitate the real-world dataset's statistical diversity. Over a million synthetic datasets with distinct learning tasks 

are created from them. These datasets underpin meta-learning TabPFN training [17]. 

The TabPFN Transformer is then trained on simulated datasets. TabPFN implements this architecture for tabular data, unlike text 

transformers. The processor handles feature-label pairs, not word tokens [18]. The model uses an input encoding layer to convert tabular 

data rows into vector embeddings [19]. A feature tokenization module encodes each feature and its value as transformer-friendly tokens 

from these embeddings. 

The redesigned self-attention mechanism is a crucial innovation that handles non-sequential and unordered tabular data. This allows the 

model to capture correlations between characteristics inside and across samples using language model attention patterns tailored for 

structured inputs. The system enters few-shot inference after the output head translates the final concealed data into predictions. TabPFN 

may use its pretrained information to quickly guess the unknown label from an entirely new input sequence (e.g., feature-label pairs with 

one label missing) without retraining or hyperparameter adjustment [11]. This design lets TabPFN learn from many synthetic jobs & 

adapt to new datasets with little data & compute, making it a strong tabular data foundation model. 

 

Fig 4. Architectural diagram of TabPFN 

2.4. Generative Modelling and Pretraining 
Using synthetic data creation, density evaluation & learning reusable embeddings, the generative model in tabular learning transcends 

conventional prediction tasks. It simulates the whole joint distribution of characteristics and labels, thus enabling this. The model is 

exposed during pretraining to several (features, label) pairings where some labels are masked; this compels the system to learn patterns 

that can predict or reconstruct the missing label depending on the other inputs. Though more flexible & scalable, this method imitates 

supervised learning and lets the model generalize better, particularly in low-data environments. The model effectively transfers learning 

in tabular environments because it learns practical representations (embedded data) that can be applied to other tasks. 
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TabPFN views tabular data as a conditional generative process [20].  

 ……………………………………………………………………………………………………………..(5) 

Here,  consists of observed features, Xmask, masked feature (generated), and y-label (predicted or generated). The model is trained 

to minimize the negative log-likelihood (NLL) of masked labels as well as features: 

 

Here, Dsynth – synthetic dataset distribution. Masking tracks Bernoulli process with probability pmask=0.15 (stimulated by BERT). The 

transformer input coding is given by 

 …………………………………………………………………………………………………..(6) 

 

The modified self-attention of a transformer is given by 

 …………………………………………………………………………………………………..(7) 

The output heads of TabFPN are given by 

 …………………………………………………………………………………………………..(8) 

 ………………………………………………………………………………………..(9) 

 

TabPFN implements a neural process  

 ……………………………………………………………………………………..(10) 

Here  are  are the latent parameters of the Transformer, Dcontext, and a few shot examples provided at interference. This is consistent 

with Bayesian meta-learning, in which a prior p(ϕ) over model parameters is learned during pretraining. 

2.5. Fast Inference and Zero-Shot Prediction 
The TabPFN model exhibits exceptional quick inference & zero-shot prediction skills after pretraining. Without fine-tuning, it can 

provide precise predictions on completely fresh datasets using the information acquired during synthetic pretraining. This zero-shot 

capability significantly decreases the time & materials usually required for model adaptation. The most striking difference between 

TabPFN and typical machine learning pipelines, which can take hours of hyperparameter adjustment and retraining to provide 

comparable results, is that TabPFN provides good prediction performance in only 2.8 seconds. Because of its effectiveness, TabPFN is 

very useful for applications with limited resources in real-time. 

TabPFN makes predictions without fine-tuning by using in-context learning, like GPT-3. Considering a new dataset 

 …………………………………………………………………………..(11) 

No modifications to the gradient: forecasts in a single pass ahead. According to Bayesian interpretation, the pretrained model functions as 

a learnt prior p θ (y ∣x). The inference equation is given by 

 ………………………………………………………………………………………………..(12) 

The D context is the few-shot prompt (example, 10-100 samples). The speed comparison is given by  
 …………………………………….………………………………………………..(13) 

The Uncertainty Quantification for regression tasks and classification is described by 

  ……………………………………………….………………………………………………..(14) 

 

Fig 5. Synthetic Tabular Data Generation Pipeline for Pretraining TabPFN 
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Figure 5 depicts the workflow used to produce synthetic tabular datasets for the pretraining of the TabPFN model. It initiates by 

assessing fundamental characteristics like the quantity of data points, characteristics, & graph complexity. A computational graph is 

constructed & data is transferred through it. Random locations for features (F) & targets (T) are collected to extract values & supervised 

learning. Diverse connection types, like neural networks, are employed in graph creation. The outputs are subjected to postprocessing 

procedures such as quantization and warping, yielding varied and realistic tabular datasets for model training. 

2.6. Benchmarking and performance 
TabPFN undergoes a thorough assessment compared to conventional machine learning techniques such as Gradient Boosted Decision  

Trees (GBDT), including XGBoost, LightGBM, & CatBoost. These comparisons include various function types, involving linear, 

nonlinear & stochastic situations as shown in Figure 6. The findings indicate that TabPFN surpassed these baselines, particularly on 

small to medium-sized datasets, using much less computing resources and training duration. TabPFN regularly attains state-of-the-art 

predictive performance, notwithstanding its efficiency, especially in intricate or noisy data environments. Its robust generalization & 

modelling capabilities provide it an outstanding alternative to conventional tabular models. 

 

Fig 6. TabPFN vs Traditional Models: Performance on Simple and Noisy Functions 

 

3. Result and Discussion 

TabPFN was thoroughly tested on various datasets versus industry-leading tabular models, including XGBoost, LightGBM & CatBoost. 

Three primary metrics were evaluated with training time, where TabPFN showed superior inference speed compared to the frequently 

time-consuming hyperparameter tuning needed by traditional models like data efficiency, which demonstrated TabPFN's ability to retain 

high performance while trained on limited data and accuracy for the task of classification as well RMSE for regression, which 

highlighted predictive performance. These standards validate the effectiveness of TabPFN as a quick, precise & effective substitute for 

traditional tabular models.  
 

Fig 7. Classification Performance (Accuracy% %) 

 

The performance comparison shows TabPFN's dominance in certain situations. It outperforms XGBoost, LightGBM, and CatBoost on 

basic functions with 94.2% maximum accuracy, as shown in Figure 7. With 89.7%, it shows good generalization and maintains a 

significant lead in noisy functions. Especially on tiny datasets, with less than 1,000 samples, which are often difficult for  conventional 

models, TabPFN performs best with 92.3%, outperforming the competition. This highlights TabPFN's capacity for both accuracy & data 

efficiency through many tabular jobs. 

 

Fig 8. Regression Performance of Models 
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Across linear, nonlinear & noisy data, TabPFN consistently outperforms conventional models in regression tasks as assessed by RMSE 

(lower is better), as shown in Figure 8. On linear data (0.12), nonlinear data (0.21) & noisy data (0.34), it attains the lowest error. 

LightGBM can reach up to 0.45 on noisy datasets, but XGBoost & LightGBM exhibit larger errors overall. These results demonstrate 

how effectively TabPFN handles intricate and noisy regression issues regarding accuracy & robustness. 

 

Table 1. Speed Comparison with Proposed & Conventional Data 

Model 
Inference 

Time 

Hyperparameter 

Tuning Time 

Total 

Time (Avg) 

Speedup 

Factor 

TabPFN 
2.8 

seconds 
0 (none needed) 2.8s 

1x 

(baseline) 

XGBoost 
0.5 

seconds 
4 hours (14,400s) 14,400.5s 5,143x 

LightGBM 
0.3 

seconds 
3 hours (10,800s) 10,800.3s 3,857x 

CatBoost 
0.6 

seconds 
3.5 hours (12,600s) 12,600.6s 4,500x 

 

The significant efficiency advantage of TabPFN over conventional models is shown by the speed comparison as depicted in Table 1. Its 

overall processing time is modest because of its short inference time of 2.8 seconds and the absence of hyperparameter adjustment. The 

total time required to tune models such as XGBoost, LightGBM, & CatBoost exceeds 10,000 seconds, since they take 3 to 4 hours. With 

a speedup factor of more than 5,000x compared to XGBoost, TabPFN is well suited for real-time applications and quick deployment 

without compromising performance. 

Table 2. Synthetic Data Quality (FID Score) 

Model 
Gaussian 

Data 
Categorical Data 

Mixed 

Data 

TabPFN 8.2 12.1 9.7 

GAN 15.3 18.4 16.9 

VAE 12.7 15.2 13.8 

 

Across all data types, TabPFN performs better than generative models like GANs & VAEs in terms of synthetic data quality, as 

evaluated by FID Score (lower is better), as shown in Table 2. With the weakest results on Gaussian (8.2), Categorical (12.1), & Mixed 

data (9.7), it generates synthetic datasets that are more realistic and high-fidelity, as shown in Figure 9. Because of its higher quality, 

synthetic data may allow for the exchange of sensitive information in industries like healthcare & finance in a way that does not 

compromise usefulness or privacy. 

 

Fig 9. Synthetic Data Quality (FID Score) 

 

In terms of tabular data modeling, TabPFN is a significant advancement. Because of their reliability, speed & interpretability, traditional 

techniques like Gradient Boosted Decision Trees, such as XGBoost, LightGBM, and CatBoost, have dominated the field for over 20 

years, as depicted in Table 3. Nevertheless, these models need task-specific optimization, feature engineering & intensive human 

tweaking. On the other hand, TabPFN provides a single pretrained model with little overhead that can generalize across a wide range of 

jobs. 

Table 3. TabPFN vs. Traditional Methods: A Paradigm Shift 

Method 
Tuning 

Time 

Training 

Time 

Few-Shot 

Capable 

Requires Feature 

Engineering 

SOTA Performance (small 

data) 

XGBoost High Moderate No Often Yes Strong 

LightGBM Moderate Fast No Often Yes Strong 

CatBoost Low Moderate No Somewhat Strong 
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Neural Net 

(MLP) 
High Slow Limited Often Yes Weak-Moderate 

TabPFN None Fast (2.8s) Yes No State-of-the-art 

4. Conclusion  

Compared to conventional tabular models, TabPFN exhibits revolutionary benefits based on extensive benchmarking. By removing 

hyperparameter tuning, lowering compute expenses from $50/task to around $0.01, it achieves unmatched efficiency, reaching up to 

5000× quicker end-to-end processes. TabPFN overcomes XGBoost-like models by 13.5% in data efficiency with just 100 samples & 

achieves diagnostic-grade accuracy using merely 80 samples. It provides built-in uncertainty quantification, a feature not seen in GBDTs, 

but also routinely shows 3–5% greater accuracy across a broad range of datasets. These advantages make TabPFN perfect for low-cost 

scientific discovery, uncommon illness detection & real-time decision systems. However, it works best on small to medium-sized 

datasets (less than 10,000 samples), and GPU acceleration is needed for maximum performance. 

Prospects for TabPFN include the development of hybrid architectures that integrate its advantages with Gradient Boosted Decision 

Trees (GBDTs) to improve performance & interpretability. There is potential to enhance TabPFN to include time-series tabular data, thus 

enabling new applications in predicting and temporal analysis. Moreover, continued progress in synthetic data production may improve 

realism & applicability, particularly in privacy-sensitive sectors such as healthcare & finance. 

References  

[1] C. Picard and F. Ahmed, “Fast and Accurate Zero-Training Classification for Tabular Engineering Data,” Jan. 2024. 

[2] D. Xu, O. Cirit, R. Asadi, Y. Sun, and W. Wang, “Mixture of In-Context Prompters for Tabular PFNs,” May 2024. 

[3] Y. Mao, “TabTranSELU: A transformer adaptation for solving tabular data,” Appl. Comput. Eng., vol. 51, pp. 81–88, Mar. 2024, 

doi: 10.54254/2755-2721/51/20241174. 

[4] Govinda Rajulu, G., et al. "Cloud-computed solar tracking system." Computer Communication, Networking and IoT: Proceedings 

of 5th ICICC 2021, Volume 2. Singapore: Springer Nature Singapore, 2022. 75-85. 
[5] K. V. Katariya, R. Yadav, S. Kumar, A. K. Pradhan and I. Kamwa, "Wide-Area-Measurement-System-Based Event Analytics in 

the Power System: A Data-Driven Framework for Disturbance Characterization and Source Localization in the Indian Grid," in 

IEEE Power and Energy Magazine, vol. 23, no. 1, pp. 35-46, Jan.-Feb. 2025, doi: 10.1109/MPE.2024.3446737. 

[6] A. Lourenço, J. Gama, E. P. Xing, and G. Marreiros, “In-context learning of evolving data streams with tabular foundational 

models,” Feb. 2025. 

[7] Y. Yang, Y. Q. Wang, G. Liu, L. Wu, and Q. Liu, “UNITABE: A UNIVERSAL PRETRAINING PROTOCOL FOR TABULAR 

FOUNDATION MODEL IN DATA SCIENCE,” in 12th International Conference on Learning Representations, ICLR 2024, 

International Conference on Learning Representations, ICLR, 2024. 

[8] “Toward Robust, Reliable, and Generalizable Models for Tabular Data,” 

https://www.proquest.com/openview/9cc4f4c12499fa9cb718e61e19fe1d7f/1?cbl=18750&diss=y&pq-origsite=gscholar. 

[9] W. Jiang et al., “Coverage Prediction in Mobile Communication Networks: A Deep Learning Approach With a Tabular Foundation 

Model,” Internet Technol. Lett., vol. 8, May 2025, doi: 10.1002/itl2.70034. 

[10] R. Yadav, A. K. Pradhan and I. Kamwa, "Spectral Continuity and Subspace Change Detection for Recovery of Missing Harmonic 

Features in Power Quality," in IEEE Transactions on Power Delivery, vol. 39, no. 1, pp. 180-191, Feb. 2024, doi: 

10.1109/TPWRD.2023.3328470. 

[11] J.-P. Jiang, S.-Y. Liu, H.-R. Cai, Q. Zhou, and H.-J. Ye, “Representation Learning for Tabular Data: A Comprehensive Survey,” 

Apr. 2025. 

[12] J. Ma et al., “TabDPT: Scaling Tabular Foundation Models,” Oct. 2024. 

[13] M. Schambach, “Towards Tabular Foundation Models,” https://hal.science/hal-04440710/. 

[14] V. Thomas et al., “Retrieval & Fine-Tuning for In-Context Tabular Models,” 

https://proceedings.neurips.cc/paper_files/paper/2024/hash/c40daf14d7a6469e65116507c21faeb7-Abstract-Conference.html. 

[15] H.-J. Ye, S.-Y. Liu, and W.-L. Chao, “A Closer Look at TabPFN v2: Strength, Limitation, and Extension,” Feb. 2025. 

[16] J. Qu, D. Holzmüller, G. Varoquaux, and M. Le Morvan, “TabICL: A Tabular Foundation Model for In-Context Learning on Large 

Data,” Feb. 2025. 

[17] M. Jayawardhana et al., “Transformers Boost the Performance of Decision Trees on Tabular Data across Sample Sizes,” Feb. 2025. 

[18] N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter, “TABPFN: A TRANSFORMER THAT SOLVES SMALL TABULAR 

CLASSIFICATION PROBLEMS IN A SECOND,” in 11th International Conference on Learning Representations, ICLR 2023, 

International Conference on Learning Representations, ICLR, 2023. 

[19] Parul Singh, Ravi Yadav, Ashok Kumar Pradhan, Innocent Kamwa, Fundamental factors influencing bus coherency in distribution 

networks with distributed energy resources, International Journal of Electrical Power & Energy Systems, Volume 

147,2023,108778,ISSN 0142-0615,https://doi.org/10.1016/j.ijepes.2022.108778. 

[20] Mugi Praseptiawan, Ahmad Naim Che Pee, Mohd Hafiz Zakaria, Agustinus Noertjahyana "

 
Advancing the Measurement of 

MOOCs Software Quality: Validation of Assessment Tools Using the I-CVI Expert Framework" in International Journal of 

Engineering, Science, and Information Technology (IJESTY) , VOL 5, NO 3 2025. DOI 

:  https://doi.org/10.52088/ijesty.v5i3.911.   

[21]  Majidah Majidah, Widiyanto Widiyanto, Aji Purwinarko, Kasinyo Harto, Fridiyanto Fridiyanto, Amirul Mukminin "The Radio 

Frequency Identification Implementation Design for INLISLite Library Management System" in International Journal of 

Engineering, Science, and Information Technology (IJESTY) , VOL 5, NO 3 2025. DOI : 10.52088/ijesty.v5i3.902 

 

 

https://doi.org/10.52088/ijesty.v5i3.911
http://dx.doi.org/10.52088/ijesty.v5i3.902



