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A B S T R A C T

The kidney plays a vital role in maintaining homeostasis within the human body. In recent years, the prevalence 
of nephrolithiasis (kidney stone formation) characterized by the accumulation of crystalline solids within the 
renal system has emerged as a significant health concern. Early detection is critical for effective treatment and 
prevention of complications. Diagnostic imaging techniques such as computed tomography (CT), ultrasonogra
phy, and Doppler imaging are routinely employed for this purpose. To enhance the precision and reliability of 
early diagnosis, Deep Learning (DL) models are increasingly being integrated into the diagnostic workflow, of
fering superior accuracy through advanced image analysis and pattern recognition capabilities. The proposed 
work combines two deep learning models, AlexNet and Gated Recurrent Unit (GRU) for feature extraction and 
classification. These models are integrated to deliver optimal training parameter performance. An optimized 
AlexNet-GRU model is introduced in this work for detection of kidney stone, feature extraction, and classifica
tion. The Elephant Herding Optimizer (EHO) is utilized to fine-tune the hyperparameters of the AlexNet-GRU 
model. by performing this EHO fine tuning, the performance metrics of the proposed work have provided a 
high optimal result. Finally, the proposed evaluation metrics like precision, recall, accuracy, and F1 score are 
evaluated and compared with the traditional models to prove their efficient performances. The proposed model 
achieved a precision of 98.67 %, a recall of 97.68 %, an accuracy of 98.82 %, and an F1 score of 97.54 %.

1. Introduction

The kidney is one of the most important organs in the human body. 
Kidney stones are one of the most widespread and serious issues that 
affect the kidney. This stone formation occurs in both male and female 
genders and is also formed in all the category people. The kidney stone is 
like a solid material piece that is formed due to the minerals present in 
urine [1]. It is formed by genetic and environmental factors. All in
dividuals who do not care about their health, such as those who are 
overweight, consume a wide variety of meals, do not drink enough 
water, and take excessive amounts of medication, are affected by these 
stones.

To diagnose this kidney stone, blood tests, urine tests, and scans are 
used. When the stones are recognized in an early stage, the over pain and 
surgeries are not required [2]. Therefore, earlier detection is the most 
important factor in it. Image processing is an effective technique that is 
used for detection in earlier stages. The imaging techniques are 

processed by examining the internal organs using medical image scan
ning like Doppler scans, CT scans, and Ultrasound scans. Sometimes the 
results may provide inaccurate predictions and insufficient methods [3].

Nowadays, for an accurate prediction and to provide an effective 
result, medical imaging is performed with Machine Learning (ML) al
gorithms and Deep Learning (DL) techniques [4]. There are several 
models of ML and DL are used for the feature extraction and classifica
tion of image processing techniques [5]. Some of the popular ML models 
used for medical imaging are Naive Bayes, Decision Tree, K-nearest 
Neighborhood (KNN), Support vector machine (SVM), Artificial neural 
network (ANN), and Convolutional Neural Networks [6]. The DL has 
multiple CNN architectures that provide effective learning and training 
datasets. Some of the popular DLs are AlexNet, GoogleNet, ShuffleNet, 
InceptionNet, VGGNet, ResNet, Long Short-Term Memory (LSTM), 
Recurrent Neural Networks (RNN), GRU (Gated Recurrent Unit) model, 
and so on [7].

Combining AlexNet and GRU provides a balanced approach to 
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kidney stone detection. AlexNet handles complex feature extraction 
from images, while GRU models temporal or sequential relationships, 
allowing the model to account for changes over time or context from a 
series of images. This hybrid model is well-suited for tasks where both 
image and sequential data need to be considered for accurate diagnosis, 
offering a more comprehensive solution than traditional models 
focusing on either one alone.

For kidney stone prediction in this work, the DL model is employed. 
The hybrid of two different DL models, AlexNet and the GRU model, is 
provided in the proposed work. To obtain a highly optimal solution in 
classification, the hybrid AlexNet and GRU model is optimized by using 
the EHO model. The hyperparameters of the DL models employed in this 
work are finetuned using the EHO model. Finally, the new model’s 
classification results are assessed and compared to those of the current 
models to demonstrate its efficacy.

Previous studies have also reported on AlexNet hybrid for kidney 
disease diagnosis [8] by utilizing a comprehensive dataset of 12,446 CT 
whole abdomen and urogram images, this study developed an advanced 
AI-driven diagnostic system specifically tailored for kidney disease 
classification by integrating AlexNet’s robust feature extraction capa
bilities with ConvNeXt’s advanced attention mechanisms, the paper 
achieved an exceptional classification accuracy of 99.85 %. The model 
of this study demonstrated outstanding performance across various 
metrics, with an average precision of 99.89 %, recall of 99.95 %, and 
specificity of 99.83 %. These results highlight the efficacy of the hybrid 
architecture and optimization strategy in accurately diagnosing kidney 
diseases. In contrast, this work introduces a novel hybrid approach by 
integrating AlexNet with a GRU that enhances pattern recognition for 
improved kidney stone classification. Additionally, the Elephant Herd
ing Optimizer (EHO) is employed to fine-tune hyperparameters, 
ensuring optimal performance while reducing computational 
complexity. Furthermore, comparative analysis against traditional and 
state-of-the-art models was done, demonstrating superior performance 
with a precision of 98.67 %, recall of 97.68 %, accuracy of 98.82 %, and 
an F1-score of 97.54 %.

The remaining contributions are outlined as follows. Section 2 is 
about the related works of this paper. The preliminary part is described 
in Section 3. Next, the materials and methods are discussed the proposed 
model and its workflow in Section 4 and Section 5 carried a result and 
discussion of proposed and existing models. Section 6 discussed a 
conclusion followed by its references.

2. Related works

This section carried literature based on kidney stone detection using 
DL models and image processing. Each work is presented by various 
author and their different ideas in kidney stone detection.

Karaman, et al. (2022) presented an Aggregate Channel Features 
(ACF) method. This method is based on the ML method that is used for 
the kidney’s automatic detection. The k-fold cross-correlation and 
confusion matrix methods increased the detection performance [9]. 
Next, an automated kidney stone detection using a VGG model which is 
developed by Mohan, et al. (2022). This method uses an publicly 
available Computed Tomography (CT) image dataset for stone detection 
[10]. Another work is discussed by Rajput, et al. (2022) which 
concentrated on overcoming kidney abnormalities such as stone for
mation, congenital anomalies, cysts, cancerous cells, and urine 
blockage. This work is used for automatic detection without human 
intervention [11].

Then, utilizing coronal computed tomography (CT) images and a 
cross-Residual Network (XResNet-50) architecture, Yildirim, et al. 
(2021) presented an automated identification of a kidney stone. The 
proposed automatic system demonstrated a precision of 96.82 % using 
CT scans to find kidney stones of any size [12]. Lim EJ, et al. (2022) 
presented the best potential lies in identifying the stones. Here, clinical, 
molecular, and imaging technologies are used for stone removal. Finally, 

the segmented images detected the stone’s size and location in the 
affected area [13].

Suresh et al. (2021) presented a method for pre-processing, seg
mentation, and Morphological Analysis. This work calculated an output 
parameter and provided a better result than the existing models [14]. In 
some cases, the contrast, second angular moment, entropy, and corre
lation are developed by an author Dave et al. (2022). This work used a 
KNN classification for the training dataset to provide better accuracy. 
The confusion matrix can be obtained with higher accuracy [15]. The 
work developed by Myint, et al. (2020) presented an automatic 3D-visu
alized kidney stone detection. It has several steps, namely i) 
intensity-based thresholding is applied to remove a hypodense and 
isodense region, ii) size-based thresholding is presented to remove a 
bone abdomen, and iii) the false positive is reduced by a geometric 
feature-based thresholding [16].

Liu et al. (2022) built a ResNet model to categorize Kidneys, Ureters, 
and Bladder (KUB) images by assessing whether kidney calculi is present 
or not. Because of several parameters, the suggested model exhibits 
outstanding effectiveness in classification and can be applied to the 
quick identification of kidney calculi from standard film X-ray images 
[17].

Sharen et al. [18] proposed a stone classification model using Sein 
transformer models. Swin Transformer uses shftwe windows to learn the 
features deeply. Chaki et al. [19] proposed an ensemble model for kid
ney stone detection. It combines different learning models with 
parameter tuning for accurate detection. Pande et al. [20] introduced 
the YOLOv8 model-based kidney stone detection model. Compared to 
other models, the YOLOv8 model requires more number of computa
tional units and memory.

3. Preliminaries

In this work, the hybrid DL model of AlexNet and the GRU model is 
used for classification. Therefore, the basic ideas of both the models and 
their architecture are presented in this section.

3.1. Alexnet model

AlexNet is a DL model that is based on the CNN method [21]. This 
method is most significantly used for objection detection, feature 
extraction, image classification, and so on. In the year 2012, the AlexNet 
model scored second place in the Image Net LSVRC-2012 competition 
with a 15.3 % error rate vs. a 26.2 % error rate. This model was an 
advanced model of the LeNet network. The AlexNet techniques consist 
of convolution (Conv), ReLU activations, max pooling, and dropout 
layers which are shown in Fig. 1.

Fig. 1 shows five Conv layers and three full connection layers. After 
the three-conv layer, the maximum pooling layer is operated. The 
Rectified Linear Unit (ReLU) is used as the activation function in the 
AlexNet architecture instead of the sigmoid and tanh activation func
tions. The ReLU activation function has controlled the gradient disap
pearance and gradient explosion. Also, this activation function is very 
simple for training and learning a deeper network which is expressed in 
the below equation. 

ReLU(x) = max (0, x) (1) 

The dropout layer is used to minimize an overfitting degree in a 
training process. The neurons in the layers are stopped with a convincing 
probability. This process may reduce the local node’s dependencies and 
improve generalization ability. It has a huge Conv kernel that increases 
the number of parameters and makes a local feature in the feature 
extraction. Simultaneously, the full connection layer is large and the 
features extracted from Conv influenced the performances and also 
improved the Conv parameters proportion.
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3.2. GRU model

The GRU is an upgraded version of LSTM that was developed by Cho, 
et al. (2014) [22]. The LSTM model has an input gate, forget gate, and 
update gate in its architecture. Similarly, the GRU model is simpler than 
the LSTM model which has only a update gate and reset gate. To 
recognize the usefulness of data, these gates are used. In the GRU model, 
relevant data is retained while irrelevant data is discarded [23].

From Fig. 2, the GRU architecture is shown in it. The backward and 
forward data is processed with an update gate (z), and the reset gate (r) 
provides the previous data knowledge in it. The reset gate is used as a 
present memory gate to preserve and retain the essential data from the 
previous state. The nonlinearity is provided as an input using an input 
modulation gate with zero mean characteristics. Thus, the GRU model 
gates are expressed in the following. 

rt = σ(Xt . Wxr +Ht− 1. Whr + br) (2) 

zt = σ(Xt . Wxz +Ht− 1. Whz + bz) (3) 

where Wxr indicates the weight parameter of the reset gate and Wxz 
indicates the weight parameters of update gates. P-value~0.01 to 0.05 
and CI value is 95 %. The br and bz denote a biased reset and update gate.

EfficientNet and Vision Transformers are great for tasks where 
spatial information is critical, like image classification or segmentation 
of static medical images (e.g., CT scans, X-rays). EfficientNet offers ef
ficiency, while ViTs offers superior performance when there’s a need to 
capture long-range dependencies across the image. U-Net is specialized 

for segmentation, where pixel-level accuracy is needed, and it excels in 
the medical imaging field. GRUs, on the other hand, would be particu
larly useful when the medical imaging task involves temporal sequences 
(e.g., MRI scans over time or 3D imaging slices) and needs to capture 
sequential patterns rather than just spatial features.

4. Materials and methods

The materials and methods used in this proposed model are pre
sented in this section. The overall proposed workflow is shown in Fig. 3
which comprises a dataset, pre-processing, proposed methodology, and 
performance analysis. The proposed methodology presented an opti
mized AlexNet-GRU model to provide accurate kidney stone detection 
and efficient classification performances.

4.1. Dataset collection

From the open-source website https://github.com/yildirimozal/Kid 
ney_stone_detection, the kidney stone-affected CT datasets are down
loaded. The dataset consists of 1799 images, which include 858 kidney 
stone images and 941 normal images. The input CT datasets are divided 
for both the testing and training processes. In this work, 80 % of the 
datasets are used for training, and 20 % of the datasets are used for 
testing.

Fig. 1. AlexNet Architecture.

Fig. 2. Architecture of GRU Model.
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4.2. Pre-processing

By artificially boosting the quantity of training images, data 
augmentation techniques are essential for improving the effectiveness of 
DL models. Several augmentation techniques can be used to enhance 
model generalization and decrease overfitting in kidney stone identifi
cation using CT scans. Variations in image orientation and positioning 
can be produced with the aid of geometric transformations including 
rotation, flipping, scaling, translation, and shearing. Gamma correction 
and brightness and contrast adjustments are examples of intensity 
transformations that mimic various imaging circumstances. By simu
lating scanner artifacts, noise injection techniques like Gaussian noise 
and salt-and-pepper noise improve resilience. Affine transformations 
and elastic deformations create minute distortions to mimic changes in 
anatomical features. When combined, these augmentation techniques 
lead to increased performance in kidney stone detection tasks, higher 
generalization, and increased model accuracy.

5. Proposed methodology

The processed dataset is applied as and input to the proposed block 
which contains three algorithms namely the AlexNet model, GRU model, 
and EHO Model as shown in Fig. 4. Firstly, the hybrid AlexNet-GRU 
model is discussed in it.

5.1. Hybrid Alexnet-GRU model

Initially, the image input is reshaped into image height as 60 pixels 
and width as 60 pixels with RGB, and the 3 channels i.e., (60, 60, 3). This 
image is sent to a first Conv layer for feature extraction. The Conv-1 has 
a feature map output shape of 128 in number. It has a Conv stride of (3 ×
3) and a kernel size of 1. The ReLU function is used to reduce and 
decrease the nonlinearity dimension issue. Next, the pooling layer 
minimized the output feature map as (58, 58) size for 128 feature maps 
to speed up the computations. The training parameter of (58, 58, 128) 

was transferred to the dropout layer. It has a 0.9 dropout in the Conv 
layer to overcome an overfitting issue. Thus, the training parameter is 
reduced after the Conv and max-pooling process. Later the Conv and 
max-pooling are composed into an ID array and transfer the data into the 
fully connected layer. After every Conv process implementation, the 
dropout has provided 1024 feature maps. These 1024 feature maps are 
processed by a GRU model to solve an issue of gradient vanishing. After 
gradient vanishing, other fully connected layers are performed and 
SoftMax operations are implemented.

5.2. Optimised AlexNet-GRU model

The optimized AlexNet-GRU Model is proposed for feature extraction 
and classification. The EHO model is implemented to fine-tune the 
hyperparameter of the hybrid AlexNet-GRU model to provide an optimal 
solution. Thus, the EHO model is discussed in the following.

5.3. Elephant herding optimization (EHO) model

The EHO model is a metaheuristics model that is based on the 
herding behavior of elephants [24]. This model can solve an issue of 
global optimization based on three rules. 1) The elephant population is 
estimated to consist of several clans, each containing a number of ele
phants. 2) Each generation saw a number of male elephants leaving their 
family and distancing themselves from the main elephant group 3) each 
clan of elephants lived under the matriarch leadership. The EHO model 
is evaluated with two processes namely the Clan separating operator and 
updating operator respectively.

The Clan updating behavior is expressed with an elephant j is given 
in the following. 

Xnew, ci,j = Xci,j + α ×
(
Xbest,ci − Xci,j

)
× r (4) 

Where Xnew, ci,j denotes a newly updated position, Xci,j indicates an old 
position, and Xbest,ci denotes the best position.

The fittest value is updated by Eq. (1) as Xci,j = Xbest,ci. The fittest 

Fig. 3. Overall workflow.

Fig. 4. Proposed Block Diagram.
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value is updated as 

Xnew, ci,j = β × xcen,ci (5) 

Where beta belongs to [0,1], a factor that influences the xcenter, ci on 
xnew, ci, j. 

xcen,ci,d =
1
nci

×
∑nci

j=1
xci,j,d (6) 

where 1 ≤ d ≤ D represents the D-th dimension, and D - total number of 
dimensions, while nci denotes the elephants number in clan ci.

5.4. Separating operator

Consider an elephant entity with the lowest fitness and provide a 
separating operation at every generation. Thus, the lowest elephant 
entity in clan ci (xwor,ci) at [0, 1] is expressed in Eq. (7)

xwor,ci = xmin + (xmax − xmin +1) × rand (7) 

where xmax indicates an upper bound position of the elephant andxmin 
represents a lower bound position of the elephant. xworst, ci - lowest 
elephant entity in clan ci.

Based on the above numerical calculation, the pseudocode of the 
EHO Model is given in algorithm 1.

Elephant Herding Optimization is a powerful, flexible tool in the 
context of CT-based kidney stone detection. It can be applied at multiple 
stages: Pre-processing, Segmentation, Feature Selection, and Model 
Tuning. It adds value, especially when dealing with high-dimensional 
data and the need for robust, interpretable, and efficient models.

6. Results and discussion

The results and discussions of the proposed work are presented to 
prove the effectiveness of its performance. The CT images are used to 
process a classification and feature extraction based on the proposed 
strategy. These metrics are compared with the traditional DL models 
such as AlexNet, ResNet, GoogleNet, DenseNet, MobileNet, CNN-LSTM, 
and SVM models, respectively. Fig. 5 shows the segmented kidney stone 
images using the proposed hybrid model. The highlighted regions 
correspond to stone formations, validating the deep learning model’s 
accuracy. This approach aids radiologists in improving diagnostic effi
ciency, reducing manual errors, and facilitating early detection of 
nephrolithiasis. Further evaluation using clinical data is necessary to 
assess real-world applicability and reliability.

Fig. 6 shows the layers of the proposed model used for training. The 

model processes input images of size 224 × 224 × 3224 × 224 × 3 
through multiple convolutional layers. Each convolutional block en
hances feature representation, with increasing filter depths (from 64 to 
512) capturing intricate patterns.

The mathematical representation of performance metrics is 
expressed below. 

precision =
TPositive

TPositive + FPositive
(8) 

Recall =
TPositive

TPositive + FNegative
(9) 

Accuracy =
TPositive + TNegative

TPositive + TNegative + FPositive + FNegative
(10) 

Where TPositive indicates true positive, FPositivedenotes a False positive, 
FNegative indicates a False Negative and TNegative denotes a True Negative. 

F1 measure =
2Precision × Recall
Precision + Recall

(11) 

The comparative analysis of various deep learning and machine 
learning models shown in Table 1. With an accuracy of 98.82 %, pre
cision of 98.67 %, recall of 97.68 %, and an F1 score of 97.54, the 
proposed model outperforms well-established architectures such as 
AlexNet, ResNet50, and DenseNet. While models like AlexNet and 
DenseNet exhibit competitive accuracy levels above 95 %, their recall 
and F1 scores remain slightly lower. Traditional machine learning 
models, such as SVM, show the lowest performance across all metrics, 
reinforcing the advantages of deep learning-based approaches in 
handling complex medical imaging tasks. The results highlight the 
model’s robustness in minimizing false positives and false negatives, 
making it a reliable tool for early diagnosis and detection.

The training performance of the proposed deep learning model is 
illustrated through accuracy and loss curves over 50 epochs as shown in 
Fig. 7. The accuracy plot demonstrates a steady increase, with both 
training and test accuracy surpassing 98 %, indicating high model reli
ability. The loss graph shows a significant decline in the initial epochs, 
stabilizing at a minimal value, suggesting effective learning and 
convergence. Notably, the test loss remains slightly lower than the 
training loss, implying strong generalization and minimal overfitting.

Fig. 8 visualizes the performance metrics of different models, 
including precision, recall, accuracy, and F1-score. The proposed model 
outperforms all other architectures, achieving the highest values across 
all metrics, indicating superior classification performance. AlexNet, 
ResNet50, and MobileNet demonstrate competitive accuracy but fall 

Algorithm 1 
pseudocode of EHO model.

Initialize population, Maximum generation MaxG
Set generation t = 1
While t<MaxG do
Based on fitness of all Elephants
Update clan operator
For ci=1to nclan do

For j = 1 to nci do
Update Eq. (5)
If xci,j = xbest,cithen
Update Eq. (5)
End if

End for
End for
Perform Separating operator
For ci=1 to nclam do

Replace worst using Eq. (7)
End for
Calculate population by new position
t = t + 1
end while
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slightly behind in recall and F1-score. CNN-LSTM, LSTM, and SVM 
exhibit relatively lower performance, with GoogleNet having the lowest 
recall.

Fig. 9 illustrates the precision values of various models. The pro
posed model achieves the highest precision, indicating its ability to 
minimize false positives effectively. MobileNet and AlexNet also 
demonstrate strong precision, while ResNet50, LSTM, and CNN-LSTM 
perform moderately well. In contrast, GoogleNet, DenseNet, and SVM 
exhibit the lowest precision, suggesting a higher rate of misclassifica
tion. The results emphasize the effectiveness of the proposed model in 
making accurate predictions with minimal errors.

Fig. 10 represents the recall values of different models. The proposed 
model achieves the highest recall, indicating its strong ability to 
correctly identify positive cases with minimal false negatives. AlexNet 
and ResNet50 also show high recall scores, reflecting their effectiveness 
in capturing true positives. In contrast, models like GoogleNet, Dense
Net, MobileNet, CNN-LSTM, and LSTM exhibit comparatively lower 
recall values, suggesting they may miss more relevant instances. SVM 
performs moderately well but does not surpass the proposed model. 

These results highlight the superior recall performance of the proposed 
model, making it more reliable for applications requiring high 
sensitivity.

Fig. 11 illustrates the accuracy of different models in classification 
tasks. The proposed model achieves the highest accuracy, surpassing all 
other models, demonstrating its superior performance in correctly 
identifying both positive and negative cases. ResNet50 and MobileNet 
also exhibit high accuracy, indicating their effectiveness in classifica
tion. AlexNet and DenseNet show slightly lower accuracy, but they still 
perform well. In contrast, CNN-LSTM and SVM display the lowest ac
curacy among the models, suggesting potential limitations in their 
classification capability. These results highlight the effectiveness of the 
proposed model in achieving highly accurate predictions.

Fig. 12 illustrates the F1 measure of different models, which balances 
precision and recall to evaluate overall performance. The proposed 
model achieves the highest F1 score, indicating its superior balance 
between correctly identifying positive cases while minimizing false 
positives and false negatives. MobileNet and AlexNet also perform well, 
with competitive F1 scores, followed by ResNet50 and CNN-LSTM, 

Fig. 5. Input and corresponding processed images.
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which exhibit slightly lower performance. GoogleNet, DenseNet, and 
LSTM maintain moderate F1 scores, while SVM records the lowest, 
suggesting potential inefficiencies in handling classification tasks. These 
results reinforce the effectiveness of the proposed model in achieving 

optimal classification performance.
Fig. 13 shows the plot represents the convergence behaviour of an 

optimization algorithm over multiple iterations. The x-axis denotes the 
number of iterations, while the y-axis represents the best fitness value 
obtained so far. Initially, there is a steep decline in the fitness value 
within the first few iterations, indicating rapid progress in optimization. 
After this phase, the fitness value stabilizes, suggesting that the algo
rithm has reached a near-optimal or optimal solution. The near- 
horizontal trend after the initial drop signifies convergence, meaning 
further iterations do not significantly improve the solution.

7. Conclusion

In recent times, kidney stones have become the most common dis
ease that occurred for all the category people. The pain is unbearable for 
anyone and that can be solved in an earlier stage, In this paper, the 
optimized hybrid DL models are presented for an accurate earlier 

Fig. 6. Training of layers in the proposed model.

Table 1 
performance analysis of proposed and existing models.

Model Precision Recall Accuracy F1 score

Proposed 98.67 97.68 98.82 97.54
AlexNet 94.23 94.35 95.12 95.29
ResNet50 92.40 92.27 97.59 92.39
GoogleNet 89.43 90.37 94.28 91.68
DenseNet 89.87 90.14 95.43 95.65
MobileNet 95.30 89.09 96.52 93.90
CNN-LSTM 91.85 89.26 89.89 92.87
LSTM 92.87 90.23 95.30 94.48
SVM 89.63 93.81 89.68 90.54

Fig. 7. Accuracy and validation curve of the proposed model.
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detection of kidney stones. The CT scan images are used as the dataset. 
These datasets are used as 80 % of training datasets and 20 % of testing 
datasets for this work. The proposed work performed a hybrid of Alex
Net and GRU model which attained a higher training rate than the 
traditional methods. Furthermore, the EHO model is used for the hybrid 
model’s hyper parameter tuning to obtain an optimal solution. The 
experimental results showed that the proposed optimized DL models are 
suited well for feature extraction and classification. The performance 
metrics such as Accuracy, precision, F1 measure and recall for the pro
posed and traditional models are evaluated and compared. The result 
cleared that the proposed optimized hybrid model is much better than 
all the traditional methods for kidney stone detection.
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