
Original Article 

ARTIFICIAL INTELLIGENCE POWERED DESIGN OF EXPERIMENTS: OPTIMIZING 

ABIRATERONE ACETATE LOADED GELATIN NANOPARTICLES FOR ENHANCED ORAL 

BIOAVAILABILITY OF ABIRATERONE ACETATE 

 

NALLAMUTHU M.1 , UMADEVI S.*2 , ANANDAN R.3  

1,2Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), 

Pallavaram, Chennai-600117, Tamil Nadu, India. 3Department of Computer Science and Engineering, Vels Institute of Science, Technology 

and Advanced Studies (VISTAS), Pallavaram, Chennai-600117, Tamil Nadu, India 
*Corresponding author: Umadevi S.; *Email: umadevi.sps@vistas.ac.in 

Received: 03 Apr 2025, Revised and Accepted: 03 Jun 2025 

ABSTRACT  

Objective: The current probing aims to investigate the Artificial Intelligence (AI) powered Design of Experiments (DoE) to optimize Abiraterone acetate 
loaded Gelatin Nanoparticles (AGNPs) with the desired Critical Quality Attributes (CQA) for increasing oral bioavailability of abiraterone acetate. 

Methods: AGNPs were formulated using the desolvation method, guided by a quality-by-design (QbD) approach, to identify CQA. The proposed DoE 
was a Central Composite Design (CCD) that was done to determine the influence of gelatin, tween 80, and genipin on particle size and Drug 
Entrapment Efficiency (DEE). Further optimization was performed with Artificial Neural Networks (ANN) to refine the predictive models.  

Results: The ANN model was developed using data from the CCD. K-fold cross-validation was implemented for training and validating the model. 
Both training and validation sets' R-squared values were closer to 1, confirming that the algorithms correctly characterized the predictive models. 
Characterization studies confirmed that optimized AGNPs had particle size (123.4±0.06 nm), poly dispersibility index (0.047±0.07), DEE 
(88.23±0.26 %), zeta potential (+35.78±0.24 mV), and controlled drug release (96.32±0.78 % over 12 h). 

Conclusion: The results show that nanoparticles developed according to the criteria set by CQA to enhance oral bioavailability, and an AI-integrated 
CCD approach optimally worked for AGNPs, which can deliver abiraterone acetate orally. The infusion of advanced technologies ANN undoubtedly 
holds excellent potential for exciting discoveries in nanomedicine and enables future innovations. 

Keywords: Abiraterone acetate, Design of experiments, Gelatin nanoparticles, Artificial neural networks, Validation, Formulation optimization, Oral 
bioavailability 
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INTRODUCTION 

Carcinoma of the prostate is the second-greatest cause of cancer-
related mortality in men [1]. The FDA authorized abiraterone 
acetate in 2011, and it is typically used when combined with 
prednisone to treat prostate cancer patients [2]. The active 
abiraterone is produced by the hydrolysis of abiraterone acetate 
after oral ingestion. This drug selectively and strongly inhibits the 
CYP17A1 microsomal enzymes, which are implicated in multiple 
pathways of androgen production. Prostate cancer patients seem to 
benefit greatly from the medicine in terms of living longer [3, 4]. 

Abiraterone acetate is marketed under the Zytiga® brand. Zytiga® 
has demonstrated clinical and commercial success; oral 
administration of abiraterone acetate is extremely challenging. 
Abiraterone acetate is classified as the fourth category of the 
Biopharmaceutical Classification System (BCS). The substances are 
poorly soluble in water and are not effectively absorbed from the 
gastrointestinal tract. The oral bioavailability of abiraterone acetate 
in humans is predicted to be less than 10 % due to these 
characteristics; hence, a substantial daily dosage of 1000 mg (four 
250 mg tablets once a day) is required to reach therapeutic blood 
levels, which elevates the probability of forgetting doses [5]. 
Therefore, abiraterone acetate is essential to develop a polymeric 
nanoparticulate drug delivery system that enhances solubility and 
dissolution, controls the drug release, oral bioavailability, and 
reduces dosing frequency. 

Polymeric nanoparticles have emerged as a promising drug delivery 
system for improving the solubility, stability, and oral bioavailability 
of poorly soluble drugs. These nanoparticles, made from 
biodegradable and biocompatible polymers, address many issues 
associated with conventional drug formulations by significantly 
increasing drug dissolution and absorption [6]. Additionally, by 
utilizing controlled release mechanisms and other targeting 

strategies, polymeric nanoparticles offer a powerful approach to 
developing more effective oral drug formulations [7]. Gelatin was 
chosen as the preferred polymer for this research because of its 
desirable properties in drug delivery systems. It has good drug-
loading capacity, particularly for hydrophobic and poorly soluble 
drugs. Gelatin also allows for controlled release of drugs through 
enzymatic degradation under physiological conditions, improving 
therapeutic efficacy while preserving biocompatibility [8]. In 
contrast, Poly-lactic-co-glycolic acid is commonly employed for 
sustained release but can form an acidic microenvironment through 
degradation to lactic and glycolic acids, destabilizing acid-sensitive 
drugs [9]. Chitosan, although providing mucoadhesion and 
controlled release, has poor solubility at physiological pH, which can 
limit its utility in systemic delivery. Hence, due to its natural origin, 
regulatory acceptance, biocompatibility, and effective encapsulation 
of hydrophobic drugs, gelatin is a better and appropriate polymer 
for the formulation of abiraterone acetate-loaded nanoparticles [10]. 

A critical step in the design of a polymeric nanoparticle is 
formulation optimization [11]. Various methods and strategies can 
be implemented to create input variable composition in nanoparticle 
development. The traditional method, which is most frequently 
used, involves modifying one independent variable or component 
while maintaining the remaining variables unchanged to observe 
how composition or process variables affect quality attributes. 
Nevertheless, this method necessitates a lot of research studies, and 
it proves difficult to fig. out how input components interact with 
output. It's also possible to misunderstand the experiment results 
[12]. One of the most popular statistical methods for examining 
significant quality parameters that influence product creation is the 
Design of Experiments (DoE). Using the DoE techniques, like Central 
Composite Design (CCD), throughout the design and development 
phase could help solve this issue by concurrently identifying the 
interconnected impact of many factors that affect the outputs' 
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quality [13]. Based on several important quality parameter criteria, 
it can also progressively optimize the entire formulation. DoE is a 
suitable technique for correlating formulation and process attributes 
with the pharmaceutical product's vital quality factors in the 
development of pharmaceuticals. This method makes it more 
straightforward to understand a process and establishes its ideal 
operating state [14, 15]. 

Artificial Intelligence (AI) is revolutionizing the optimization of 
nanoparticle formulations by minimizing experimental efforts, 
increasing accuracy, and speeding up the identification of the best 
formulations [16]. Techniques powered by AI, including Machine 
Learning (ML), deep learning, and evolutionary algorithms, assist in 
forecasting nanoparticle characteristics, fine-tuning synthesis 
conditions, and improving the efficiency of drug delivery [17]. 
Artificial Neural Networks (ANN) are a type of ML technique and 
have gained recognition and interest among formulation scientists 
as one of the most potent computational tools ever created since the 
early age [18]. The computational approach has biological 
inspiration and can mimic the brain's experience-based 
memorization mechanism. When given partial or incomplete input, 
an ANN can nevertheless make decisions and conclude. It can be 
utilized for both non-numeric and numerical computations [19]. 
ANN's superior fitting and prediction capabilities make it a multi-
variable simultaneous optimization strategy that is relatively more 
powerful than other conventional methods for pharmaceutical 
formulation optimization [20]. Nowadays, the ANN-powered DoE 
plays a crucial role in optimizing nanoparticle formulation by 
enhancing efficiency, precision, and decision-making. By integrating 
AI with DoE, researchers can streamline formulation development, 
reduce experimental costs, and achieve robust, high-quality 
nanoparticle products [21-23]. 

Quality by Design (QbD) is a comprehensive strategy of drug 
development employed to ensure the quality of the product through 
the design and development controls of the formulation and 
manufacturing process [24]. The Quality Target Product Profile 
(QTPP) is an essential aspect of QbD that details the expected quality 
characteristics of a nanoparticle-based drug product. It is the general 
layout made to achieve formulation-based development and 
regulatory compliance. They act as scaffolding in the development of 
high-quality nanoparticle-based drug formulations. The key product 
attributes are determined early in development, thus assuring 
efficacy, safety, stability, and regulatory compliance for best 
therapeutic outcomes [25, 26]. 

This study, using gelatin as the biodegradable polymer, aims at 
developing polymeric nanoparticles of abiraterone acetate to 
overcome its biopharmaceutical barriers. A QbD-based study will 
reveal the Critical Quality Attributes (CQA) and Critical Process 
Parameters (CPP). The ANN-powered DoE was used in the critical 
factor identification and optimization of Abiraterone acetate-loaded 
Gelatin Nanoparticles (AGNPs) with desired CQA to promote oral 
bioavailability of abiraterone acetate. 

MATERIALS AND METHODS 

Materials 

Sun Pharmaceutical Industries Ltd in India provided a gift sample of 
abiraterone acetate. Dialysis membrane and gelatin type A, and 
Genipin were purchased from Hi Media, Mumbai. Other chemicals 
are used as analytical grades. 

Methods 

Assignment of QTPP for AGNPs 

The proper selection and deployment of QTPP, along with the 
constructive description for optimizing the potential benefits of the 
developed formulation, signified the first stage of the QbD approach. 
The CQA for nanoparticles ought to yield a product that satisfies the 
pertinent requirements and is repeatable and accurate [27]. 

Risk assessment 

The CPP considerably impacts the CQA that was discovered via risk 
assessment studies. A fishbone diagram was adopted to detect high-
risk issues that might affect the finished formulation's quality. The 
list specifies the significant CPP for developing nanoparticles [28].  

Formulation of nanoparticles 

The AGNPs were prepared using the desolvation method [29, 30]. 
Gelatin type a (155.8 mg) was dissolved in 10 ml of distilled water at 
45 °C under magnetic stirring (Remi 2 MLH). Abiraterone acetate 
(250 mg) was dissolved in 10 ml of ethanol. The abiraterone acetate 
and gelatin solution were combined, and the pH level was adjusted 
to four using dilute hydrochloric acid, with continuous monitoring 
by a calibrated digital pH meter (Eutech Instruments) under 
magnetic stirring. Tween 80 (5%) was added to the gelatin-
abiraterone solution while stirring magnetically. The solution was 
stirred at 500 rpm using a magnetic stirrer (Remi 2 MLH) in a 100 
ml borosilicate glass beaker at room temperature. 10 ml of acetone 
was added dropwise to the abiraterone acetate-gelatin solution, 
initiating nanoparticle formation due to dehydration and 
precipitation of gelatin. Stirring was maintained for 60 min to ensure 
uniform nanoparticle formation. Genipin (1.5%) was then added 
dropwise. Stirring continued for 12 h at 500 rpm to allow the 
nanoparticles to cross-link. The generated solution was centrifuged 
at 10,000 ×g for 30 min using a Remi R-24 centrifuge with a fixed-
angle rotor, discarding the supernatant solution and collecting the 
precipitate, which was dried at room temperature and stored in a 
refrigerator for subsequent evaluation investigations.  

Experimental design  

The ASNPs were prepared using JMP software, utilizing a 17-run, 3-
factor, 2-level CCD as depicted in table 1. The gelatin (A), tween 80 (B), 
and genipin (C) were chosen as the independent factors based on the 
preliminary study, and their impacts were investigated on the dependent 
variables of particle size and Drug Entrapment Efficiency (DEE). 

 

Table 1: Selection of input variables and their level for the CCD 

Input variable  Levels 

Low  High  

A-Gelatin (mg)  100 200 
B-Tween 80 (mg) 1 5 
C-Genipin (%) 1 3 
Response variables  Goal 
Y1-Particle size (nm) Minimize  
Y2-DEE (%) Maximize  

CCD: Central composite design, DEE: Drug entrapment efficiency. 

 

AI-powered DoE for formulation optimization, prediction 

profiler development  

The JMP Pro 18 software was used to optimize the input variable 
composition formula via ANN-powered CCD. A total of 1000 

simulation runs were created using the CCD data. To ascertain the 
prediction capabilities of the ANN analysis, the simulated CCD 
data was divided into training and validation sets, and K-fold 
cross-validation was employed to validate the predictive model 
[21-23, 31]. 
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Characterization of optimized AGNPs 

Drug polymer compatibility studies 

The FT-IR spectroscopic assessment was executed using a Shimadzu 
FTIR Spectrophotometer, and investigating the drug-polymer 
compatibility, the KBR pellet method was used to capture the FTIR 
spectra of pure abiraterone acetate, gelatin, and optimized AGNPs. 
The spectra were taken at a range of 4000 cm−1 to 400 cm−1. 

X-ray diffraction studies (XRD) 

A powder X-ray diffractometer has examined the XRD images of the 
pure abiraterone acetate and optimized AGNPs. 

Determination of particle size and zeta potential 

Using a Malvern Zeta Sizer, the particle size and zeta potential of 
AGNPs were assessed. In short, the AGNPs were diluted 1:100 times 
with water, and the measurement of particle size, Poly Dispersity 
Index (PDI), and zeta potential was conducted at 25 °C [32]. 

Determination of DEE 

The 10 mg of AGNPs were mixed with 10 ml of phosphate buffer and 
then centrifuged for 30 min at 10,000 rpm. The unentrapped 
abiraterone acetate was extracted from the nanoparticles by 
collecting the supernatant fraction and filtered (0.45 μm 
membrane), suitably diluted with phosphate buffer. The amount of 
unentrapped abiraterone acetate in the nanoparticles was 
determined by UV spectrometric detection at a wavelength of 252 
nm [33]. To calculate the DEE, the following formula was applied, DEE% = (Total amount of drug − Amount of free drug)(Total amount of drug) × 100 

In vitro drug release 

The in vitro release of abiraterone acetate from optimized 
nanoparticles and commercial product (Zytiga®), pure drug 
suspension, has been studied using USP dissolving equipment II 
(paddles) [34]. The commercial product and optimized AGNPs 

(equivalent to 250 mg of abiraterone acetate) were dispersed in 2 ml 
phosphate buffer (pH 7.4) and filled with a dialysis bag, 2 ml of pure 
drug suspension filled in a dialysis bag and three samples were 
separately put inside the dissolving tester containing 900 ml of 
phosphate buffer (pH 7.4). To control sink conditions and 
temperature, this instrument was fitted in an outside water bath. The 
testing procedure proceeded with stirring at 100 rpm and 37±0.5 °C. 
The release medium was collected and replaced with a new buffer 
solution in a dissolving vessel at predefined intervals. After sampling 
and filtering 10 ml of the dissolving medium using a membrane filter 
(0.45 μm), the concentration of abiraterone acetate in the filtrate was 
measured using UV spectrophotometry at a wavelength of 252 nm. 

Surface morphology  

The surface morphology of optimized AGNPs and pure abiraterone 
acetate has been studied using a scanning electron microscope. 
Using an accelerating voltage of 10 kV, photomicrographs were 
made of the sample at various magnifications using a piece of 
double-sided sticky tape coated with gold. 

Short-term stability study  

The optimized AGNPs were subjected to accelerated stability studies 
following the International Conference on Harmonization (ICH) Q1A 
(R2) specifications [35]. Optimized AGNPs were preserved at 40±2 
°C and 75±5 % relative humidity in a polyethylene strip. The 
formulation was taken out at periods of 0, 1, 2, and 3 mo and 
examined for all of the following qualities: particle size, PDI, DEE, 
zeta potential, and in vitro drug release. 

RESULTS AND DISCUSSION 

Assignment of QTPP for AGNPs 

The CQA of AGNPs was discovered via QTPP. The purpose of AGNPs 
was to enhance the oral bioavailability of abiraterone acetate. 
Considering that the procedure used to prepare AGNPs was 
predictable and reproducible, the end result satisfies CQA for 
pharmaceuticals. The QTPP, listed in table 2, includes the reasons 
behind their selection. 

 

Table 2: QTPP earmarked for AGNPs 

QTPP Target   Reason 

Particle size  
 

Less than 400 nm 
 

 The optimal particle size is less than 400 nm since this might prolong the nanoparticles' time in the 
bloodstream and make it possible to target malignant cells specifically through increased permeability 
and retention. 
 Sustained or targeted drug release 
 Smaller particles have a larger surface area, leading to improved solubility and oral drug absorption. 

PDI 
 

Less than 0.3 
 

 Good stability 
 Consistent drug release 
 Improved cell uptake 
 Prevent aggregation 
 Targeted drug delivery 

DEE 
 

High drug entrapment  High drug entrapment contributes to increased solubility, oral bioavailability, and therapeutic efficacy. 
 Reducing the dosing frequency 

Zeta 
potential  
 

more than ±30 mV  Should be sufficiently high (±30 mV) for stability and controlled interactions 
 Better cellular uptake 
 Prevents aggregation by electrostatic repulsion, leading to better dispersion and higher dissolution 

Dissolution  Controlled drug release   The intended therapeutic outcome 
 Targeted drug delivery and improved patient compliance 
 Enhanced oral bioavailability  

Stability  
 

At room temperature 
for at least ninety days 

 To guarantee the medication's therapeutic efficiency during the specified storage time. 

 AGNPs: Abiraterone acetate loaded gelatin nanoparticles, QTPP: Quality target product profile, DEE: Drug entrapment efficiency. 

 

Risk assessment  

The Ishikawa chart evolved to systematize the risk assessment 
procedure, identifying subcases and justifications that impact the 
CQAs. The Ishikawa (fishbone) graph for AGNP is presented in fig. 1, 
demonstrating an interaction between all potential variables 
impacting AGNP of CQAs. Under risk assessment experiments and an 
overview of the literature, CPP such as gelatin, tween 80, and 

genipin were decided to be crucial since these variables carry a high 
risk on selected critical quality attributes (Particle size, DEE). 

Experimental design 

The impact of different input variables on output variables was 
investigated in the current research using the CCD technique. The 
statistical program JMP Pro 18 was used to carry out the experiment 
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design. Table 1 displays the independent variables and their levels, 
while table 2 displays the response variable observations. A total of 

17 runs of experiments were given by CCD and each formulation was 
designed per those runs. 

 

 

Fig. 1: Ishikawa fishbone diagram to recognize significant variables affecting AGNPs. AGNPs: Abiraterone acetate loaded gelatin 

nanoparticles, CQA: Critical quality attributes 

 

Table 2: Composition of AGNPs by CCD 

Run 

 

Input variables Response variables 

A: Gelatin (mg) B: Tween 80 (%) C: Genipin (%) Y1: Particle size (nm) Y2: DEE (%) 

1 150 3 2 320.8±0.53 75.64±0.25 
2 200 3 3 200.5±0.88 80.91±0.38 
3 100 3 1 462.3±0.32 68.03±0.64 
4 100 3 3 462.3±0.11 68.85±0.48 
5 150 3 2 320.8±0.76 75.64±0.17 
6 150 1 1 562.3±0.34 69.98±0.69 
7 150 3 2 320.8±1.02 75.46±0.38 
8 200 3 1 200.5±0.12 80.91±0.94 
9 200 5 2 128.3±0.03 85.36±0.75 
10 150 3 2 320.8±0.49 75.64±0.38 
11 100 1 2 800.2±0.96 60.08±0.36 
12 150 1 3 562.3±0.43 70.59±0.05 
13 100 5 2 750.1±0.53 71.49±0.46 
14 150 3 2 320.8±1.34 75.64±1.06 
15 150 5 3 200.4±0.65 83.87±0.83 
16 200 1 2 640.8±0.42 65.73±1.03 
17 150 5 1 203.1±0.08 83.28±0.38 

AGNPs: Abiraterone acetate loaded gelatin nanoparticles, CCD: Central composite design, DEE: Drug entrapment efficiency. All values are presented 
as mean±standard deviation (n = 3) 

 

 

Fig. 2: 3D surface plots for gelatin against particle size of AGNPs. AGNPs: Abiraterone acetate loaded gelatin nanoparticles 
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Effect of input factor against particle size 

The prepared AGNPs' particle size ranged from 128.3±0.03 nm to 
750.1±0.53 nm. Therefore, a higher quantity of gelatin leads to a higher 
AGNPs particle size. However, a lower amount of gelatin possessed the 
opposite effect (fig. 2). The size of the AGNPs declined as once increased 

tween 80 concentration. Inversely, as a con of tween 80 concentration 
increases, the relationship reverses (fig. 3). Higher crosslinker 
concentrations (genipin) lead to larger particles. Conversely, lowering 
the concentration of genipin results in smaller particles (fig. 4). Pareto 
plot analyses revealed that the input factors (gelatin, tween 80, and 
genipin) directly influence the size of nanoparticle development (fig. 5). 

 

 

Fig. 3: 3D surface plots for tween 80 against particle size of AGNPs. AGNPs: Abiraterone acetate loaded gelatin nanoparticles 

 

 

Fig. 4: 3D surface plots for genipin against particle size of AGNPs. AGNPs; Abiraterone acetate loaded gelatin nanoparticles 

 

 

Fig. 5: Pareto plot analysis for the impact of input factor against particle size 
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Effect of input factor against DEE 

The prepared AGNPs' DEE ranged from 60.08±0.36 % to 85.36±0.75 
%. Therefore, a higher quantity of gelatin leads to a higher drug 
entrapment in prepared nanoparticles. However, a lower amount of 
gelatin possessed low drug entrapment in prepared nanoparticles (fig. 
6). The drug entrapment in AGNPs increased as one increased the 

Tween 80 concentration. Inversely, as a con of the tween 80 increases, 
the relationship reverses (fig. 7). Higher crosslinker concentrations 
lead to higher drug entrapment. Conversely, lowering the 
concentration of genipin results in lower drug entrapment in prepared 
nanoparticles (fig. 8). Pareto plot analyses indicated that the input 
factors (gelatin, Tween 80, and genipin) significantly impact drug 
entrapment in nanoparticle development (fig. 9). 

 

 

Fig. 6: 3D surface plots for gelatin against DEE. DEE: Drug entrapment efficiency 

 

 

Fig. 7: 3D surface plots for tween 80 against DEE, DEE: Drug entrapment efficiency 

 

 

Fig. 8: 3D surface plots for genipin against DEE, DEE: Drug entrapment efficiency 
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Fig. 9: Pareto plot analysis for the impact of input factor against DEE. DEE: Drug entrapment efficiency 

 

Statistical analysis of CCD  

The response variables were subjected to an ANOVA analysis, which is 
always necessary for evaluating the applicability and validity of the 
mathematical models response surface methodology recommends. 
The model was considered significant when the regression coefficient 
(R2) was more than 0.85 and the probability value (P) was 0.05 or less. 

According to the ANOVA, all selected response parameters had P<0.05, 
and the R2 value is closer to 1, confirming that the chosen model was 
significant (table 3). The impact of each factor against responses was 
measured using the polynomial model, which confirmed a non-linear 
relationship between each factor and responses, as the model fit study 
reported. Thus, the CCD was perfect for the aforementioned study with 
a suitable model fit. 

 

Table 3: Statistical analysis of response variables 

1. Particle size 

Source Sum of squares Degrees of freedom mean square F-value p-value R2 

Model 6.531E+05 9 72562.57 44.40 <0.0001 0.9828 
A-Gelatin 2.128E+05 1 2.128E+05 130.24 <0.0001  
B-Tween 80 2.060E+05 1 2.060E+05 126.04 <0.0001  
C-Genipin 0.9316 1 0.9316 0.0006 0.9816  
AB 53451.13 1 53451.13 32.71 0.0007  
AC 0.0000 1 0.0000 0.0000 1.0000  
BC 1.86 1 1.86 0.0011 0.9740  
A² 45720.77 1 45720.77 27.98 0.0011  
B² 1.009E+05 1 1.009E+05 61.76 0.0001  
C² 36876.43 1 36876.43 22.56 0.0021  
2. DEE 

Model 768.31 9 85.37 96.34 <0.0001 0.9920 
A-Gelatin 247.09 1 247.09 278.86 <0.0001  
B-Tween 80 415.01 1 415.01 468.37 <0.0001  
C-Genipin 0.5100 1 0.5100 0.5756 0.4728  
AB 16.89 1 16.89 19.06 0.0033  
AC 0.1681 1 0.1681 0.1897 0.6763  
BC 0.0001 1 0.0001 0.0001 0.9918  
A² 54.48 1 54.48 61.48 0.0001  
B² 7.58 1 7.58 8.56 0.0222  
C² 29.97 1 29.97 33.83 0.0007  

DEE: Drug entrapment efficiency. 

 

Implementation of ANN model for formulation optimization, 

prediction profiler development 

Formulation optimization was performed with ANN to refine the 
predictive models. In recent years, more complex assessments and 
nonlinear relationships have been carried out leveraging the AI 
model, potentially circumventing some of the DoE technique's 
limitations. The ability of ANNs to interpret complex data, identify 
trends, and generate prediction models renders them superior to 
DoE. Additionally, a single model may predict multiple results at 
once. 

The JMP 18 software optimized the input composition formula via 
ANN-powered CCD. Gelatin, tween 80, and genipin are the selected 
independent parameters found in the input layer. In contrast, 
particle size and DEE are found in the output. The 1000 simulation 
runs were generated using the trained ANN model as a predictive 
surrogate based on the original CCD data (17 experimental runs). 

These additional runs were not real experiments but synthetic 
predictions obtained by generating a uniformly random sample of 
1000 input combinations within the design space boundaries 
defined by the CCD. Feeding these synthetic inputs into the trained 
ANN model to predict corresponding output responses. The 
complete raw data from all 1000 ANN simulation runs is available in 
the supplementary file. To prevent major biases, the dataset had 
been thoroughly cleaned and standardized before building the 
prediction model. A three-input layer, three-node, and one-hidden-
layer neural network was used to train the output variables 
individually (fig. 10). The hidden layer consists of three neurons 
(indicated by the three green circular nodes with activation symbols. 
K-fold cross-validation was applied for splitting the CCD data into 
training and validation testing sets to determine the ANN analysis's 
capabilities for prediction. 

The hyperbolic tangent function (TanH) is implemented activation 
function at every hidden layer node. The number of tours and 

https://docs.google.com/spreadsheets/d/1qE2Uvx8Y8JZmCKFriZKUNNfT0X8f-VNN/edit?usp=drive_link&ouid=107703138158608083194&rtpof=true&sd=true
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learning rate during the training process were set at 1 to 0.1, 
respectively. The k-fold strategy was used to validate the training 
process, and K subsets were generated from the original data (K = 
10). The model's fit has been verified on the remaining data using 
each of the K sets to fit a total of K models. The predictive model fit 
was selected according to the model that generated the most 
accurate validated statistics; Both training and validation sets' R-
squared values were closer to 1, lower Root mean square errors for 
training and validation sets, confirming that the algorithms were 
correctly characterizing the data used in training while precisely 
estimating the data that was not used for training (table 4). 

The prediction profiler is the most straightforward approach to 
anticipating the response surface. It contributes to selecting the 
optimal formulation composition according to intended outcomes 
after validating the data. Prediction values for the respective CQAs 

are presented in every plot or graph separately. This prediction 
chart reveals the probable variance of response if one variable has 
been slightly altered while all other variables remain the same. The 
prediction profiler for particle size and drug entrapment efficiency is 
displayed in Fig.11. The Y-axis depicts the response parameters, 
while the X-axis indicates the concentration of the factors. For 
optimal formulation composition, the horizontal and parallel lines 
represent the anticipated outcomes of the factors.  

The prediction profiler was used to pick the best-optimized AGNP 
formula because it exhibits a high desirability function (0.9303) as 
seen in fig. 11. The composition of the optimized AGNP formulation 
included gelatin (155.8 mg), tween 80 (5 %), and genipin (1.5 %) 
[36]. The formulation demonstrated the expected values for particle 
size (125.1 nm) and drug entrapment efficiency (84.50 %) as 
depicted in fig. 11. 

 

 

Fig. 10: ANN for particle size, DEE. ANN: Artificial neural networks, DEE: Drug entrapment efficiency 

 

 

Fig. 11: Prediction profiler for AGNPs. AGNPs: Abiraterone acetate loaded gelatin nanoparticles, DEE: Drug entrapment efficiency 



N. M. et al. 
Int J App Pharm, Vol 17, Issue 4, 2025, 483-496 

491 

Table 4: The training and validation results of neural networks 

Parameter  

 

Particle size  DEE 

Training set  Validation set  Training set  Validation set 

R square 0.9231 0.9460 0.9040 0.9549 
Root mean square error 2.61 0.61 1.92 2.08 
mean absolute deviation 1.99 0.61 1.62 2.00 
Log-likelihood 35.69 1.85 31.11 4.30 
Error sum of squares 102.42 0.7490 55.60 8.68 
Generalized R2 reports  
Measures   R2 
Training set  0.9983 
Validation set 0.9970 

DEE: Drug entrapment efficiency 

 

Confirmation of the optimized formula predicted by the CCD-ANN 

Our research findings also demonstrated that the synthesized AGNPs 
achieved the optimization scenario as anticipated by the CCD-ANN. 
Table 5 demonstrates that the ANN-CCD design's validity was 
verified by comparing predicted and observed outcomes. 

Comparison of ANN vs traditional CCD 

Run 9 of the CCD design produced good results in the experimental 
design space. Upon the inclusion of ANN, the model predicted an 
optimized formulation with potentially better characteristics compared 
to traditional CCD (table 6). For the confirmation of the prediction ability 
of the CCD-ANN model, experimental trials were performed using the 
formulation predicted by the ANN. The observed values closely agreed 
with the predicted values, establishing the model's reliability. This 
comparison supports the fact that the ANN model improves prediction 
and offers a better optimization method than CCD alone. 

Evaluation of optimized nanoparticles 

Particle size and zeta potential 

The optimized AGNPs exhibited a Z-average particle size of 
123.4±0.06 nm, as depicted in fig. 12. The optimized AGNPs particle 

size is smaller than 400 nm, since this could increase the 
nanoparticles' time in the bloodstream and allow for the specific 
targeting of malignant cells through improved permeability and 
retention [37]. In optimized AGNPs, the measured PDI (0.047±0.07) 
is less than 0.3, which indicates good particle stability and 
homogeneity in AGNPs. This results in improved cell uptake and 
more consistent and predictable drug release, essential for targeted 
and controlled drug administration. The measured particle size, PDI, 
satisfies QTPP. 

The ANN-recommended optimized AGNPs exhibited a high zeta 
potential (+35.78±0.24 mV) as depicted in fig. 13. The optimized 
nanoparticle is positively charged, has a high zeta potential, and 
meets the necessary QTPP. Consequently, it makes it easier for 
them to interact with the negatively charged mucous membranes 
surrounding the gastrointestinal tract, facilitating better drug 
retention and absorption. The optimized AGNP's comparatively 
high zeta potential indicated that the surface was highly charged, 
which caused the particles to experience intense electrostatic 
repulsion. The particles are forced to be free by this repulsion, 
which stops them from aggregating. This distribution can 
improve solubility and dissolution by increasing surface area 
[38]. 

 

Table 5: Confirmation of the CCD-ANN predicted optimized formula 

Response variable  Predicted value  Observed value Residual value 

Particle size 125.1 nm 123.4±0.06 nm -1.7 
DEE 84.5 % 88.23±0.26 % -3.73 

DEE: Drug entrapment efficiency, CCD: Central composite design, CCD-ANN: Central composite design powered by design of experiments 

 

Table 6: Comparison of ANN vs traditional CCD 

Response variable  CCD optimized formula (Run 9) CCD-ANN optimized formula 

Particle size 128.3±0.03 123.4±0.06 nm 
DEE 85.36±0.75 88.23±0.26 % 

DEE: Drug entrapment efficiency, CCD: Central composite design, CCD-ANN: Central composite design powered by design of experiments. 

 

 

Fig. 12: Particle size of optimized AGNPs. AGNPs: Abiraterone acetate loaded gelatin nanoparticles 
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Fig. 13: Zeta potential of optimized AGNPs. AGNPs: Abiraterone acetate loaded gelatin nanoparticles 

 

Determination of DEE 

The optimized AGNPs achieve the QTPP target while exhibiting a 
high drug entrapment rate (88.23±0.26 %). Therefore, designed 
nanoparticles can be anticipated to result in improved dissolution, 
oral bioavailability, and therapeutic efficacy [39, 40]. 

FTIR analysis 

The compatibility of the drug and polymer was confirmed using 
FTIR spectroscopy investigations. The FTIR spectra of abiraterone 
acetate, gelatin, and optimized AGNPs have been recorded and 

contrasted. The optimized AGNP spectra exhibit significant peaks 
from both abiraterone acetate and gelatin, presented in table 7 and 
fig. 14. The predominant peaks of gelatin and abiraterone acetate in 
the optimized AGNPs spectra indicate that the drug and polymer are 
compatible. It showed that the characteristic peak of pure 
abiraterone acetate was not altered by the addition of excipients, 
and after being formulated into nanoparticles with no change in the 
functional group, indicating no chemical reaction and interaction 
between the drug and polymer. The predominant peaks of gelatin 
and abiraterone acetate in the optimized AGNPs spectra indicate 
that the drug and polymer are compatible. 

 

Table 7: FTIR interpretation of pure abiraterone acetate, gelatin, optimized AGNPs 

Functional groups  Pure abiraterone acetate Gelatin  Optimized AGNPs 

C-H starching  2936.09 2922.52 2925.48 
Ester  1734.66 1723.72 1735.56 
 C=C stretching  1669.2 1673.2 1652.7 
OH stretching  3150.78 3545.24 3560.21 

3152.34 
C=O stretching 1716.42 1732.73 1716.34 
 Pyridine ring 1455.99 - 1449.24 
Amides  - 3466.1 3421.1 

 AGNPs: Abiraterone acetate loaded gelatin nanoparticles 

 

 

Fig. 14: FTIR spectrum of pure abiraterone acetate (a), gelatin (b), Optimized AGNPs (c). AGNPs: Abiraterone acetate loaded gelatin 

nanoparticles 
 

XRD 

Fig. 15a exhibits sharp and intense peaks, suggestive of a very 
crystalline material with well-ordered atomic structures and long-
range periodicity [41]. Fig. 15b has broad, less sharp peaks 
representative of a lower crystallinity state where atomic structures 
have no long-range order. Amorphous materials typically have 

higher solubility and rates of dissolution than their crystalline forms. 
This is because crystalline solids possess high intermolecular forces 
and a stable lattice, and hence are less soluble. Contrarily, reduced 
crystalline materials are in a more energetic state with higher 
molecular disorder, hence more molecular mobility. This promotes 
quicker interaction with solvents and enhances dissolution rates and 
bioavailability in drugs [42]. 
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Fig. 15: XRD graphs for pure abiraterone acetate (a), optimized AGNPs (b). AGNPs: Abiraterone acetate loaded gelatin nanoparticles 
 

In vitro drug release 

According to the in vitro release profile AGNPs, in the first 1 h, 
almost 51.54±0.04 % of the abiraterone acetate from the AGNPs was 
released, after a burst release, there was a controlled release 
(96.32±0.78 %) for 12 h from AGNPs (fig. 16). A controlled release of 
the drug was noted in designed nanoparticles and fig. 16 highlights 
only 60.54±0.67 % of the abiraterone acetate is released from 
commercial product after 12 h in dissolving media, which can be 
attributed to its poor solubility. Inversely, a pure drug suspension 
only showed 10.32 % drug release in the medium for the first 1 h, 
after which there was a stage of stagnation that exhibited no 
additional changes to the drug release profile, and it highlights that 
the pure form of abiraterone acetate shows poor solubility (fig. 16). 

Fig. 16 shows that the dissolution rate of abiraterone acetate 
increased after constructing optimized nanoparticles compared to 
pure abiraterone acetate suspension, a commercial product. The 
release of abiraterone acetate from the optimized AGNPs followed 
zero-order kinetics, as evidenced by the higher R² value (0.9722) in 
zero-order models, which is comparable to the other model (table 
8). This suggests that the abiraterone acetate release rate from 
optimized AGNPs is independent of the drug's residual 
concentration. This could contribute to optimized AGNPs delivering 
therapeutics in a controlled manner. Our findings indicated that 

optimized AGNPs in the Korsmeyer-Peppas model showed an n 
value of 1.6 in the dissolving medium (table 8). The calculated 
release exponent (n = 1.6) suggests a Super Case II transport 
mechanism, indicating that drug release is primarily governed by 
polymer swelling and relaxation processes rather than simple 
diffusion. Evidence indicates that gelatin-based nanocarriers 
improve mucosal adhesion, extend gastrointestinal residency time, 
and protect encapsulated drugs against enzymatic degradation in 
the gastrointestinal (GI) tract [43]. These combined properties could 
allow plasma drug concentrations to have constant and greater 
bioavailability, presenting an opportunity for less frequent dosing. 
Thus, based on extended release (in vitro drug release) and 
supported by previous in vivo studies of similar gelatin-based 
systems, we hypothesize that the formulation will result in longer 
systemic exposure, which may minimize patients' need to take 
multiple doses every day, thereby increasing compliance. However, 
we would need to conduct in vivo pharmacokinetic studies to 
confirm our hypotheses. 

The presence of gelatin (hydrophilic polymer) [44], high drug 
entrapment [39, 40], and nanosizing of abiraterone acetate [45], 
high zeta potential [38], and reducing the drug crystallinity [42] 
results in enhanced dissolution of abiraterone acetate. The observed 
result from the dissolution study satisfies and meets the 
specification in the QTPP. 

 

 

Fig. 16: Dissolution profile of optimized AGNPs and commercial product (Zytiga®), pure drug suspension. All values are presented as 

mean±standard deviation (n = 3). AGNPs: Abiraterone acetate loaded gelatin nanoparticles 
 

Table 8: Drug release kinetics of optimized AGNPs 

Optimized AGNPs Zero-order First order Korsmeyer-Peppas model Higuchi model 

R2 value 0.9722 0.8897 0.9714 0.8618 
Slope y = 9.7463x+39.288 y =-0.2286x+2.07 y = 0.0583x+1.646 y = 13.956x+7.0914 

AGNPs: Abiraterone acetate loaded gelatin nanoparticles. 
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Surface morphology  

Fig. 17 exhibits an SEM picture of optimized AGNPs and pure 
abiraterone acetate. Compared to pure abiraterone acetate, SEM 
pictures of optimized AGNPs showed a change in surface shape. The 
pure drug (fig. 17a) displayed irregular, plate-like crystalline 

particles and massive crystalline aggregates, while the optimized 
AGNP formulation (fig. 17b) showed discrete, smaller crystalline 
particles with smooth surfaces and fragmented morphology. 
Amalgamated particles were observed in fig. 17b. These changes in 
morphology offer conclusive proof that nanoparticles have been 
formed.

 

 

Fig. 17: SEM picture of pure abiraterone acetate at 5000X, 1200X Magnification and scale bar at 5μm, 10μm (a) and optimized AGNPs at 

10 KX, 2.50KX magnification and scale bar at 2μm, 10μm (b) 

 

Short-term stability study 

At a specific temperature and humidity (40±2 °C/75±5% RH), the 
optimized nanoparticles were found to be chemically stable. All 
examined metrics, including particle size, PDI, zeta potential, and 
DEE, dissolution studies, showed no discernible differences. The 
results of all assessed characteristics before and after storage are 
presented in table 9, and no discernible variation has been 
discovered at any of the values. The formulation was physically and 
chemically stable under conditions representative of 3 mo at 
accelerated conditions (40±2 °C/75±5% RH), and no significant 

change in particle size, zeta potential, PDI, DEE, in vitro release 
profile was observed. These findings provide initial indications of 
stability [46]. While three-month accelerated stability data have 
been created and included as part of the present study, it is 
recognized that these data alone are inadequate to fulfill regulatory 
needs as described in ICH Q1A(R2). Thus, long-term stability studies 
for our product have been scheduled and are in progress. A full 12-
month stability report will be included in future submissions to 
facilitate product development and regulatory support. The 
observed result from the stability study satisfies and meets the 
specification in the QTPP. 

 

Table 9: Accelerated stability testing of optimized AGNPs 

Characterization studies  Storage condition  Before testing   1 mo  2nd mo 3rd mo 

Particle size (nm) 40±2 °C/75±5% RH 123.4±0.06 123.7±0.64 123.9±0.97 124.1±0.46 
Zeta potential (mV) 35.78±0.24 35.78±0.32 35.81±1.02 36.9±0.32 
PDI 0.047±0.07 0.048±0.03 0.048±0.08 0.050±0.04 
DEE (%) 88.23±0.26  88.25±0.32 88.27±0.21 88.87±0.83 
In vitro drug release (%) 96.32±0.78 96.39±0.56  96.43±0.19 96.78±0.45 

AGNPs: Abiraterone acetate loaded gelatin nanoparticles, PDI: Poly dispersity index, DEE: Drug entrapment efficiency. All values are presented as 
mean±standard deviation (n = 3) 

 

CONCLUSION 

AI-integrated CCD was used to design, characterize, and optimize 
AGNPs for the enhancement of oral bioavailability. This study 
methodically showcased a QbD strategy to synthesize AGNPs using a 
risk-based methodology. Formulation optimization was performed 
with ANN to refine the predictive models. K-fold cross-validation 
was implemented for training and validating the model. Both 
training and validation sets' R-squared values were closer to 1, 
confirming that the algorithms correctly characterized the predictive 
models. Characterization studies confirmed that optimized AGNPs 
had particle size (123.4±0.06 nm), PDI (0.047±0.07), DEE 
(88.23±0.26 %), zeta potential (+35.78±0.24 mV), and controlled 

drug release (96.32±0.78 % over 12 h). The formulation of AGNPs 
was optimized for the desired performance characteristics. The 
results showed that the nanoparticles were developed as per CQA 
for improving oral bioavailability. Thus, AGNPs could be a possible 
candidate for oral drug delivery. AI has greatly helped in forecasting 
the different characteristics and bizarre behavior of nanomaterials. 
The infusion of advanced technologies, ANN undoubtedly holds 
great potential for exciting discoveries in nanomedicine and enables 
future innovations. The present research acknowledges the ability of 
artificial ANN to serve as a very valuable means for modeling and 
optimizing AGNPs, with reliable predictive accuracy and 
optimization. Therefore, although there are exciting prospects with 
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ANN, there are limitations related to ANN that should not be 
overlooked; these include extensive computer power and the ability to 
be sensitive to the amount and quality of data used. The dataset was 
limited, which could result in potential model bias and limit 
transferability. Moving forward, developing further research will aim 
to attempt to replicate these outcomes by conducting in vivo studies 
and working to scale up the process to be capable of an industrial 
scale, to determine the model fit and stability of the application. 
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