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A B S T R A C T

This investigation presents a comprehensive parametric optimization study for the precision machining of 
duralumin matrix composites reinforced with hybrid nano-scale particles comprising chromium carbide (Cr₂C₃) 
and molybdenum disulfide (MoS₂). The composite material was synthesized via liquid metallurgy stir casting 
methodology, incorporating 5 wt% nano-Cr₂C₃ as the primary reinforcement phase and 2 wt% MoS₂ as a solid 
lubricant additive to enhance tribological characteristics and machinability. The experimental framework 
employed a Taguchi L₂₇ orthogonal array design to systematically investigate the influence of critical machining 
parameters like cutting velocity, feed rate, and depth of cut on multiple response characteristics including surface 
roughness (Ra), tool vibration amplitude, and acoustic emission (AE) intensity. The multi-response optimization 
strategy integrated advanced computational intelligence techniques, specifically utilizing a Lev
enberg–Marquardt backpropagation artificial neural network (LM-BP-ANN) for predictive modeling and 
enhanced accuracy in handling non-linear optimization problems. The Multi-Objective Optimization on the basis 
of Ratio Analysis (MOORA) technique was implemented to establish the optimal parametric combination that 
simultaneously minimizes surface roughness, vibration, and acoustic emission. Statistical analysis of variance 
(ANOVA) was performed on the MOORA-derived performance index (Yᵢ) it revealed that feed rate exhibits the 
most pronounced influence on the combined response characteristics, contributing 71.05 % to the total variation. 
The optimization results indicate that the optimal machining conditions for achieving minimal surface rough
ness, vibration amplitude, and acoustic emission are: feed rate of 0.20 mm/rev, depth of cut of 0.75 mm, and 
cutting speed of 80 m/min.

1. Introduction

The development of lightweight materials is highly desired by the 
automotive and aerospace sectors to improve mechanical properties and 
the strength-to-weight ratio [1]. Compared to current alloys, Metal 
Matrix Composites (MMCs) can significantly reduce the weight of 
components and offer a high strength-to-weight ratio [2,3]. They can 
also serve as substitutes for metals used in fabricating components in the 
automotive industry [4].

Modern manufacturing processes have overcome many challenges 
associated with high-strength materials, including the formation of 
complex shapes, more precise surface features, higher levels of preci
sion, reduced waste and additional processes, and extended production 

durations [5]. Even at elevated temperatures, Hybrid Metal Matrix 
Composites (HMMCs) outperform both polymer and metal matrix 
composites due to their multiple reinforcement particles and higher 
strength-to-stiffness ratios [6].

The production of MMCs utilizes various methods, including liquid 
infiltration, powder metallurgy, stir casting, and squeeze casting. 
Among these techniques, stir casting is the most economical for fabri
cating composites [7]. Several manufacturing processes can be used to 
shape the developed composites for industrial applications, with turning 
being a traditional method of producing the final product. When prop
erly optimized, the technique enables the tool to operate with minimal 
vibration and achieve low surface roughness.

During turning operations, vibration and surface quality depend on 
various factors such as tool and component material, feed rate, spindle 
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speed, depth of cut, coolant, tool construction, tool nose radius, and tool 
edge angles [8]. Establishing an adequate relationship among tool life, 
cutting conditions, tool geometry, and material properties is essential. 
However, such analysis is challenging due to the complex nature of the 
machining process, which involves high temperatures, strains, strain 
rates, and insufficient data.

Moreover, the ideal cutting conditions can enhance surface 
smoothness and reduce costs and production time [9]. In recent years, 
researchers have focused on optimizing cutting parameters during 
machining processes to reduce both surface roughness and vibration 
[10]. In a study on the adhesion level between the cutting tool and 
workpiece during turning, a model with extensive degrees of freedom 
was proposed for chatter prediction. It highlighted the significant effects 
of workpiece cross-section and tool overhang on process stability during 
orthogonal turning [11].

Incorporating ceramic reinforcements into aluminum alloys im
proves the overall properties of composite materials. M.K. Surappa [12] 
found that damage-resistant properties such as fracture toughness and 
ductility needed enhancement. Kumar et al. [13] studied the effect of 
various matrix materials (Al6061 and Al7075) and reinforcements (SiC 
and Al₂O₃) and found that increasing filler content and the volume 
fraction of particles improved the composite’s microhardness.

Surface roughness increased during the machining of Al₂O₃ particle- 
reinforced aluminum (Al2024) composites using coated carbide tools. 
Researchers found that cutting velocity depends 20.8 % on surface 
roughness for the A356/20/SICP-T6 composite [14]. In his work with 
Al2024/Al₂O₃ composites, Kok et al. [15] observed that the sharpness of 
the tool, regardless of whether the carbide was coated or not, primarily 
influenced surface roughness. Increasing the tool’s feed speed reduced 
the surface roughness of the workpiece.

Sahin et al. [16] significantly influenced wear behavior through 
pin-on-disc tests, using Taguchi techniques and ANOVA in their statis
tical analyses. The percentage of reinforcement weight influenced wear, 
and the right amount of reinforcement helped achieve an even distri
bution through the stirring process in the made composites. Optimizing 
process parameters is crucial for understanding the impact of factors and 
evaluating their significance in experimental research.

Furthermore, Shirvanimoghaddam et al. [17] reported that the 
hardness and tensile strength of aluminum alloy composites reinforced 
with B₄C, TiB₂, and ZrSiO₄ particles improved by up to 52 % and 125 %, 
respectively. Using Taguchi L27 orthogonal arrays, Alagarsamy et al. 
[18] conducted a study involving three process variables: depth of cut, 
speed, and feed rate. ANOVA and signal-to-noise ratio analysis guided 
the measurement of the material removal rate and machining time 
during the turning operations of aluminum alloy 7075 using tungsten 
carbide tools. The results showed that cutting speed significantly 

Nomenclature

Abbreviation Full Form
ANN Artificial Neural Network
MOORA Multi-Objective Optimization on the basis of Ratio 

Analysis
CNC Computer Numerical Control
MMC Metal Matrix Composite
HMMC Hybrid Metal Matrix Composite
Ra Surface Roughness
AE Acoustic Emission
ANOVA Analysis of Variance
MCDM Multi-Criteria Decision Making
MADM Multiple Attribute Decision Making
RSM Response Surface Methodology
L27 Taguchi Orthogonal Array (27 runs)
S/N Ratio Signal-to-Noise Ratio
Cr2C3 Chromium Carbide
MoS2 Molybdneum Di Sulphide

Table 1 
Design of experiments.

Factor Name Units Coded 
Low

Coded 
High

Mean Std. 
Dev.

A Cutting 
speed

m/ 
min

− 1 ↔ 
80.00

+1 ↔ 
160.00

120.00 33.28

B Feed m/ 
min

− 1 ↔ 
0.20

+1 ↔ 0.30 0.2500 0.0416

C Cutting 
depth

Mm − 1 ↔ 
0.25

+1 ↔ 0.75 0.5000 0.2080

Table 2 
L27 orthogonal array with response parameters.

Factor A Factor 
B

Factor C Response 
1

Response 
2

Response 3

Run Cutting 
speed

Feed Cutting 
depth

Ra Vibration Acoustic 
Emission

Unit m/min mm/ 
min

mm ​ ​ ​

1 80 0.2 0.25 1.46 7.54 0.82
2 80 0.2 0.25 0.88 7.73 1.02
3 80 0.2 0.25 1.17 8.74 0.83
4 80 0.25 0.5 1.74 10.76 0.92
5 80 0.25 0.5 1.75 11.78 0.75
6 80 0.25 0.5 2.14 12.63 0.78
7 80 0.3 0.75 3.15 9.46 0.85
8 80 0.3 0.75 3.09 10.51 0.63
9 80 0.3 0.75 3.1 11.95 0.77
10 120 0.2 0.5 1.11 11.68 1.18
11 120 0.2 0.5 1.5 11.21 1.3
12 120 0.2 0.5 1.21 12.65 1.25
13 120 0.25 0.75 2.16 11.11 1.03
14 120 0.25 0.75 2.08 12.12 0.82
15 120 0.25 0.75 2.09 13.79 1.01
16 120 0.3 0.25 3.43 17.38 1.28
17 120 0.3 0.25 3.7 19.14 1.31
18 120 0.3 0.25 2.95 18.12 1.28
19 160 0.2 0.75 0.92 7.83 1.36
20 160 0.2 0.75 1.19 10.14 1.3
21 160 0.2 0.75 1.18 8.26 1.5
22 160 0.25 0.25 2.12 17.24 1.8
23 160 0.25 0.25 2.49 18.65 1.97
24 160 0.25 0.25 2.39 18.37 1.77
25 160 0.3 0.5 4.02 18.34 1.73
26 160 0.3 0.5 3.76 16.54 1.75
27 160 0.3 0.5 3.66 18.65 1.54

Fig. 1. SEM image of the Duralumin composite with 5 % Cr2C3 and 2 % MoS2.
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influenced lower machining time and higher material removal rate.
Due to their many benefits, such as increased accuracy, reduced time 

and cost, and the ability to model complex nonlinear relationships be
tween process parameters and output predictions of Artificial Neural 
Networks (ANNs) are highly applicable for such analyses [19]. Typi
cally, two main procedures are used when machining new materials: 
predicting response variables and optimizing process parameters, while 
also studying the influence of process parameters on responses. Pre
dicting response parameters from experimental data is vital and 
commonly done using regression equations [20].

However, Muthukrishnan and Davim [21] demonstrated that the 
ANN method is more effective than regression equations in predicting 
relationships in the AMMC machining process, especially for surface 
roughness and input parameters. Sahoo et al. [22] used RSM and ANN to 
develop predictive models and optimize cutting parameters, including 
3D surface plots. In their experiments with AISI 1040 steel using coated 
carbide tools under dry conditions, the RSM model achieved an R² value 
of 0.99, indicating a strong model fit. Both ANN and RSM accurately 
predicted Ra, but the ANN model performed better.

In another study, ANN and RSM were used to analyze the effects of 
cutting parameters on tangential cutting force (Fz), cutting power (Pc), 
and surface roughness (Ra) during the turning of POM C polymer. The 
results indicated that feed rate had the greatest impact on Ra (66.41 %), 
followed by cutting speed and depth of cut. Cutting depth primarily 
influenced Fz and Pc, with feed rate being the next most significant 
factor. Additionally, ANN was found to be a more robust and reliable 
method than RSM, based on the coefficients of determination (R²) from 
the developed models [23].

Nowadays, various Multi-Criteria Decision Making (MCDM) tech
niques are widely used to select the best materials and composites. For 
example, selecting materials for structural epoxy composites is crucial. 
Many researchers apply MCDM and Multiple Attribute Decision Making 
(MADM) techniques to rank materials based on multiple performance 
characteristics. Senthil et al. [24] selected wire-cut electrical discharge 
machining settings using a combined AHP and MOORA analysis. The 
AHP-MOORA technique can also be employed to determine the optimal 
combination of machining parameters for minimizing tool wear, 
improving surface quality, and enhancing overall machining perfor
mance [25,26].

The current study sets itself apart by using an Artificial Neural 
Network (ANN) trained using the Levenberg–Marquardt back
propagation algorithm, whereas many previous studies have concen
trated on the optimization of machining parameters and prediction of 
surface roughness using techniques like regression analysis and Taguchi 
methods. This study uses the nonlinear learning capabilities of artificial 
neural networks (ANN) to more precisely predict machining responses, 
such as surface roughness, under varied turning conditions of hybrid 
metal matrix composites (HMMCs), in contrast to previous approaches 
that mainly depend on linear or statistical models. Furthermore, the 
current approach offers a more adaptable and accurate substitute for 
conventional modeling techniques by combining a various of process 
parameters and experimental data to create a robust prediction model. 
This method improves knowledge and control of the intricate in
teractions involved in machining advanced composite materials in 
addition to increasing prediction accuracy.

This research study is distinctive because it takes a holistic approach 
to optimizing the turning process of a novel hybrid metal matrix com
posite made using the economical stir casting method. Duralumin re
inforces the composite with 5 % Cr2C3 and 2 % of MoS2 nanoparticles. In 
machining investigations, this combination of reinforcements has not 
been investigated before, especially when it comes to decreasing surface 
roughness, tool vibration, and acoustic emission all at once. The study 
combines the MOORA (Multi-Objective Optimization based on Ratio 
Analysis) method with Artificial Neural Network (ANN) modeling using 
the Levenberg–Marquardt backpropagation algorithm, allowing for ac
curate predictions and optimization of multiple outcomes at once. In 
contrast to earlier research that frequently focused on single-response 
optimization, this study uses a multi-criteria decision-making 
approach to identify the best cutting parameters for enhanced 
machining performance.

2. Methodology

2.1. Material used

Duralumin is the primary matrix material employed in these exper
imental investigations. It is an alloy of aluminum mixed with magne
sium, manganese, and copper. This composition contains aluminum at 

Fig. 2. Three-layer artificial neural networks (ANN) architecture.

R. Vellaichamy et al.                                                                                                                                                                                                                           Results in Engineering 27 (2025) 105978 

3 



91–95 % by weight, with copper at 3.8–4.9 % and magnesium at 1.2–1.8 
% as the prime alloying elements. Nanochromium carbide (Cr2C3) serves 
as the main reinforcing material. MoS2 is added as secondary rein
forcement with a weight percentage of 2 %. Molybdenum disulfide 
(MoS2) possesses remarkable chemical and thermal stability its low 
abrasion characteristics and it is often used as a solid lubricant.

2.2. Conduct of experiment

The Duralumin/Cr2C3 & MoS2 hybrid composite was fabricated via 
stir casting technique. The reinforcement was heated for 20 min at 450 
◦C before casting. After preheating the reinforcement, the Duralumin 
was melted in a graphite crucible at 650 ◦C. After that, the reinforcement 
and Duralumin matrix were mixed together, and magnesium was added 
at a rate of 2 % to the Duralumin base to prevent oxidation. The casting 
samples underwent a high-speed turning operations utilizing a computer 

numerical control (CNC) turning center (ECOTURN-25) [20]. The di
mensions of casting samples used in the turning process were 25 mm in 
diameter with a length of 150 mm. A 1616H11 tool holder joined with 
an uncoated carbide insert 332-SF H13A cutting tool was operated 
during the turning processes. The turning process occurred within a dry 
environment. Surface roughness (SR) measurements of the turned 
casting samples were carried out using a surface roughness tester 
(Mitutoyo SJ-210) [27]. The vibration of the composites was measured 
by using tri-axial accelerometer. The electrical noise signals were 
eliminated through appropriate filtering procedures.

2.3. Design of experiments

Taguchi design of experiments was adapted for the turning operation 
of the developed composites. The cutting speed, feed rate and depth of 
cut were chosen as input parameters based on the three levels and three 

Fig. 3. Contour plot for input parameters VS Surface roughness.
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factors an L27 orthogonal array was chosen for conduct the experiment 
as shown in Table 1. The results obtained from conducting the experi
ment for the response parameters i.e., surface roughness, vibration and 
acoustic emission are shown in Table 2.

2.4. Characterization of the composites

Fig. 1 shows the SEM image of the composite containing 5 % Cr2C3 
and 2 % MoS2, the image captured at 10,000X magnification with 5.00 
kV beam voltage, reveals both smooth and rough regions. The darker 
areas likely represent the matrix material, while the brighter scattered 
particles are presumed to be the Cr2C3 and MoS2 reinforcements. The 
reinforcement particles exhibit relatively uniform distribution of the 

reinforcement particles, though some clustering is observed in certain 
regions. The surface topography shows some deformation and material 
displacement, which is Characteristic of wear surfaces. The presence of 
MoS2 likely contributes to the formation of a lubricating film, while the 
Cr2C3 particles appear to be well-embedded in the matrix, providing 
wear resistance. The scale bar indicates 1 μm, showing the micro-scale 
features of the wear surface. Overall, the microstructure indicates 
effective integration between the matrix and reinforcement materials.

2.5. Development of ANN modelling

A computational model that considers the components and structure 
of organic brain systems is called an artificial neural network (ANN). 

Fig. 4. Contour plot for input parameters VS Vibration.
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The term "neural networks" refers to frameworks that are brain-inspired 
and aimed at imitating how humans learn. In addition to input and 
output layers, neural systems frequently have hidden layers made up of 
units that transform data into something the output layer can use [28]. 
These tools help reveal complex patterns or large numbers of specifi
cations that exceed human capabilities, enabling machines to learn and 
understand. Given that a neural system adapts—or learns, if you will—in 
response to input and output, the data flowing through the system im
pacts the ANN’s structure. Fig. 2 demonstrates a three-layer artificial 
neural networks (ANN) architecture. Cutting speed, feed rate, and cut 
depth are the input neurons, while surface roughness, vibration, and 
acoustic emission are the output neurons. The system uses the back 
propagation algorithm to train on both input and output values, per
forming training and validation using 27 experimental datasets.

2.6. Multi-objective optimization on the basis of ratio analysis method

The technique of concurrently maximizing two or more competing 
criteria (objectives) under certain limitations is known as multi- 
objective optimization. Increasing revenue and lowering expenses for 
multi-objective optimization problems typically involve optimizing 
performance and limiting fuel consumption of a vehicle, minimizing 
weight while increasing the strength of a certain technical component, 
or some combination of these [29].

Making decisions in a real-time industrial setting is made signifi
cantly more challenging by the diverse interests and principles of 
decision-makers. The objective (criteria) of a decision-making problem 
must be quantifiable, and each potential solution must have measurable 
results. Certain criteria (objectives) have contradictory values; some are 
advantageous (maximum values are wanted), while others are not ad

Fig. 5. Contour plot for input parameters VS Acoustic Emission.
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vantageous (minimum criteria values are always favored). Using a set of 
accessible options, the multi-objective optimization based on ratio 
analysis (MOORA) approach ranks or chooses one or more options by 
considering both non-beneficial and advantageous objectives (criteria). 

A =

⎡

⎢
⎢
⎢
⎢
⎣

a11 a12 … … a1n
a21 a22 … … a2n
… … … … …
… … … … …
am1 am2 … … amn

⎤

⎥
⎥
⎥
⎥
⎦

(1) 

Performances among different alternatives are represented using the 
values aij where ‘i’ represents the specific alternative and ‘j’ denotes the 
criterion and m stands for total alternatives while n indicates total 
criteria. 

a∗
ij =

aij
∑m

i=1aij
(2) 

Where aij variable represents a normalized performance score be
tween zero and one which indicates the ith alternative’s criteria value on 
jth criterion

It is occasionally seen that suggested the following normalizing 
process, the normalized value for a particular criterion exceeds one 
whenever a decision matrix contains a very big value for that criterion. 

a∗
ij = aij

/[
∑m

i=1
a2

ij

]1/2

(j=1,2,…, n) (3) 

Therefore, it is advised to use Eq. (3) to reduce the maximum criteria 
value to less than one. As stated in the accompanying expression, the 
MOORA method requires performance normalization with added points 
for beneficial criteria and then subtracted points for non-beneficial 

criteria. 

bi =
∑g

j=1
a∗

ij −
∑n

j=g+1
a∗

ij (4) 

The assessing value of the ith option with regarding to all criteria is 
represented by ‘bi’ while ‘g’ designates the total amount of criteria to be 
maximized alongside (n g) for the criteria to be minimized. 

Xi = Min(i)

(
Max(i)

⃒
⃒
⃒Zia∗

ij

⃒
⃒
⃒

)
(5) 

The selection option providing the highest assessment value is 
considered the best choice after arranging options from highest to lowest 
value. The selection process among potential alternatives should follow 
an orderly ranking system based on bi values.

3. Results and discussion

The analysis reveals distinct relationships that connect the parame
ters utilized during machining operations to their measured perfor
mance results. The tool removes more material per revolution when the 
feed rate rises from 0.2 to 0.3 mm/rev, which results in deeper tool 
marks and a rougher surface because of the higher scallop height. 
Because higher speeds generate larger dynamic forces, tool deflection, 
and potential resonance, especially under higher feed circumstances, 
cutting speed, especially in the maximum range significantly affects 
vibration [30]. As cutting speed goes up, more friction, chip formation, 
and changes in the material structure create short bursts of sound, 
leading to a steady rise in acoustic emission, which is highest between 
1.50 and 1.97 at 160 m/min. These results demonstrate a trade-off be
tween preserving surface quality and increasing material removal rates; 

Fig. 6. ANN model for predicting input machining parameters.
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high cutting speeds need to be carefully managed to limit vibration and 
AE, when low feed rates enhance surface finish. Based on the intended 
machining result, productivity and stability must be balanced while 
optimizing machining process parameters.

The 3D surface plot represents the mutual interaction between feed 
rate, depth of cut, and cutting speed that affects surface roughness, as 
displayed in Fig. 3. The system exhibits surface plot data that shows the 
relationship between cutting speed and feed parameters for stable depth 
of cut measurements under machining force conditions. The surface 
plots revealed that feed rate was the factor with the greatest impact on 
machining force. The plot also showed that when the feed rate increases 
from 2.5 mm/min to 3 mm/min, the machining force increases. This 
occurs because the region of contact between the tool and the composite 
workpiece material expands with an increase in feed rate. The 
machining force increases during the machining process due to accel
erated material removal, which is enabled by the larger contact zone 
area [31]. Fig. 3B shows the surface plot of machining force versus 
cutting speed and depth of cut. A correlation was found between 
machining force and depth of cut. For higher cutting speeds, low feed 
rates, and shallower cuts, it was discovered that the machining force was 
minimal. It was observed that the machining force increased as the feed 
rate and depth of cut increased, and that the machining force decreased 
at low feed rates and shallow depths of cut. This occurs because the 
material removal rate increases with higher feed rates and depth of cut, 
which in turn increases the machining power required to remove chips 
from the workpiece material [32]. Additionally, the contact area be
tween the workpiece material and the cutting insert expands with 
increased feed rate. The cutting tool experiences minimal resistance at 
low feed rates, but the workpiece material’s resistance to the tool inserts 

increases at high speeds, resulting in increased friction and cutting force.
Vibration measurements for a 0.50 mm depth of cut showed a 

decrease corresponding to spindle speed increases. However, the vi
bration values for both cutting tools at 0.25 mm and 0.75 mm depth of 
cut showed no regular pattern, as shown in Fig. 4A. The lowest natural 
frequency was obtained with a conventional cutting tool at 120 mm/min 
spindle speed and 0.50 mm depth of cut, while the highest vibration 
amplitude was obtained at 120 mm/min spindle speed and 0.50 mm 
depth of cut for a cutting tool with holes in the toolholder. Fig. 4B shows 
that, for a conventional cutting tool, the vibration value at 0.25 mm 
depth of cut decreases proportionally with increasing spindle speed; 
however, the vibration pattern for the modified cutting tool is irregular. 
In 160 mm/min spindle speed for the cutting tool with holes in the 
toolholder produced the maximum vibration value at the same tool 
overhang [33]. Increased depth of cut can lead to higher tool vibration, 
and this phenomenon is commonly observed in turning of developed 
composites as shown in Fig. 4C. Tool vibration can have several negative 
effects, including reduced tool life, poor surface finish, and potential 
damage to the workpiece and machine tool [34]. A deeper cut typically 
results in higher cutting forces. The tool must remove more material, 
resulting in greater resistance and force on the cutting edge, which can 
cause the tool to deflect or vibrate due to these increased forces.

The performance of router tools was monitored online using an 
acoustic emission (AE) sensor to ascertain the correlation between the 
AE signal and the machining duration for various tool geometries. Ac
cording to the analysis, a router tool with a flat cutting edge performs 
better because it produces lower cutting forces and achieves a superior 
surface finish with no delamination on the trimmed edges of the cutting 
tool. Fig. 5A shows the contour relationship between depth of cut and 

Fig. 7. ANN Correlation coefficients (R-values).
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feed rate with respect to acoustic emission. As the depth of cut escalates 
from 0.5 mm and the feed rate increases from 0.25 mm/min, there is a 
corresponding acoustic emission of 1.2 v2/S. The rapid energy release in 
localized areas of deforming materials under damage conditions creates 
transient elastic waves known as acoustic emission [35]. The rate of 
material removal from the workpiece increases in direct proportion to 

feed rate according to Fig. 5C. This can affect the chip formation process, 
leading to different types of chips being produced, such as longer or 
more tightly curled chips. Changes in chip formation can influence the 
acoustic emission characteristics of the machining process [36]. 
Increasing the depth of cut can affect the dynamic behavior of the 
machining system, leading to changes in vibration and resonance 

Fig. 8. ANN predicted acoustic emission value based on machining parameters.

Fig. 9. S-N ratio graph for Yi.
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frequencies. These changes can influence the generation and propaga
tion of acoustic emission waves.

3.1. ANN analysis

The surface roughness results for evaluating the predictive perfor
mance of an artificial neural network (ANN) model trained for L27 
parameter prediction are shown in Fig. 6. The figure includes four 

subplots representing different datasets: Training, Validation, Test, and 
Overall performance. The plots compare the target values against the 
model’s predicted values, with the correlation coefficient (R) indicating 
the strength of the relationship. The training set shows a high correlation 
(R = 0.98496), while both the validation and test sets achieve perfect 
correlations (R = 1), demonstrating excellent generalization. The overall 
dataset maintains a strong correlation (R = 0.98641), confirming the 
model’s accuracy. The fitted regression lines closely follow the ideal 
relationship, and the minor deviations in slope and intercept indicate 
minimal bias and error. These results suggest that the ANN model 
effectively predicts the L27 parameters with high precision and reli
ability [39].

Fig. 6 shows the performance evaluation of an ANN model for pre
dicting the machining parameters, presented in four separate subplots. 
The plots demonstrate the correlation between target (actual) values 
and predicted outputs for vibration. The top-left plot shows the training 
data with R = 0.94981, indicating a strong correlation between pre
dicted and actual values. The top-right plot displays the validation re
sults with R = 0.97642, suggesting even better model performance on 
the validation set. The bottom-left plot presents the test results with R =
0.95986, demonstrating consistent performance on unseen data.

Fig. 7 shows that the correlation coefficients (R-values) are close to 1, 
indicating a strong linear relationship between the predicted and actual 
values. The regression equations suggest that the model predicts outputs 
with slight deviations, as evidenced by slopes close to 0.9 and small 
intercepts. The graph indicates that while the model captures the trend 
well, minor variations exist due to data noise or model limitations. Fig. 8
shows the ANN predicted acoustic emission values based on machining 
parameters. Overall, the ANN model demonstrates good accuracy and 
generalization for predicting acoustic emission based on machining 
parameters [37].

3.2. Regression equation

The mathematical model for developed composites is shown in Eq. 
(5),6 & 7

Table 3 
MOORA results with square of Ai.

Ra Vibration Acoustic 
Emission

Square of Ai

1.46 7.54 0.82 2.1316 56.8516 0.6724
0.88 7.73 1.02 0.7744 59.7529 1.0404
1.17 8.74 0.83 1.3689 76.3876 0.6889
1.74 10.76 0.92 3.0276 115.7776 0.8464
1.75 11.78 0.75 3.0625 138.7684 0.5625
2.14 12.63 0.78 4.5796 159.5169 0.6084
3.15 9.46 0.85 9.9225 89.4916 0.7225
3.09 10.51 0.63 9.5481 110.4601 0.3969
3.1 11.95 0.77 9.61 142.8025 0.5929
1.11 11.68 1.18 1.2321 136.4224 1.3924
1.5 11.21 1.3 2.25 125.6641 1.69
1.21 12.65 1.25 1.4641 160.0225 1.5625
2.16 11.11 1.03 4.6656 123.4321 1.0609
2.08 12.12 0.82 4.3264 146.8944 0.6724
2.09 13.79 1.01 4.3681 190.1641 1.0201
3.43 17.38 1.28 11.7649 302.0644 1.6384
3.7 19.14 1.31 13.69 366.3396 1.7161
2.95 18.12 1.28 8.7025 328.3344 1.6384
0.92 7.83 1.36 0.8464 61.3089 1.8496
1.19 10.14 1.3 1.4161 102.8196 1.69
1.18 8.26 1.5 1.3924 68.2276 2.25
2.12 17.24 1.8 4.4944 297.2176 3.24
2.49 18.65 1.97 6.2001 347.8225 3.8809
2.39 18.37 1.77 5.7121 337.4569 3.1329
4.02 18.34 1.73 16.1604 336.3556 2.9929
3.76 16.54 1.75 14.1376 273.5716 3.0625
3.66 18.65 1.54 13.3956 347.8225 2.3716
WEIGHT ​ ​ ​ ​ ​
0.468 0.368 0.164 5.934962963 185.25 1.59232963

Table 4 
Normalized decision matrix and rank.

Normalized Decision Xij Weight and normalized Yi RANK

0.684931507 0.132625995 1.219512195 0.320547945 0.048806366 0.2 0.569354311 5
1.136363636 0.129366106 0.980392157 0.531818182 0.047606727 0.160784314 0.740209223 1
0.854700855 0.114416476 1.204819277 0.4 0.042105263 0.197590361 0.639695625 3
0.574712644 0.092936803 1.086956522 0.268965517 0.034200743 0.17826087 0.48142713 10
0.571428571 0.084889643 1.333333333 0.267428571 0.031239389 0.218666667 0.517334627 9
0.46728972 0.079176564 1.282051282 0.218691589 0.029136975 0.21025641 0.458084974 12
0.317460317 0.105708245 1.176470588 0.148571429 0.038900634 0.192941176 0.380413239 17
0.323624595 0.095147479 1.587301587 0.151456311 0.035014272 0.26031746 0.446788043 14
0.322580645 0.083682008 1.298701299 0.150967742 0.030794979 0.212987013 0.394749734 16
0.900900901 0.085616438 0.847457627 0.421621622 0.031506849 0.138983051 0.592111522 4
0.666666667 0.089206066 0.769230769 0.312 0.032827832 0.126153846 0.470981678 11
0.826446281 0.079051383 0.8 0.38677686 0.029090909 0.1312 0.547067769 8
0.462962963 0.090009001 0.970873786 0.216666667 0.033123312 0.159223301 0.40901328 16
0.480769231 0.082508251 1.219512195 0.225 0.030363036 0.2 0.455363036 13
0.4784689 0.072516316 0.99009901 0.223923445 0.026686004 0.162376238 0.412985687 15
0.29154519 0.057537399 0.78125 0.136443149 0.021173763 0.128125 0.285741912 22
0.27027027 0.052246604 0.763358779 0.126486486 0.01922675 0.12519084 0.270904076 23
0.338983051 0.055187638 0.78125 0.158644068 0.020309051 0.128125 0.307078119 20
1.086956522 0.127713921 0.735294118 0.508695652 0.046998723 0.120588235 0.67628261 2
0.840336134 0.098619329 0.769230769 0.393277311 0.036291913 0.126153846 0.55572307 6
0.847457627 0.121065375 0.666666667 0.396610169 0.044552058 0.109333333 0.550495561 7
0.471698113 0.05800464 0.555555556 0.220754717 0.021345708 0.091111111 0.333211536 18
0.401606426 0.053619303 0.507614213 0.187951807 0.019731903 0.083248731 0.290932442 21
0.418410042 0.054436581 0.564971751 0.1958159 0.020032662 0.092655367 0.308503929 19
0.248756219 0.054525627 0.578034682 0.11641791 0.020065431 0.094797688 0.231281029 27
0.265957447 0.060459492 0.571428571 0.124468085 0.022249093 0.093714286 0.240431464 25
0.273224044 0.053619303 0.649350649 0.127868852 0.019731903 0.106493506 0.254094262 24
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Ra = 2.07667 + 0.183333 * A + 1.06278 * B + 0.0333333 * C +
0.247778 * AB - 0.123333 * AC + 0.00555556 * BC + − 0.0166667 * A2 

+ 0.259444 * B2                                                                          (5a)

Vibration = 13.3033 + 1.16889 * A + 1.48611 * B - 0.963333 * C +
2.26667 * AB - 3.06222 * AC − 2.43111 * BC - 0.411111 * A2 +

0.0294444 * B2                                                                             (6)

Acoustic Emission = 1.05111 + 0.353889 * A − 0.08 * B − 0.0977778 * C 
+ 0.116667 * AB − 0.224444 * AC-0.108889 * BC + 0.119444 * A2 +

0.112222 * B2                                                                               (7)

A-Cutting Speed’ m/min’, B- Feed Rate ‘mm/min’, C- Depth of cut 
‘mm’

3.3. MOORA analysis results

The signal-to-noise (S-N) ratio graph illustrated in Fig. 9 serves to 
determine the most advantageous amalgamation of input parameters. 
Table 3 and 4 shows the results of normalised and weighted normal
isation with Yi results. The optimum combination obtained by using 
MOORA analysis is 80 mm/min of cutting speed 0.20 mm/min of feed 
rate and 0.75 mm of depth of cut. These are the overall response pa
rameters that achieve minimum surface roughness, minimum vibration, 
and minimum acoustic emission.

3.4. ANOVA analysis

ANOVA revealed how process parameters affect quality attributes 
through an objective decision-making method based on statistical 
analysis. The mean square evaluation against experimental error esti
mates at different confidence levels identifies the significance of all 
process parameters. The assessment of S/N ratio variability makes it 
possible to identify error contributions and process parameter effects 
using the method of computing the standard deviation from the mean S/ 
N ratio [38]. Table 5 shows the ANOVA table for Yi, the feed rate stands 
as the key factor that determines the results obtained through MOORA 
Yi methodology. Feed rate accounts for the highest influencing param
eter with a 71.05 % contribution rate, followed by cutting speed at 16.25 
%, while depth of cut holds only a 3.78 % influence rate.

Following the optimization using the MOORA method, a regression 
equation was produced, as shown in Eq. (8). This regression equation 
will be employed as a fitness function in the subsequent stages of the 
Whale Optimization Algorithm approaches. Using the MOORA tech
nique, the regression equation is created as follows: 

Yi = 1.27896 - 0.00164875 A - 2.8116 B + 0.119152 C                  (8)

A-Cutting Speed’ m/min’, B- Feed Rate ‘mm/min’, C- Depth of cut 
‘mm’

4. Conclusion

• The present study successfully identified the optimal machining 
parameters, i.e., cutting speed, feed rate, and depth of cut for mini
mizing surface roughness, vibration, and acoustic emission during 
the turning of Duralumin reinforced with 5 % nano Cr₂C₃ and 2 % 
MoS₂.

• Using the Taguchi L27 orthogonal array design, experimental results 
showed that feed rate had the most significant impact on all output 
parameters, contributing 71.05 % to process variation, followed by 
cutting speed (16.25 %) and depth of cut (3.78 %) as per ANOVA 
analysis.

• The Artificial Neural Network (ANN) model demonstrated high 
prediction accuracy, making it a reliable tool for modeling complex, 
nonlinear machining relationships. Regression plots showed corre
lation coefficients above 0.94 in all stages, confirming strong align
ment between experimental and predicted values.

• Multi-objective optimization using the MOORA method identified 
the optimal parameter combination: 80 mm/min cutting speed, 0.20 
mm/rev feed rate, and 0.75 mm depth of cut, which yielded mini
mum surface roughness, vibration, and acoustic emission.

• The integration of ANN for prediction and MOORA for optimization 
offers a robust hybrid approach for enhancing the machining per
formance of hybrid metal matrix composites, with practical impli
cations for improving tool life, surface integrity, and operational 
efficiency.

These empirical findings provide critical insights and fundamental 
understanding for the precision manufacturing and advanced machining 
of next-generation nano-reinforced aluminum matrix composite mate
rials with enhanced surface integrity and dimensional accuracy.
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