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Abstract- Cognitive Radio Network (CRN) includes Secondary Users (SUs) and Primary
Users (PUs) to perform better communication. The SUs present in the CRN observe the
spectrum band to obtain the white space opportunistically. Employing the white spaces
supports to enrich the effectiveness of the spectrum. Because of the promising learning

capacity of Deep Learning (DL) and Machine Learning (ML) models, various experiments in
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the previous years have been utilized the deep or shallow multi-layer perceptron mechanism.
However, these mechanisms do not apply to the time series data because of the memory
element’s absence. One of the primary issues in spectrum sensing is to model the test
statistic. Conventional mechanisms normally employ the model-aided attributes as a test
statistic, including Eigenvalues and energies. But, these attributes cannot be precisely
characterized in the real world. Hence, a deep learning-assisted hybrid spectrum sensing
technique in the CRN is implemented. At first, the data is gathered from appropriate
databases. Further, an Adaptive and Attentive Multi-stacked Network (AAMNet) is
developed for the hybrid spectrum sensing process. The AAMNEet is developed by combining
three different deep networks like Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM) , and Autoencoder. The spectrum sensing process by the proposed
AAMNEet is enhanced further using the Random parameter Improved Duck Swarm Algorithm
(RIDSA) for parameter optimization. The availability of spectrum is identified for better
spectrum utilization with the help of the developed hybrid spectrum sensing process.
Throughout the analysis of the proposed method is checked by evaluating the resultant

outcomes with various heuristic approaches and deep learning methods.
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1. Introduction
The CR is a well-known network because of the spectrum sensing approaches. Wireless
Sensor Network (WSN) is employed in the spectrum sensing context employing deep

learning [1]. The WSNs are networks of linked sensor nodes that perform in groups to



collect, evaluate, and send the Radio Frequency (RF) spectrum information. When integrated
with the deep learning strategies, the WSNs become an efficient component for enhancing the
spectrum sensing accuracy and efficacy [2]. To automatically recognize and classify signals
in the RF spectrum, these sensor nodes collect information that is further given to the deep
learning approaches. This integration makes it possible to monitor the spectrum very
dynamically and effectively which makes as a significant module of CR devices with the
requirement of constant spectrum usage [3]. The previous spectrum sensing approaches led
the path for the generation of CR. These approaches concentrated on estimating if significant
or main candidates are absent or present with particular frequency bands [4]. Initially, the
spectrum is recognized by employing energy identification and connecting the filtering
approaches of conventional techniques. But, these techniques had problems concerning
accuracy and robustness. A significant part of CR devices is dynamic spectrum access [5].
According to the real-time spectrum sensing results, the CRs select and employ the frequency
bands adaptively [6]. The technology of CR is developed as a potential outcome to balance
the spectrum availability and its enhancing growth.

The radio spectrum has an important role in everyday life in distinct real-time programs. It
employs a range of wireless data transmission through Wi-Fi, laptops, smartphones, and radio
broadcasting for critical communication approaches, radar, Global Positioning System (GPS),
and baby monitors [7]. Numerous applications are on the basis of spectrum availability thus it
plays a primary role in daily life. Spectrum security highly grows when enhanced data
transmission, quick communication, and rapid multimedia applications employ vast spectrum
resources [8]. The primary concept of CR is spectrum reuse which enables the SUs to employ
the authorized spectrum band when the PUs is idle [9]. To obtain this, the SUs are needed to
continuously perform the spectrum sensing task that recognizes the spectrum job's state of the

PUs [10]. Thus, spectrum sensing is a primary process of CR innovation that can attain deep



attention from both industry and academia. The requirement for extra spectrum resources are
enhancing highly as many wireless services that are helped and shined the implementation of
new rapid data network innovations [11].

Nowadays, machine learning approaches for spectrum sensing have attained much
attention. Reinforcement learning and deep learning are the two higher models of machine
learning approaches that relatively enhance the flexibility and precision of spectrum sensing
[12]. The Recurrent Neural Network (RNN) supports tracking the data regarding the overall
input sequence and employing it to produce the outcomes and create predictions. The RNN
approach handles diverse input sequences and obtains the temporal connections that exist in
the data [13]. It is complex to recognize the long-term connections employing RNNs because
of the expanding or disappearing gradient problem in that the gradients either enhance or
vanish highly over time. The primary limitation of spectrum sensing is to develop the
experiment statistic to attain better detection probability [14]. The energy identification-aided
cooperative spectrum sensing is considered because of its flexible development, short sensing
period, low power usage, and low computing complexity. Especially, in the poor PU signal
pattern knowledge, the energy identification is displayed to be very efficient [15]. But,
because of the existence of some suspicious SUs, the existing spectrum sensing can be
susceptible to misleading the sensing results. Certain problems in the CRNs are named
Spectrum Sensing Data Falsification (SSDF) threats. The CNN and Artificial Neural Network
(ANN)-aided approaches have deep or shallow multilayer perceptron framework [16]. One of
the issues of the deep or shallow multilayer perceptron framework is its poor ability to store
data because of the memory element's absence [17]. Thus, the multilayer perceptron models
are not applicable for time series and temporal modeling data.

The designed hybrid spectrum sensing in CRN contains the below contributions.



& To present a new hybrid spectrum sensing system in CRN by utilizing the multi-stack
deep network that automatically improves the accuracy of the data transmissions and
minimizes the network complexities.

€ To construct the new AAMNet by utilizing three distinct deep networks such as
autoencoder, CNN, and LSTM that support to perform along with attention
mechanism for achieving the spectrum sensing accurately. Here, the RIDSA approach
is employed to tune the network parameters.

€ To suggest a new RIDSA approach by concentrating on the requisite features of
existing DSA and an adaptive idea that increases the performance rates of the hybrid
spectrum sensing system in CRN.

& To evaluate the developed hybrid spectrum sensing system in CRN by utilizing
traditional algorithms and methods that guarantees the superior solutions of the
designed system.

Followed by the introduction section, the forthcoming sections are given below. Part 11
elaborates on the conventional works of hybrid spectrum sensing mechanisms. Part 11l
explains the development of an efficient CRN with hybrid spectrum sensing using a deep
learning approach. Part IV elaborates on the parameter optimization using RIDSA and the
proposed model description. Part V depicts the hybrid spectrum sensing using AAMNet with
an objective function. Part VI elucidates the results and discussions of the implemented
hybrid spectrum sensing mechanism. Part VIl explains the conclusion of the designed hybrid

spectrum sensing mechanism in CRN.



2. Existing Works

2.1 Related Works

In 2019, Liu et al. [18] have recommended DNN to perform the data-driver experiment
statistic. At first, the DNN was derived to ensure the implemented test statistic's optimality.
Further, the sample covariance matrix was employed and recommended a Covariance Matrix
(CM)-aware CNN-aided spectrum sensing approach that enhanced the functionality. Finally,
the simulation findings illustrated that the functionality of the designed framework was close
to the optimal detector.

In 2020, Xie et al. [19] have suggested a CNN-LSTM detector that employed the CNN to
draw out the features of energy-correlation. The consideration of sensing information and
energy-correlation attributes related to various sensing times was given to LSTM. Hence, the
activity pattern of PU could be learned. With enough experiments, the supremacy of the
CNN-LSTM model was proved in situations without and with noise uncertainty.

In 2020, Soni et al. [20] have recommended an LSTM-aided spectrum sensing model that
learned the necessary features from the spectrum data. Additionally, the CR devices have
exploited the activity statistics of PU using spectrum sensing to improve the sensing
functionality. The suggested sensing mechanisms were experimented on the spectrum
information of numerous radio technologies. The authors monitored the maximized
framework rates of the developed approach.

In 2023, Kannan et al. [21] have combined the two optimization algorithms to improve the
efficient energy usage ability of the spectrum hoes by focusing on distinct sensing situations.
The primary objective of the suggested system was to tune distinct attributes such as sensing
bandwidth, transmission power, and so on. While estimating the recommended system, the

suggested model provided improved solutions.



In 2023, Vijay and Aparna [22] have implemented a new spectrum sensing mechanism.
The model employed the recurrent connections to obtain the temporal dependencies. To
develop a spectrum sensing approach, this work cascaded distinct deep networks. The
evaluation results provides that the designed method attained higher performance and lower
sensing error percentage.

In 2023, Paul and Choi [23] have presented a reliable and single model for the CS users.
The suggested work employed the time series evaluation via a DL-aided LSTM method for
indexing the PU channels. In the end, the authors designed a complex framework and
rectified employing a value-iteration-aided approach. The simulation solutions displayed the
efficacy of the presented work over the related works.

In 2021, Nasser et al. [24] have employed ANN for performing the spectrum sensing. The
authors employed cutting-edge mechanisms in the deep learning sector to obtain accurate
solutions. The ANN model was trained to differentiate among two hypotheses. The research
outcomes have displayed the efficacy of the presented work, as it performed better than the
conventional ANN-aided energy detector.

In 2023, Rani and Prashanth [25] have explored a deep learning mechanism and presented
an innovative spectrum identification mechanism for CR networks. The integrated feature
vector was performed via a reinforcement approach. In the end, these features were employed
to train the DL method that engaged the residual blocks. The solutions of the method were
contrasted with other deep learning-aided models and displayed the robustness of the
presented work.

In 2024, M. Pravin et al. [26] have developed an efficient Oppositional Function based
Chimp Optimization Algorithm (OFCOA) for effectively managing the energy and resource
allocation in CRN. Here, the OFCOA model was performed to evaluate the optimal solution

using an oppositional function. This developed method was validated using the MATLAB



platform using several metrics like delay, energy consumption, and so on. The comparative
performance was evaluated with existing methods to provide better performance. In 2024,
Liu et al. [27] have proposed a hybrid Cooperative Spectrum Sensing (CSS) mechanism with
the help of a deep learning method. Further, the energy allocation has been calculated among
transmitting of packet and spectrum sensing. Also, the issues of Average Age of Information
(Aol) have been resolved using the developed model. In 2024, Shrote et al. [28] have
implemented a hybrid algorithm spectrum sensing mechanism in CRN to recognize the
availability in the channel. The process of feature extraction was performed with the help of
the received signal whereas; the spectrum sensing availability was highly detected utilizing
the designed approach. The resultant simulation of the implemented MIMO method has
reached a high performance of extreme flexibility to detection performance. In 2024,
Prabhavathi et al. [29] have developed a resource optimization framework with a priority
pricing technique. With consideration of different primary user states, the Hybrid-Cognitive
Radio Networks (H-CRN) have been detected. Here, the higher priority of the primary user
and secondary user were applied in spectral resources using a deep learning model. In 2024
Khaf et al. [30] have investigated a hybridized model along with a deep reinforcement
learning model in CRN to maximize energy efficiency. Also, the performance of the
developed method has obtained effective performance. In 2024, Jain et al. [31] have
implemented an ANN model with a Wireless Regional Area Network (WRAN). For the
experimentation, the 2048 samples were taken in the experimental analysis to provide reliable
performance. The experimental findings of the proposed method have shown maximized
performance than the conventional methods.

In 2024, Ge et al. [32] have developed a Reconfigurable Intelligent Surface (RIS)
framework to maximize Cooperative Spectrum Sensing (CSS) performance within fixed

sensing time. Phase Shift Matrix (PSM) optimization mechanism was implemented to



enhance the cooperative detection probability. Fata fusion and decision fusion schemes of
CSS could have the ability to remove high tolerance false alarm issues on PSM. The
simulation outcomes of the designed framework have demonstrated a better performance
compared to other existing approaches.

In 2024, Wu et al. [33] have developed a novel blind spectrum sensing using one-bit
Analog-to-Digital Converters (ADCs) to minimize power consumption and hardware costs.
The theoretical calculation of simulation outcomes of this developed model has shown better
performance. In 2024, Taherpour et al. [34] have developed and derived several detectors
based on linear spectral statistics from random matrix theory. Gaussian distribution has been
combined with these detectors using the central limit theorem. Performance validation of the
designed model has illustrated the effectiveness of the developed detectors in different real-
world applications to minimize the average SNR and enhance detection probability.

In 2024, Ezhilarasi et al. [35] have proposed a novel technique with the help of
Blockchain-based technology to detect and prevent several criminal activities using a
spectrum sensing mechanism. The iron-out phase and block updation phase were involved in
the detection strategy. The simulation outcomes of the developed model were illustrated
3.125%, 6.5%, and 8.8% at -5 dB SNR in the appearance of malicious users.

In 2024, Vladeanu et al. [36] have developed a novel Energy Detection (ED) model for SS
which contains binary activity for detecting the signal to enhance detection performance. The
proposed method has been validated with statistical analysis and derives the expressions
using diverse methods. The theoretical findings of this model have outperformed better
detection outcomes.

In 2024, Hongning et al. [37] have developed a cryptonym array-based privacy-preserving

aggregation approach and data confusion-based privacy-preserving model for SS in cognitive



vehicular networks. The implemented method can accurately transmit the confused data in

the aggregation process.

2.2 Research Gaps and Challenges

The conventional spectrum sensing methods mostly concentrate on the feature-retrieving
process. However, this procedure takes more time to elaborate all the sensing data. Sensitivity
to noise, inefficiency, and signal representation are some of the issues presented in existing
spectrum sensing approaches. Some of the techniques are vulnerable to noise that affects the
detection process of spectrums. Table 1 presents the features and challenges of existing
spectrum sensing approaches in CR networks using deep learning. CM-CNN [18] has the
ability to retrieve test static-based features and it rectified the spectrum sensing problem of
multi-antennas. However, it does not solve the spectrum scarcity problems and lots of time is
needed for the training process. CNN-LSTM [19] helps to retrieve correlation features from
the sensing data and it effectively learns the activity patterns of primary users. Yet, the
sensing period is high. LSTM-SS [20] achieved high classification accuracy at low signal-to-
noise ratio regimes. It learns the implicit features efficiently with the help of employed
memory elements. It does not work well on multiple numbers of Pus and SUs. The execution
time for sensing the spectrum is high. GWO-CS [21] attained high throughput by maintaining
the spectrum holes and it solves the radio spectrum shortage issues. Yet, it is affected by
channel congestion and interference problems and the convergence is low. RNN-BIRNN-
LSTM [22] effectively categorizes the sensing data. But, Training each network requires a lot
of time and it has degradation problems. DRL [23] solves the channel shortage problems and
it reduces the sensing overload issue. But, it suffers from hidden noise issues. ANN [24]
utilizes only one detector for the training process. However, retrieving energy-related features

is difficult. DRLNet [25] retrieves energy correlation features for an efficient spectrum



detection process. It has the capability to capture time-shifted signal correlation. But, the
communication of the system is not effective and it suffers from security and power control
issues. Therefore, a hybrid spectrum sensing method in a CRN using deep learning will be

implemented.

Table 1. Features and challenges of conventional spectrum sensing techniques in cognitive

radio network using deep learning

Author Methodolo Advantages Disadvantages
[citation] ay

Liu et al. CM-CNN e It can retrieve test e It does not solve the

[18] static-based features. spectrum scarcity problems.

e It rectified the e Lots of time is needed
spectrum sensing problem | for the training process.
of multi-antennas.

Xie et al. CNN- e It helps to retrieve e The sensing period is
[19] LSTM correlation features from the | high.
sensing data.

e It effectively learns
the activity patterns of
primary users.

Soni et LSTM-SS e It achieved high e It does not work well
al. [20] accuracy. on multiple numbers of Pus
e It learns the implicit | and SUs.
features efficiently with the e The execution time for
help of employed memory | sensing the spectrum is high.

elements.
Kannan GWO-CS e It attained high e It is affected by
etal. [21] throughput by maintaining | channel ~ congestion  and
the spectrum holes. interference problems.

e It solves the radio e Convergence is low.
spectrum shortage issues.

Vijay RNN- o |t effectively e Training each network
and Aparna | BIRNN-LSTM | categorizes the sensing data. | requires a lot of time.
[22] e It has degradation
problems.
Paul and DRL e It solves the channel e It suffers from hidden
Choi [23] shortage problems. noise issues.

e It reduces the
sensing overload issue.

Nasser et ANN e |t utilizes only one e Retrieving energy-
al. [24] detector for the training | related features is difficult.
process.




Rani and DRLNet e It retrieves energy e  The communication of

Prashanth correlation features for an | the system is not effective.
[25] efficient spectrum detection e It suffers from security
process. and power control issues.

e It has the capability
to capture time-shifted
signal correlation.

3. Developing an efficient CRN with Hybrid Spectrum Sensing using Deep
learning approach

3.1 Cognitive Radio Network: System Model

The system model of CRN is explained here. Here, a normal multi-antenna CR [18]
framework is offered. The terminal CR employs an N —factor antenna device to do the
spectrum sensing on the basis of M observation attributes. Consider,

y(m)=[y,(m), y,(m).....yy (m]’,m=04...M -1 and specify the observation attribute, where the
variable y;(m) specifies the m" discrete time sample at the CR terminal’s j" antenna. Hence,
the spectrum sensing issue at the multi-antenna CR terminal is derived as a binary hypothesis

testing issue as given in Eq. (1).
(1)

Here, the variable d(m)eF™* specifies the signal vectord(m) that troubles with channel
fading and path loss. Commonly, it is not possible to achieve the previous PUs knowledge at
the CR terminal hence, the signal vector is considered to be an identically and independently
distributed Circular Symmetric Complex Gaussian (CSCG) factor with covariance
matrix s, = A(d(m)dv(m)) and zero mean. A variable x(m)e F™* indicates the noise factor and it
is considered as a CSCG arbitrary factor with covariance matrix s, = A(x(m)xV (m)):afJN and
zero mean, whereas a variable o?indicates the noise variance. Moreover, the

attributesv, and Vv, indicate the hypotheses that PUs is absent and present correspondingly.




According to the observation factors, the test statisticu is developed to make the

decisions: if the conditionu > » is met, then the PUs is present; or else the PUs are absent.
Here, the threshold value is indicated as y . Based on the Neyman-Pearson (NP) scenario, the

primary concept of spectrum sensing is to develop a test statistic to enhance the detection

probability for the provided Probability of False Alarm (PFA) that is derived in Eq. (2).

max Q, =17 gy, (t)dt
st Q=17 gy, (t)dt=¢

(2)

In this, the test statistic formulated from the observation factors is denoted asu. The

attributesQ, =Q{U > »|V,} and Q, =Q{U >|Vv,} indicate the PFA and PD accordingly. The
variable y|v;indicates the experiment statistic under the hypothesisv;. The factorg,,
indicates the U |V, ‘s probability density function. Further, the variable ¢ specifies the needed

PFA and the specific detection threshold is given asy. Fig.1 displays the system model of

CRN for the recommended hybrid spectrum sensing mechanism.
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Fig 1. System model of CRN for suggested hybrid spectrum sensing mechanism

3.2 Input Data Details
The recommended hybrid spectrum sensing mechanism’s input details are collected from the

link as “https://github.com/caiotavares/spectrum-sensing: access date:2024-06-08”. This is a

synthetic dataset. This dataset includes the overall data size as (70000, 3) and the overall

target size as (70000, 1). And, the collected information is specified ass,, here d =12,.,D,

and the overall data is indicated as D .

3.3 Motivation and Significance for Hybrid Spectrum Sensing
In the present day, the utilization of wireless systems and its service has been enhanced
highly but it leads to spectrum scarcity. The regulatory authority policies utilize the static

spectrum allocation techniques and allocate new spectrum bands for providing new
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categories of services to the candidates. These techniques result in small usage of available
spectrum bands. The CR [38] offers better outcomes for these issues and it relatively
concentrates on the effective usage of available spectrum bands.

Significance of hybrid spectrum sensing: The idea of CR has developed to minimize the
issue of spectrum scarcity. In the modern days, it has been reported that the spectrum can be
reutilized by employing CR [39] technology from television or cellular bands. In the CR, the
unauthorized candidates, often considered SUs, sense and purposely use the radio spectrum
while confirming that the interference to the PU is below several acceptable thresholds. The
interference in the PU highly occurs when the SU stops to recognize the activity of the PU as
an authorized band. Thus, effective and accurate hybrid spectrum sensing is a significant
problem in the CRNS.

Motivation for hybrid spectrum sensing: The wireless communication system’s
performance could be enhanced by employing the CUs features without affecting PU’s
performance. Numerous techniques were recommended using experts for the spectrum
management function such as estimating spectrum sensing and determining the spectrum for
CUs. In CRN [40], the sensing platform includes distinct components with low-powered
sensors. Thus, an issue occurs in the spectrum sensing and it minimizes the functionality of
the method. In the conventional mechanisms, some experts have been concentrated on
spectrum sensing to enhance the sensing accuracy. In both mechanisms, the accuracy is
minimal. In order to enhance the sensing accuracy, a hybrid spectrum sensing was

implemented in the recommended work that chooses the suitable spectrum band for the CUs.



4. Parameter optimization using Random parameters Improved DSA and Proposed
Model Description

4.1 Proposed Conceptual View of CRN with HSS

In the present day, an ever-enhancing requirement for larger data values demands high
spectrum resources. The conventional static spectrum allocation only enables the particular
PUs to employ the licensed spectrum, while the SUs are restricted. To enhance the spectrum
efficacy, the CR mechanism was recommended. The primary concept of CR is spectrum
reuse which enables the SUs to employ the authorized spectrum band when the PUs is idle.
To attain this, the SUs are required to perform the spectrum sensing process that recognizes
the PU's spectrum occupation state. Thus, spectrum sensing is a primary operation of CR
innovation that has focused intense attention from both industry and academia. The important
issue of spectrum sensing is to develop the test statistic to attain higher detection likelihood.
In the past years, numerous model-driven spectrum sensing techniques have been
implemented. However, the noise uncertainty issue varies with time causing the degradation
of detection performance. To minimize the noise uncertainty issue, the totally-blind
techniques have been implemented. But, the performance of these techniques is worse than
that of the other techniques. Considering the traditional method-aided techniques, deep
learning strategy can highly draw out the features of distinct platforms and enhance the
performance of traditional communication devices. Although the conventional deep learning-
aided techniques enhance the detection functionality, these features drawn from the
conventional techniques are susceptible to noise uncertainty. To rectify the conventional
technique’s limitations, an effective hybrid spectrum sensing framework is important. Fig.2

displays the implemented hybrid spectrum sensing framework.
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Fig 2. The architecture of the implemented hybrid spectrum sensing system for CRN

An effective hybrid spectrum sensing system is constructed in this work for CRN that
improves the spectrum efficiency. Firstly, the data attributes are fetched from the available
resources. Further, the hybrid spectrum sensing process is carried out with the support of
AAMNet. This network is the integration of CNN, LSTM, and autoencoder. The spectrum
sensing approach by the recommended AAMNEet is improved by the RIDSA-aided parameter
optimization process. Here, the recommended RIDSA optimally tunes the parameters of the
AAMNet hence enhancing the spectrum sensing process. The spectrum availability is

recognized for better utilization of spectrum by the recommended hybrid spectrum sensing



process. The effectiveness of the implemented method is evaluated by determining the

outcomes with several deep learning and heuristic approaches.

4.2 Conventional Approach: DSA
The existing DSA [41] is a swarm intelligence-aided approach motivated by the foraging and
searching behaviors of the duck swarm. The mathematical process of the DSA is explained
here. The DSA includes the following stages.

& Duck swarm’s positions after queuing (Initialization of population)

& Food source searching (Exploration)

& Foraging in groups (Exploitation)

Population initialization: Consider the derivation of randomly produced starting place in
the D-dimensional search area as given in Eq. (3).

P,=C, +(X, -C, v (3)

Here, the m"duck’s m=12,.., F spatial region is specified as P, in the duck group, and the

population size number is given asF. The search region’s lower and upper regions are

considered as C, and X, appropriate. The arbitrary integer matrix among 0 and 1 is provided

asv.
Exploration: After the duck swarm’s queuing process, the ducks come to the region with
much food. Each duck moderately disperses and initiates food searching. This operation is

explained in Eq. (4).

a+l _
m =

(4)

P2 + 1P sign(v—0.5) B>rd
PE 4+ YV, (Pl — P2+ YY, (PE = P2) B<rd

a
eader m

Here, the term sign has an impact on the task of exploring for food, and it is set either 1 or
-1 and the variable x indicates the global search’s control parameter. The exploration stage’s

search conversion probability is specified as B. The competition and cooperation coefficient



between ducks in the search region is indicated as YY, and YY,accordingly. The present

historical value’s best duck region is indicated as P2

leader

at the a"iteration. The variable P}

specifies the agents around P2 in exploring for food by the group of ducks in the a" iteration.

The variablerd is the updated arbitrary integer using Eg. (9) for enhancing the performance

rates. Eq. (5) determines the variable x and Eq. (6) estimates the variable L .

i
L =sin(2.rd)+1 (6)

Exploitation: After discovering the duck swarm’s food, that is, sufficient food can satisfy
the duck’s foraging. This operation is relatively related to each place of duck’s fitness and
derived in Eq. (7).

a_ Pe +,u-(Pa - Pa) g(Pa)> g(Pa*l)
G = {Pnﬁ‘ + zzl.(lr;a - |I>d)+ zzmz.(Pua —p) Celse ()

leader

Here, the variable . indicates the global search’s control parameter in the exploitation

stage. The competition and cooperation coefficient between ducks in the search region is

indicated as zz, and Zz,accordingly in the exploitation stage. The present historical value’s

best duck region is indicated as P2

leader

at the a"iteration. The variables P? and P? specify the
agents around P2in foraging of a group of ducks in the a"iteration, whereu =d .
Considering the parameter valuesYyY,,YY,,zz, and zz, are all in the limit of 0 and 2 also,

the evaluation formula is provided in Eq. (8).
YY, or ZZ, P (m=12) (8)
QQ

Here, the variable QQ is constant, it is set to 0.618. The pseudo-code of the existing DSA

is represented in Algorithm 1.

Algorithm 1: Conventional DSA
Initial duck swarm positions, population number F, objective




function, and parameter value setting
Estimate the initial region’s fitness values and choose the
leader agent place P, and best value g . and population
candidate
Fora=1 to a,,
Upgrade the x parameter value employing Eq.(5) and
upgrade the attributes. B,YY,,YY,,ZZ, and ZZ,
For m=1to F
Upgrade the duck swarm places employing Eq. (4)
(Exploration)
Estimate the new place and fitness value g,
Upgrade the leader place P,,.., and fitness value
Upgrade the duck swarm to new places employing Eq.
(7) (Exploitation)
Estimate the fitness value
If g,, < fitness
Upgrade the place of individual and fitness
value
End if
Upgrade the place of leader p,,,., and fitness
value
End for
Save the solution of the best individual
End for
Output fitness value and best place

4.3 Proposed Approach: RIDSA

Numerous researches are explored by analyzing the performance of optimization algorithms.
Also, the consideration of existing optimization algorithms faces several challenges that do
not effectively work in our research work. On considering the existing POA algorithm, it
restricts the amount of validators, which helps to limit and select the transactions to control in
the network. In WOA, it fails by local optima issues during complex optimization processes.
Thus, it has a minimal speed of convergence and accuracy. Also, it has less capability of the
exploitation phase. To solve these issues in existing optimization algorithms, the research
work adopts an improved algorithm, named as RIDSA. The RIDSA is implemented for

performing the optimization process with the support of the existing DSA mechanism.



Purpose: The RIDSA is the integration of conventional DSA with an adaptive concept.
The RIDSA is employed in the AAMNet-based hybrid spectrum sensing process. The
AAMNet is the integration of three deep networks such as autoencoder, CNN, and LSTM. In
these techniques, the important parameters such as hidden neurons need to be optimized to
minimize the computational burden. For performing the optimization of the hidden neuron
counts in the mentioned techniques, the RIDSA is implemented.

Novelty: As mentioned earlier, the RIDSA is developed for optimizing the hidden neuron
counts in techniques such as autoencoder, CNN, and LSTM. This helps to maximize the
performance of the hybrid spectrum sensing process and minimize the computational
burdens. The RIDSA is developed from conventional DSA. The DSA has better accuracy
value compared to conventional algorithms and also it provides the solutions quickly.
However, a random integer from the range of 0 and 1 is involved in the conventional DSA for
performing both exploitation and exploration. The involvement of this random integer leads
to low convergence when increasing the iteration counts. Also, because of this random
integer, there is a possibility that the DSA falls into the local optima issue. In order to
mitigate these issues, a new random integer is constructed with the assistance of fitness rates.
With the support of this newly designed random integer, the limitations mentioned in the
DSA are prevented, and increased the performance and convergence rates. Thus, the RIDSA
approach is constructed in this work and employed in the hybrid spectrum sensing process.
Eq. (9) derives the newly developed random integer.

rd = cff 9)

w/ibff Z 4 wif? }

Here, the newly invented random integer is taken as rd and it is employed in Eq. (4), Eq.

(6), and Eq. (8) for improving both exploitation and exploration tasks. Additionally, the

variables cff ,bff and wff specify the current fitness, best fitness, and worst fitness.



Algorithm 2 shows the pseudo-code of RIDSA and Fig.3 depicts the flowchart of

implemented RIDSA.

Algorithm 2: Developed RIDSA
Initial duck swarm positions, population number F, objective
function, and parameter value setting
Estimate the initial region’s fitness values and choose the
leader agent place P, and best value g, and population
candidate
For a=1 to a,,
Upgrade the x parameter value employing Eq.(5) and
upgrade the attributes B,YY,,YY,,ZZ, and ZZ,
For m=1to F
Derivation of a new random integer rd by Eq.(9)
Upgrade the duck swarm places employing Eq. (4)
(Exploration)
Estimate the new place and fitness value g,
Upgrade the leader place P,,,., and fitness value
Upgrade the duck swarm to new places employing Eq.
(7) (Exploitation)
Estimate the fitness value
If g,, < fitness

Upgrade the place of individual and fitness value
End if
Upgrade the place of leader P, and fitness

value

End for

Save the solution of the best individual
End for
Output fitness value and best place
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Fig 3. Flowchart of implemented RIDSA for improving hybrid spectrum sensing process

5. Hybrid Spectrum Sensing using Adaptive and Attentive Multi-stacked

Network with objective function
5.1 Models Utilized in Multi-stacked Network
The MNet is implemented in this work for performing the hybrid spectrum sensing process

for CRN. The MNet is the integration of three deep networks such as autoencoder, CNN, and



LSTM. These techniques show better performances in the domain of CRN and thus employed
in the hybrid spectrum sensing process. These three techniques are explained as follows.

Autoencoder [42]: It is an unsupervised learning approach that is employed to minimize
the input data’s dimensionality and regenerate the real data from the compressed format. The
autoencoder includes three significant parts such as decoder, latent space, and encoder. The
encoder is employed for minimizing the input data’s dimension and producing an input data’s
compressed version. The layers of encoding contain a set of layers with a minimized amount
of nodes.

If the variable ydenotes an original number’s S vector of dimensione, y e s®further the
result of the encoder module i is provided in Eq. (10).
i=g(Xy+c) (10)
Here, the factorsc and X are the related bias unit and the weight matrix of the encoding
layer accordingly. The activation function is specified asg. The compressed data generated
isi indicated by the latent space. It is also named code space. Finally, the decoder regenerates
the input data from the compressed data to be as near to the real data as possible.
If the variable y specified as the reconstructed solution, the compressed data’s mapping i
toy be givenin Eq. (11).
y=g'(X'y+c) (11)
Here, the variablesc' and X' are considered as the decoding layer’s bias unit and the
weight matrix. Further, the activation function is specified asg'. The objective of the
autoencoder is to reduce the reconstruction faults while the backpropagation approach is

employed to reduce the errors. The loss function among the input and reconstructed data is

determined by employing functions such as binary cross entropy and mean square error.



CNN [43]: It has been employed in numerous applications. It contains three significant
layers such as pooling layers, convolutional layers, and Fully Connected (FC) layers. A
convolutional layer includes a kernel named filters each of which contains a receptive field.
Due to the shared files and the local connectivity, the convolutional layers can handle multi-

dimensional data by translation invariance. The convolution task is formulated in Eq. (12).

N-1M-1
bkl = g( DIED I S 't(j+n)(k+m) +C) (12)

1=0 m=0
Here, the feature representation is given asb , and the convolutional kernel’s weight is
specified asx. The bias offset is taken asc and the variables M and N specify the kernel
height and width respectively. The position indices are taken as (j+n)k +m) and the activation
function is specified as g(e).
Normally, the pooling layer is utilized after some convolutional layers. It offers a
nonlinear downsampling form of the input and concentrates on minimizing the parameter

count in the network. The pooling layer’s output is estimated in Eq. (13).
q=o(0) (13)
Here, the term gdenotes the output of the pooling layer and b' denotes the input of the
pooling layer. The down-sampling task over the receptive field is indicated as o(s).
After the tasks of convolution and pooling, the diverse feature maps are collected and
employed as the input to the FC layer. The FC layer’s derivation is given in Eq. (14).
b = g(x"bo’1 +c°) (14)
Here the FC layer’s index is represented aso and the output and input of the layer are
specified asb® and b°* accordingly.
LSTM [44]: It is the improvement of the Recurrent Neural Network (RNN). The RNN

offered the short-term memory ability that enabled the utilization of the conventional data to



be employed for the current work. The output gates, cell, forget gate, and input gate are
presented in normal LSTM.

Forget gate: The primary objective of this gate is to decide which cell gate bits are
supported to provide the new input data and the conventional hidden state. The network’s
forget gate is trained hence results close to zero when an input component is not relevant or
else closer to one when it is related. The forget gate fo, is modelled in Eq. (15).

fo, = o(we, [hi,_y,in ]+bi, ) (15)

Here, the activation function is indicated asc. The variables bi, and we, denotes the
forget gate’s bias and weight. The variablesin, and hi,_, refer to the integration of present
input and hidden state accordingly.

Input gate: The primary goal of this gate is two-fold. The initial one is to validate if the
new data is relevant to keep in the cell stage. One operation includes producing a new
memory update attribute specified as D,, by integrating the new input data and conventional
hidden state. The operation is formulated in Eq. (16).

D, = tanh(we, [hi, ,,in, ]+ bi, ) (16)

Here, the variable bi, and we, denotes the input gate’s bias and weight. The term tanh is an
activation function, which is employed to produce the memory update vector’s elements.
Same as the forget fate, the input gate is trained to result a value vectors in [0, 1] employing
the sigmoid activation function. This operation is provided in Eq. (17).

yy, = o(we,, [hi_y,in]+bi, ) (17)

Here, the terms we,, and bi, denotes the input gate’s weight bias.

Further, these two tasks are point-wise multiplied. The resulting integrated vector is
further added to the cell state as given in Eq. (18).

D, =g, ®D, —1+yy, ®D, (18)



Output gate: The primary objective of this gate is calculated in the new hidden stage. The
output gate employs three distinct data including new input data, the conventional hidden
state, and the newly updated cell state.

It initially employs the conventional hidden state and presents input data via the sigmoid-

activated network to attain the filter vector ou, as given in Eq. (19).
ou, = o(wey,[hi, ;. in, |+ bi,, ) (19)
Here, the variables bi, and we, denoted as the output gate’s bias and weight. The cell

state is given to the activation function tanh to manage the values into the bound [-1, 1] to
generate the compressed cell state that is employed to the filter vector with point-wise

multiplication. Along with the new cell stateD,, a new hidden state hi,is generated, and
results as given in Eq. (20).

hi, = ou, ® tanh(D,) (20)

The new cell stage D, becomes the conventional cell state D, , to the subsequent LSTM

module while the new hidden statehi, changes into the conventional hidden statehi,_, to the

upcoming LSTM module.

Thus, by considering these three techniques improved performance rates, the MNet is
constructed for performing the hybrid spectrum sensing process.
Parameter optimization process
The parameter optimization process helps to select the best set of hyperparameters in the ML
approaches. For initiating the optimization process, the population of the duck swarm can be
randomly generated with the help of prior knowledge. With the help of the objective function
in Eq. (22), the hidden neurons in the Autoencoder, LSTM, and CNN model gets tuned using
the developed RIDSA algorithm to reaches the convergence criteria to make sure better
robust performance. Hence in each population of duck, the required parameters are to be

encoded and processed over the iteration. At the end of the iteration, the better value is



attained for such parameters that are used in the AAMNet model. Thus, it helps to achieve

accurate outcomes in the developed model.

5.2 Attention Mechanism

Nowadays, the attention mechanism [45] is applied in numerous tasks such as object
identification, classification, image generation, and so on since it exponentially increases the
network performance rates. In this hybrid spectrum sensing process, the attention mechanism
is integrated. This attention mechanism is inserted into the network layers that help the
network to concentrate on the more necessary features and disregard the inappropriate
features and the noise. Moreover, this mechanism supports to concentrate on the important
part that has an important effect on the solutions. Eq. (21) shows the attention function, which
is composed of a mapping query and a pair of keys and values. This function determined the

alignment score among the factors from the two modules.
Attention(r,t, y) = soft max (x(rt" )y (21)
The variables t and y denote the key and value matrices. The query matrix is

represented asr .

5.3 Recommended AAMNEet for Spectrum Sensing

In the hybrid spectrum sensing process, the AAMNet is constructed in this work. This is a
very effective technique since it is developed using deep learning techniques. The AAMNet
includes three deep networks such as autoencoder, CNN, and LSTM. The consideration of
these networks provides better outcomes, yet these have several challenges that are
mentioned below. Autoencoder is more sensitive, it does not performed in noisy input data.
The tuning of several layers in the neural network is complex and it consumes more time. On

the other hand, the CNN needs more labeled data; this is expensive and also it causes



overfitting issues. In LSTM model, it requires further memory and large-time, which can
make huge computational complexity. In order to resolve these problems, the attention
mechanism is integrated into autoencoder, CNN, and LSTM for improving the hybrid
spectrum sensing process in CRN. The advantages of integrating the attention mechanism in
autoencoder, CNN, and LSTM are shown below.

Attention-based Autoencoder: The autoencoder can capture the difficult and complex
features from the input data. However, when executing more input data, the autoencoder
trouble to capture the complex features. Autoencoder contains an attention mechanism, it is
used to choose the features effectively. Moreover, it can enhance the performance of the
technique.

Attention-based CNN: The CNN minimizes the computation process and also extracts the
significant features and eliminates the outliers. However, the CNN fails to produce the
maximum accuracy when processing small datasets. To maximize the accuracy of the CNN,
the attention mechanism is included. This attention mechanism effectively reduces the
computational complexities and enhances the performance rates.

Attention-based LSTM: The LSTM can remember the previous data and thus increase
efficiency. It minimizes the gradient issues also. However, the LSTM faces overfitting issues
when the input data increases. Hence, the attention mechanism is included in this network
that minimizes the overfitting issues, and enhances the efficiency of the LSTM network.

Thus, the AMNet is constructed with the outstanding features of these techniques. This
AMNet technigue can provide the desired solutions for the hybrid spectrum sensing process.
Though the suggested AMNet can provide the desired solutions, the network attributes like
hidden neurons in the CNN, LSTM, and autoencoder may cause a computational burden. In
order to mitigate this problem, the AAMNet is constructed, where the RIDSA technique

helps to tune the hidden neuron count of autoencoder, CNN, and LSTM. Thus, the AAMNet



is suggested for performing the hybrid spectrum sensing process. This network highly
increases the performance rates and also spectrum efficiency than the other conventional
models. The efficiency function of the RIDSA-based parameter tuning is mentioned in Eq.
(22).

ob= arg max [A] (22)

{hnAEYhnCNN'hnLSTM}
Here, hn”F refers to the hidden neuron count in the autoencoder is varying from 5 to 255.
hn“™ represents the hidden neuron count in CNN that ranges from 5 to 255.

hn"*™ represents the hidden neuron count in LSTM that varies from 5 to 255. Further, the
accuracy is indicated as A , and it is maximized by this process. This factor is explained as
follows.

Accuracy: It is a performance measure that is utilized to define how the method performs
the operation. It is shown in Eq. (23).

XX+ CC

A=
XX+ cC+bb+mm

(23)

Here, the terms mm and cc denotes the true positive and true negative rates. Also, bb and

xx represents the false positive and false negative rates.

Thus, the AAMNet is constructed for performing the hybrid spectrum sensing for CRN.
The functionality of the AAMNet is explained as follows.

AAMNet: The AAMNEet is implemented for performing hybrid spectrum sensing. This
network includes three deep networks such as autoencoder, CNN, and LSTM. Initially, the

original data S, is given as input for the autoencoder technique. The autoencoder extracts the

complex, requisite, and difficult characteristics in the raw data. Further, the obtained features
are given to the CNN method. This approach effectively extracts the optimal features and
removes the unnecessary features. After that, the necessary features are forwarded to the

LSTM technique. Here, the attention mechanism is integrated to improve the accuracy and



performance rates. Moreover, to minimize the computational burdens, the RIDSA algorithm
is utilized for tuning the hidden neuron count in the autoencoder, LSTM, and CNN
techniques. Thus, a novel hybrid spectrum sensing process is performed for CRN that
increases the accuracy and spectrum efficiency than the conventional techniques. The

functional diagram of the AAMNet-based hybrid spectrum sensing process is shown in Fig.4.
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Fig 4. Functional diagram of AAMNet-based hybrid spectrum sensing process for CRN

6. Experimental findings
6.1 Experimental setting
The developed hybrid spectrum sensing system in CRN was implemented in the Python

platform. On this platform, satisfactory solutions were reached. The proposed RIDSA



model’s chromosome length was taken as 3, maximum iteration was considered as 50, and
total population was taken as 10. In order to prove the designed hybrid spectrum sensing
system’s effectiveness, the performance analysis was conducted by utilizing the traditional
algorithms and classifiers such as Red Deer Algorithm (RDA) [46], Ebola Optimization
Algorithm (EOA) [47], Squid Game Optimizer (SGO) [48], DSA [41], Autoencoder [42],
CNN [43], LSTM [44], and AMNet [42] [43] [44] [45]. Table 2 shows the network
parameters of the developed CRN and also, the details of system requirements are mentioned
in Table 3.

Table 2. Network parameters of CRN

Parameter Value range
Area size 1000mx1000m
Number of channels 1
PU interference range (m) 125
Frequency (GHz) 2.4
PU idle time (ms) 10, 20, 40, 80, 160, 320
Effective bandwidth (Mbps) 2
Initial energy (J) 2,4,6,8, 10
SU transmission range (m) 125
Data rate (Kbps) 100
Packet size (KB) 1.5
Number of active connections 1,2,3,4,5
Running time (s) 200

Table 3. System Requirements in CRN

RAM 16.0 GB
Interpreter MATLAB R2020a
Processor Intel (R) Core(TM) i3-1005G1
OS Windows
Development Environment Matlab
Version Windows 11 pro
CPU 1.20GHz - 1.19 GHz
System Type 64-bit operating system,
X64-based processor

6.2 Performance measures
The following approach metrics are used for determining the performance of the designed

hybrid spectrum sensing framework.



Accuracy: It is derived in Eq. (23).

Sensitivity: It is mentioned in Eq. (24).

Specificity: It is shown in Eqg. (25).

Precision: It is calculated in Eq. (26).

FPR: It is denoted in Eq. (27).

FNR: It is calculated in Eq. (28).

NPV: It is derived in Eq. (29).

FDR: It is derived in Eq. (30).

F1-score: It is determined in Eq. (31).

MCC: It is derived in Eq. (32).

MCC =

XX
XX+ CC

Sen=

spec =

bb + mm

XX
XX+ bb

bb
bb + xx

FPR =

mm
XX+ mm

FNR =

XX
XX+ mm

NPV =

bb
XX+ bb

FDR =

ccxbb
cc+bb

F1-—Score =2x

mMmxCC —Mmmx XX

J(mm-+xx)(mm -+ cc)(xx+ bb)(xx+mmy)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)



6.3 Designed RIDSA model’s convergence analysis

The convergence analysis of the RIDSA approach is given in Fig.5. By comparing the
RIDSA method with conventional algorithms, this experiment is carried out whereas; the
parameters are effectively tuned to maximize the convergence value. In the convergence
analysis graph, the X-axis shows the varying number of iterations, like 10, 20, 30, 40, and 50.
On considering the traditional RDA-AAMNeEet, it shows low convergence that arise parameter
issues. Our proposed algorithm shows good convergence by tuning the necessary parameters
using an iteration and population. Based on this evaluation, the optimal solution is reached by
considering a predefined value. Thus, it has been reported that the designed RIDSA model
obtained a minimum cost function and hence attained higher value convergence than the
conventional algorithms. For the 30" iteration, the RIDSA model’s cost function is relatively
reduced by 7.31% of RDA-AAMNEet, 6.58% of EOA-AAMNEet, 4.8% of SGO-AAMNEet, and
5.12% of DSA-AAMNet accordingly. Additionally, it has been guaranteed that the

implemented RIDSA helps to enhance the accuracy rates of the hybrid spectrum sensing

approach.
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Fig 5. Convergence analysis of the designed RIDSA method over conventional algorithms




6.4 Designed RIDSA model’s statistical analysis

The designed RIDSA method’s statistical analysis is offered in Table 4. In this statistical
analysis, it helps to visualize and analyze complicated patterns to provide better performance.
It supports the implemented system can handle effectively works in all types of data. Also, it
reduces the scalability problem in the implemented method to enhance the accuracy. By
comparing the RIDSA model over related other algorithms. The RIDSA model is improved
than the other algorithms by 4.68% of RDA-AAMNet, 4.65% of EOA-AAMNet, 3.22% of
SGO-AAMNEet, and 3.9% of DSA-AAMNEet respectively when considering the best factor.
Thus, it has been explained that the developed RIDSA approach helps to determine the
optimal solutions than the other techniques. Also, it has been clearly indicated that the

designed RIDSA increases the accuracy of the hybrid spectrum sensing approach.

Table 4. Statistical report of implemented RIDSA model over conventional algorithms

Terms RDA- EOA- SGO- DSA- RIDSA-
AAMNEet AAMNet AAMNet AAMNet | AAMNet
[46] [47] [48] [41]
Median 4.6135 4.3152 4.2566 4.2843 4.123
Best 4.3168 4.3152 4.2566 4.2843 4.123
Standard
Deviation 0.27249 0.32921 0.25813 0.26649 0.41261
Mean 4.5609 4.4264 4.3527 4.3552 4.257
Worst 5.2476 5.9631 5.1582 5.6276 5.763

6.5 Implemented hybrid spectrum sensing system’s performance analysis

The developed hybrid spectrum sensing system’s performance is verified by employing other
recent algorithms and techniques. This experiment is graphically given in Fig.6 and Fig.7. In
Fig.6 (a), the developed hybrid spectrum sensing system accuracy is improved by 2.54% of
RDA-AAMNet, 1.8% of EOA-AAMNet, 1.27% of SGO-AAMNet, and 1.06% of DSA-
AAMNet appropriately for softmax activation function. Considering Fig.6 (h), the precision

analysis is focused to show a positive outcome in the CRN model. So, this analysis helps to



minimize the false positive and false negative errors. The developed RIDSA-AAMNet model
reaches maximum precision. In Fig. 7(d), the FNR metric shows a higher error rate in the
traditional Autoencoder model, yet it affects overall performance in CRN. This causes
communication issues while transmitting the data. In the developed method, accurate
performance is attained by decreasing the error rate. Moreover, when considering the ReLU
activation function in Fig.7 (c), the designed hybrid spectrum sensing system’s FDR is
minimized by 25.57% of Autoencoder, 21.42% of CNN, 14.28% of LSTM, and 14.28% of
AMNet respectively. When focussing on other performance measures, the developed

approach produced more effective and superior solutions.
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Fig 6. Performance evaluation of implemented hybrid spectrum sensing system over

conventional algorithms in terms of (a) Accuracy, (b) F1-score,(c) FDR,(d) FNR, (e) FPR,

(f) MCC, (g) NPV, (h) Precision, (i) Sensitivity, and (j) Specificity
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Fig 7. Performance evaluation of implemented hybrid spectrum sensing system over
traditional classifiers in terms of (a) Accuracy, (b) F1-score,(c) FDR,(d) FNR, (e) FPR, (f)

MCC, (g) NPV, (h) Precision, (i) Sensitivity, and (j) Specificity

6.6 Implemented hybrid spectrum sensing system’s overall comparative analysis

The implemented hybrid spectrum sensing system’s overall comparative estimation is given
in Table 5 and Table 6 over existing methods and models. In Table 5, the error value of FDR
in the RDA-AAMNet algorithm is 7.3027 which seems to represent a high error when
compared with other techniques. Our developed RIDSA-AAMNEet algorithm attains 4.7322
and provides effective performance. In Table 6, while considering the developed RIDSA-
AAMNEet, the accuracy achieves 95.446 in CRN. The designed hybrid spectrum sensing

mechanism’s precision is enhanced by 2.33% of Autoencoder, 1.31% of CNN, 0.46% of




LSTM, and 0.98% of AMNet respectively when considering Table 6. Similarly, when
considering Table 5, the designed hybrid spectrum sensing approach’s specificity is
maximized by 2.73% of RDA-AAMNet, 2.01% of EOA-AAMNEet, 0.83% of SGO-AAMNEet,
and 1.09% of DSA-AAMNet accordingly. Thus, it has been ensured that the implemented
hybrid spectrum sensing system in CRN reaches high satisfactory solutions compared to the

traditional model.

Table 5. Overall comparative estimation of the designed hybrid spectrum sensing system in

CRN over conventional algorithms

Terms RDA- EOA- SGO- DSA- RIDSA-
AAMNet | AAMNet | AAMNet AAMNet AAMNet
[46] [47] [48] [41]
Accuracy 93.101 93.853 94.74 94.63 95.446
Sensitivity 93.544 94.348 95.01 95.03 95.622
Specificity 92.661 93.359 94.471 94.232 95.27
Precision 92.697 93.399 94.48 94.255 95.268
FPR 7.3392 6.6406 5.5286 5.7681 4.7303
FNR 6.4561 5.6516 4.9903 4.9702 4.3776
NPV 92.661 93.359 94.471 94.232 95.27
FDR 7.3027 6.6009 5.5204 5.7447 4.7322
F1_score 93.119 93.871 94.744 94.641 95.445
MCC 86.207 87.71 89.481 89.263 90.892

Table 6. Overall comparative estimation of the designed hybrid spectrum sensing system in

CRN over conventional classifiers

Terms Autoenco CNN LSTM AMNet RIDSA-

der [42] [43] [44] [42][43] [44] AAMNet
[45]

Accuracy 93.503 94.263 95.099 94.703 95.446
Sensitivity 94.005 94,523 95.385 95.101 95.622
Specificity 93.003 94.004 94.814 94.306 95.27
Precision 93.046 94.012 94.823 94.329 95.268
FPR 6.997 5.9962 5.1865 5.694 4.7303
FNR 5.9952 5.477 4,6152 4.8986 4.3776
NPV 93.003 94.004 94.814 94.306 95.27
FDR 6.9542 5.9884 5.1772 5.671 47322
F1 score 93.523 94.267 95.103 94.714 95.445




MCC | 87.011 | 88527 | 90.199 | 89.409 |  90.892 |

6.7 Comparative analysis of the developed model

The comparative analysis of the implemented method is provided in Table 7. In conventional
methods, timely detection is not sufficient this may affect the spectrum sensing performance.
Considering Table 7, the developed RIDSA-AAMNet spectrum sensing mechanism of
precision is enhanced by 18.50% of CM-CNN, 1.57 % of CNN-LSTM, 17.54% of LSTM-SS,
3.01% of RNN-BIRNN-LSTM and 1.57% of DRLNet. In developed RIDSA-AAMNet
model, it shows a high precision value than the existing models thus, it provides better
communications without any interference in CRN. It effectively enhances spectrum sensing
performance in CRN. In FDR, the performance of the implemented approach shows less error
rate when compared with 7.5% of CM-CNN, 2.3% of CNN-LSTM, 7.5% of LSTM-SS, 3.7%
of RNN-BIRNN-LSTM, and 2.3% of DRLNet. The traditional method raises a high error rate
that can lead to harmful interference and maximize the disruption of transmitting data.
However, the developed model has a low error rate, the minimal error rate is crucial for CRN.
It can effectively enhance the accurate detection performance and minimize false alarms
without any harmful interference. It has been ensured that the implemented hybrid spectrum
sensing method in CRN reaches more satisfactory solutions than the traditional models. In
Table 5, the existing CM-CNN approach gives minimal accuracy rate of 80.48 which can
degrade the spectrum sensing framework in CRN. The implemented method shows 95.45
better accuracy value compared to other existing approaches. This comparative analysis in
the designed approach helps to handle memory usage and minimize the higher duration of the

detection process.



Table 7. Comparative analysis of the implemented method

Terms CM- CNN- LSTM- RNN- DRLNet[25] RIDSA-
CNN[18] | LSTM[19] | SS[20] | BIRNN- AAMNet
LSTM[22]
Accuracy 80.48 93.44 81.12 92.00 93.76 95.45
Sensitivity | 79.87 92.88 80.52 91.29 93.49 95.62
Specificity | 81.07 93.99 81.70 92.70 94.03 95.27
Precision 80.39 93.79 81.05 92.48 93.79 95.27
FPR 18.93 6.01 18.30 7.30 5.97 4.73
FNR 20.13 7.12 19.48 8.71 6.51 4.38
NPV 80.56 93.10 81.19 91.54 93.73 95.27
FDR 19.61 6.21 18.95 7.52 6.21 473
F1-
SCORE 80.13 93.33 80.78 91.88 93.64 95.45
MCC 60.95 86.88 62.23 84.00 87.52 90.89
7. Discussion

Fig. 5 represents the convergence analysis of the proposed method. This analysis helps to
enhance decision-making process and reduce the processing time. Fig. 6 represents the
performance evaluation of the implemented hybrid spectrum sensing system with traditional
models. Here, diverse performance metrics are utilized to validate the algorithmic analysis
process. It can minimize the optimization process and processing time to detect spectrum
sensing in CRN. Fig. 7 shows the comparision analysis of the traditional and proposed
method detection approaches using diverse measures like FDR, F1-score, Accuracy, FNR,
FPR, NPV NPV, precision , NPV, sensitivity, and specificity. From Fig. 7(h), the precision
value of the existing Autoencoder method shows a very low value. However, the developed
method shows a better rate compared to other methods. This high precision rate can
effectively transmit the data without any communication issues. In Table 5, the developed
RIDSA-AAMNet method shows a better accuracy value of 95.446 than the traditional
frameworks. It helps to effectively enhance the accurate detection and protect the primary
user operations. Also, it has the ability to minimize the misclassification and identification

process. Based on this evaluation, the designed approach facilitates handling errors in the



system. The specificity value of the proposed method can attain 95.62, this high specificity

rate can improve the timely detection and maximize SS in CRN.

8. Conclusion

An intelligent hybrid spectrum sensing framework has been recommended in this work for
improving the spectrum efficiency in the CRN. In the beginning, from the available
resources, the necessary data attributes were aggregated. Further, the hybrid spectrum sensing
mechanism was performed by the suggested AAMNet. This network was composed of
autoencoder, CNN, and LSTM techniques. In order to maximize the AAMNet-based hybrid
spectrum sensing process, the parameters of AAMNet were optimized. For performing the
parameter optimization in AAMNet mode, the RIDSA was utilized due to its better
performance rates. The availability of the spectrum was recognized for effective spectrum use
with the support of a hybrid spectrum sensing mechanism. The efficacy of the designed
mechanism was estimated by estimating the outcomes with conventional techniques. When
considering the sigmoid activation function, the implemented hybrid spectrum sensing
system’s accuracy was enhanced by 4.21% of Autoencoder, 3.15% of CNN, 2.10% of LSTM,
and 1.05% of AMNet respectively. From this research findings, it has been revealed that the
implemented hybrid spectrum sensing mechanism was more effective and robust than the

other related techniques.

Practical Implications:

The consideration of CRN helps to find sensitive information about patients and also, it
prevents from malicious activities in the medical sector. CRN can be used for emergency
situations and efficiently provides public safety communications. In real-world applications,

it is common to effectively detect errors through network nodes. It is highly utilized for



identifying interference in spectrum sensing. Also, it is used in several applications like
navigation, military, and public safety. Spectrum sensing helps to prevent unauthorized
spectrum usage and improve network security in military based applications. It can
effectively handle low-power transmissions; also it is highly suitable for managing large
numbers of 10T devices with restricted spectrum requirements. Considering the CRN
networks in this applications, it facilitates to maximize the quality of service by reducing the
noise present in the signal whereas it can also accommodate more users on the same network.
Thus, the CRN networks have the ability to work in numerous applications, including
emergency networks, disaster relief, medical, weather forecasting, and traffic control for

increasing communications among the networks in rural areas.

Limitations and future work of the developed Model:

Processing the raw data directly into the AAMNet may cause dimensionality and complexity
issues in CRN. Thus it occurs noisy interference in the developed model. Due to the presence
of weak signals, the CRN gets easily affected by the threats, thus it might affect the security.
The estimation of the sparsity level of the wideband signal is critical in the developed model.
These issues will be rectified in future work. Modern pre-processing methods will be
implemented to extract the essential information without any information loss. In future
work, the transformer-based model will be considered to improve the spectrum efficiency by
analyzing the delay and throughput in the CRN network. Time-domain method will be

introduced to solve the issues of computational problems to enhance the CRN performance.
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