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Abstract: The objective of this research work is to adjust the output voltage of a DC-DC buck 

converter under the influence of noise and parameter variations. For this purpose, a new Kalman 

filter-based fractional-order controller is proposed. The Kalman filter reduces the effects of sensor 

and process noise on the system output. To reduce the tuning intricacy of the fractional-order 

proportional-integral-derivative (FOPID) controller, circumvent the derivative term, and enhance 

system performance, a novel blended proportional-integral (BPI) controller is introduced. This 

controller combines integer-order and fractional-order proportional-integral controllers. The 

parameters of the proposed BPI controller are determined using four metaheuristic optimization 

techniques: firefly algorithm, artificial bee colony, particle swarm optimization, and Harris Hawks 

optimization. Among there, the potential of the firefly algorithm-based controller was superior to the 

other three controllers. The proposed controller is compared with the integer-order KF-based 

proportional-integral (PI) controller, proportional-integral-derivative (PID) controller, and KF-based 

fractional-order PI and PID controllers. The proposed controller presents better results regarding 

settling time and steady-state error. This controller also demonstrates better results under variations 

in input voltage and inductance of the buck converter. The results of the buck converter are compared 

with those from an artificial neural network (ANN)-based controller reported in previous literature. 

The proposed controller improves overshot by 96.42% and settling time by 40% when the inductance 

of the buck converter is reduced by 50% under a load change from 7.33 to 11 Ω. 

Keywords: DC-DC buck converter; Kalman filter; proportional-integral controller; fractional-order 

controller; metaheuristic algorithm 
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1. Introduction  

Power converters are increasingly employed in numerous applications, such as industrial 

electronics, portable devices, energy storage systems, and consumer electronics. In recent 

applications, such as artificial intelligence, networks related to the Internet of Things, and wireless 

sensors, power converters are critical components. Switch-mode DC-DC converters transfer the DC 

voltage from one level to another. High-level DC voltage is reduced to a low-level DC voltage by a 

DC-DC buck converter, which is widely used in modern-era applications such as photovoltaic 

systems, electric vehicles etc.  

Regulating the output voltage of DC-DC converters in the presence of external noise and system 

parameter variations has proven to be challenging. Rigorous investigations are still ongoing in this 

subject, and different control algorithms have been proposed for controlling the output voltage of the 

converter. Chebyshev’s neural network-based adaptive controller was designed to control the output 

voltage of a buck converter [1]. In another work, a new control algorithm was proposed to track the 

output voltage of a buck converter with overcurrent protection to hardware elements [2]. In Miao 

(2019) and Wang (2019), current-constrained controllers were proposed for the buck converter [3,4]. 

A linear matrix inequality-based H-infinity controller has been demonstrated to regulate the output 

voltage of buck and boost converters [5,6]. An artificial neural network (ANN)-based control 

algorithm was proposed for a DC-DC buck converter, and an optimal controller was designed using 

approximate dynamic programming [7]. Several observer-based control algorithms have been 

proposed, both for buck and boost converters [8‒11]. A data-driven control algorithm was suggested 

for the interleaved DC-DC boost converter based on online integral reinforcement learning [12]. In 

2022, the non-minimum-phase model of a boost converter was modified to a minimum-phase model 

for the purpose of controller design [13].  

The proportional-integral-derivative (PID) controller and its modified versions are widely used 

in different applications. A sigmoid function-based data-driven proportional-integral (PI) controller 

was proposed to control the angular speed of a DC motor that is energized by a DC-DC 

converter [14]. Here, a sigmoid function represents the limits of the parameters of the PI controller. 

In [15], a neuroendocrine PID controller was designed for a multivariable crane system where the 

hormone discharge rate of neuroendocrine-PID can be regulated as per the error change. The output 

voltage of the DC-DC boost converter has been tracked using a brain emotional learning-based 

intelligent controller (BELBIC), where parameters are determined using the particle swarm 

optimization technique [16]. The performance of this controller outperformed the classical PID 

controller. Fractional-order proportional-integral (FOPI) and fractional-order 

proportional-integral-derivative (FOPID) controllers are very popular in industrial 

applications [17‒19]. The FOPID controller is designed to stabilize the output power of the 

buck-boost converter for proton exchange membrane fuel cells [20]; an optimal FOPI controller was 

proposed for a solar photovoltaic system with a DC-DC boost converter [21]. The FOPID controller 

was also implemented in a real-time system, like a DC-DC boost converter and a magnetic levitation 

system [22,23]. A modified version of the FOPID controller, namely the tilt integral derivative (TID) 

and hybrid proportional integral derivative (PID) controllers, was proposed for load frequency 

control in multi-area interconnected power systems and second-order time delay systems, 

respectively [24,25].  

Though different control techniques have been proposed for tracking the output voltage of the 
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DC-DC converter, the Kalman filter-based control algorithm has not been addressed before. The 

measurement of the output voltage of a DC-DC converter is essential for control purposes. However, 

measured outputs may be affected by the sensor noise. To deal with model uncertainty, noise must be 

considered. As a result, this research work designed a Kalman filter (KF) along with a controller to 

reduce the effects of sensor and process noises on the converter output. Modified versions of PID 

controllers have been employed for DC-DC converters, but some complications limit their 

widespread use. Instead, fractional-order PID controllers and variants have shown superior control 

abilities. Fractional-order proportional-integral (FOPID) controllers suffer from tuning complexity, 

and TID controllers are sensitive to parameter variations. To avoid these problems, a KF-based new 

controller, named blended proportional-integral (BPI) controller, is proposed to track the output 

voltage of the DC-DC buck converter. The BPI controller is a combination of FOPI and integer-order 

integral (I) controllers.  

For parameter determination of the PID and FOPID controllers, optimization techniques are 

essential; for that purpose, metaheuristic algorithms like particle swarm optimization (PSO), artificial 

bee colony (ABC), genetic algorithm (GA), or firefly algorithm (FA) play a critical role [26]. The 

PID, FOPID, and FOPI parameters have been determined via the PSO technique [27], and a modified 

version of the sine-cosine algorithm was employed to estimate the PID controller parameters [28]. 

In [29], six parameters of a complex controller, which was a combination of the PID controller with 

an N-filter and a PD controller, were predicted using the golden eagle optimization technique. A new 

metaheuristic optimization technique, which is a combination of pattern search with 

opposition-based snake optimizer, was introduced and utilized to calculate the parameters of two 

cascaded first-order low-pass filters with the PID (PID-FF) controller [30]. Due to fast convergence 

rate, ease of implementation, and simplicity, the firefly algorithm (FA) was applied to estimate the 

parameters of the proposed BPI controller, which was introduced by Xin-She Yangin, 2008 [31]. This 

FA was then modified by different researchers and has been used in different applications for 

optimization purposes [32‒35].  

The contributions of the proposed work are presented below.  

• A new Kalman filter-based controller is designed for the DC-DC buck converter. To control 

the output voltage of the converter, a blended proportional-integral (BPI) controller is proposed, 

which is the fractional order proportional-integral (FOPI) plus integer integral (I) controller.  

• The parameters of the suggested controller are estimated using four metaheuristic 

optimization techniques: firefly algorithm (FA), artificial bee colony (ABC), particle swarm 

optimization (PSO), and Harris Hawks optimization (HHO). The FA-based controller outperforms 

the other three metaheuristic algorithms. 

• The Kalman filter minimizes the effect of sensor and process noises on the output of the 

system, while the Kalman filter-based BPI controller tracks the output voltage of the converter with 

excellent transient response specifications in the presence of sensor and process noises. When the 

performance of the suggested BPI controller is compared with the PI, PID, FOPI, and FOPID 

controllers, BPI outperforms the others. The output of the closed-loop system is also compared with 

the artificial neural network-based controller presented by Dong et al., 2021 [7]; the proposed 

controller outperforms this controller. 
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2. Materials and methods 

2.1. Dynamics of DC-DC buck converter  

Figure 1 represents the circuit diagram of the buck converter. The circuit elements include the 

controlled switch MOSFET (𝑆𝐵𝑢), diode (𝐷𝐵𝑢), inductor (𝐿𝐵𝑢 ) with internal resistance 𝑅𝐿, and 

capacitor (𝐶𝐵𝑢 ) with internal resistance 𝑅𝐶 , load resistance 𝑅, and DC input voltage 𝑉𝑖𝑛 . The 

converter circuits with controlled switch (𝑆𝐵𝑢 ) during on and off conditions are also shown. The 

parameter values for the buck converter circuit are given in Table 1 and are based on [7]. 

 

Figure 1. Buck converter circuit (a); on-mode circuit (b); off-mode circuit (c). 

Table 1. Values of different parameters of the buck converter [7]. 

Parameter Value 

Input voltage, 𝑉𝑖𝑛  (𝑉) 42 

Load resistance, 𝑅 (Ω) 10 

Internal resistance of inductor, 𝑅𝐿  (Ω) 0.3 

Internal resistance of capacitor, 𝑅𝐶  (Ω) 0.02 

Inductance, 𝐿𝐵𝑢 (m𝐻) 5.63 

Capacitance, 𝐶𝐵𝑢  (𝜇𝐹) 5 

The voltage current of the converter during the on state is represented by the following 

equations:  

𝑉𝑖𝑛 = 𝑅𝐿𝑖𝐿 + 𝐿𝐵𝑢
𝑑𝑖𝐿

𝑑𝑡
+ 𝑣0                 (1a) 

𝐶𝐵𝑢 ⋅
𝑑𝑣𝑐

𝑑𝑡
= 𝑖𝐿 −

𝑣𝑜

𝑅
                (1b) 

𝑣𝑜 = 𝑅𝐶  𝑖𝐿 −
𝑣𝑜

𝑅
 + 𝑣𝑐                     (1c) 
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where 𝑖𝐿  and 𝑣𝑐  are the inductor current and capacitor voltage, respectively, and 𝑣𝑜  is the output 

voltage. 

The equations below characterize the converter during the off state: 

𝑅𝐿𝑖𝐿 + 𝐿𝐵𝑢
𝑑𝑖𝐿

𝑑𝑡
+ 𝑣0  = 0                (2a) 

𝐶𝐵𝑢 ⋅
𝑑𝑣𝑐

𝑑𝑡
= 𝑖𝐿 −

𝑣𝑜

𝑅
                (2b) 

𝑣𝑜 = 𝑅𝐶  𝑖𝐿 −
𝑣𝑜

𝑅
 + 𝑣𝑐                (2c) 

Thus, the average model of the converter is given by the following equations: 

𝐷𝑉𝑖𝑛 = 𝑅𝐿𝑖𝐿 + 𝐿𝐵𝑢
𝑑𝑖𝐿

𝑑𝑡
+ 𝑣0 𝑡              (3a) 

𝐶𝐵𝑢 ⋅
𝑑𝑣𝑐

𝑑𝑡
= 𝑖𝐿 −

𝑣𝑜

𝑅
                (3b) 

𝑣𝑜 = 𝑅𝐶  𝑖𝐿 −
𝑣𝑜

𝑅
 + 𝑣𝑐                (3c) 

Here, 𝐷 represents the duty ratio (control input), which is provided by the pulse width modulator 

(PWM), and 𝐷 ∈ [0, 1].  

The state-space model of the converter is illustrated below: 

 

𝑑𝑖𝐿

𝑑𝑡
𝑑𝑣𝑐

𝑑𝑡

 =  
−

1

𝐿𝐵𝑢
 

𝑅𝑅𝐶

R+𝑅𝑐
+ 𝑅𝐿 −

𝑅

𝐿𝐵𝑢  𝑅+𝑅𝑐 

1

𝐶𝐵𝑢
 1 +

𝑅𝐶

𝑅+𝑅𝑐
 −

1

 𝑅+𝑅𝑐 .𝐶𝐵𝑢

  
𝑖𝐿
𝑣𝑐

 +  
𝑉𝑖𝑛

𝐿𝐵𝑢

0
 𝐷                (4) 

𝑣𝑜 =  
𝑅𝑅𝑐

𝑅+𝑅𝑐

𝑅

𝑅+𝑅𝑐
  

𝑖𝐿
𝑣𝑐

                           (5) 

2.2. Kalman filter-based fractional-order controller 

The Kalman filter-based controller is used to regulate the output voltage of the DC-DC buck 

converter. The parameters of the proposed BPI controller are determined by applying the 

metaheuristic firefly optimization technique. The block diagram of the buck converter with the 

Kalman filter-based controller is shown in Figure 2. The Kalman filter eliminates the effects of 

sensor and process noise on the output voltage, which is used for comparison with the reference 

voltage. The control input 𝑢(𝑡) is applied to the buck converter through the PWM. 
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Figure 2. Buck converter with the Kalman filter-based BPI controller. 

2.2.1. Kalman filter 

The Kalman filter identifies the state variables of the system from the input and output data. 

This estimated output is used for control purposes. R. E. Kalman proposed the idea of the Kalman 

filter in 1960 [36]; since then, the Kalman filter and its modified versions have been used extensively 

in real-time systems for state estimation [37‒41].  

In discrete time domain, the state-space model of a linear time invariant is represented as 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘                   (6) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑛𝑘 = 𝑦𝑡 + 𝑛𝑘                                      (7) 

Here, 𝑘  represents the time instant; 𝑥 ∈ ℝ𝑛𝑥 , 𝑢 ∈ ℝ𝑛𝑢 , and 𝑦 ∈ ℝ𝑛𝑦  are the state, input, and 

measurement vectors, respectively; 𝑦𝑡  is the output without sensor noise; 𝑤𝑘  and 𝑛𝑘  are the 

process and sensor noise, respectively. 

It is assumed that process (𝑤𝑘) and sensor (𝑛𝑘) noises are Gaussian white noises with zero-mean 

and are mutually uncorrelated signals. The process and sensor noise covariance matrices are 

𝐸 𝑤𝑘𝑤𝑘
𝑇 = 𝑄 and 𝐸 𝑛𝑘𝑛𝑘

𝑇 = 𝑅, respectively. The algorithm of the Kalman filter is given in Table 

2. The Kalman filter estimates the state variables of the system from the information of input and noisy 

output of the system. It estimates the state variables by minimizing the mean squared error 𝐸  𝑥𝑘 −

𝑥 𝑘  𝑥𝑘 − 𝑥 𝑘 
𝑇 = 𝑃𝐾  where 𝑥 𝑘  is the prior estimated state vector and 𝑃𝐾  is the error covariance 

matrix at 𝑘. These estimated states are free from sensor and process noise and are used for control 
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purposes. Accordingly, the Kalman filter minimizes the effects of noise on the output of the system. 

The algorithm of the Kalman filter is given in Table 2 [37]. 

Table 2. Kalman filter (KF) algorithm. 

Step 1:  

Initialization (k = 0) 

Mean value of states: 𝑥 0 = 𝐸 𝑥0 = 𝑥𝑖𝑛  

Error covariance matrix: 𝑃0 = 𝐸  𝑥0 − 𝑥 0  𝑥0 − 𝑥 0 
𝑇 = 𝑃𝑖𝑛  

Step 2:  

Prediction  

(time update) 

Predicted state vector: 𝑥 𝑘+1∣𝑘 = 𝐴𝑥 𝑘∣𝑘 + 𝐵𝑢𝑘  

A priori covariance matrix: 𝑃𝑘+1∣𝑘 = 𝐴𝑃𝑘∣𝑘𝐴
𝑇 + 𝑄𝑤  

Step 3:  

Correction  

(measurement update) 

The updated state vector: 𝑥 𝑘+1∣𝑘+1 = 𝑥 𝑘+1∣𝑘 + 𝐾𝑘+1 𝑦𝑘+1∣𝑘 − 𝐶𝑥 𝑘+1∣𝑘  

Posteriori covariance matrix: 𝑃𝑘+1∣𝑘+1 = (𝐼 − 𝐾𝑘+1𝐶)𝑃𝑘+1∣𝑘  

The Kalman filter gain: 𝐾𝑘+1 = 𝑃𝑘+1∣𝑘𝐶
𝑇(𝑄𝑣 + 𝐶𝑃𝑘+1∣𝑘𝐶

𝑇)−1 

The algorithm returns to step 2. 

It is challenging to select the process noise covariance matrix 𝑄 as it depends on model 

uncertainty. For this, 𝑄 is chosen by the trial-and-error method as 𝑑𝑖𝑎𝑔(0.00001, 0.00001). The 

sensor noise covariance (𝑅) is chosen as 0.1, which depends on the accuracy of the voltage sensor. 

The Kalman filter is implemented using MATLAB software, and the state estimation error 

covariance matrix becomes  2.728 × 10−7 2.725 ×× 10−8

2.725 × 10−8 2.975 × 10−9  . The resulting Kalman filter estimates 

the state variables 𝑖𝐿 and 𝑣𝑐  accurately, and accuracy is computed in terms of root mean square 

error (RMSE) given by 𝑅𝑀𝑆𝐸 =  
  𝑥1−𝑥 1 

2𝑇𝑠
𝑘=1

𝑇𝑠
 

1
2 

, where 𝑥1 and 𝑥 1 are the actual and estimated 

state variables, respectively. The RMSE values of state variables 𝑖𝐿 and 𝑣𝑐  are 0.1261 and 0.2167, 

respectively. The covariance of the measured error (error between 𝑦𝑡  and measured output, 𝑦) and 

the estimated error (error between 𝑦𝑡  and estimated output, 𝑦 ) are 0.0994 and 0.0465, respectively. 

From these covariances, it can be concluded that KF minimizes the effect of noise on the output of 

the system. 

2.2.2. Blended proportional-integral (BPI) controller 

Linear controllers, as the integer and fractional-order proportional-integral (PI) and 

proportional-integral-derivative (PID) controllers, are used extensively for the fulfillment of the 

transient as well as steady-state response specifications of the system. The transfer function of PID and 

fractional-order PID (FOPID) controllers is as follows [17,18].  

𝐺𝑃𝐼𝐷 𝑠 = 𝑘𝑝 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠;  𝐺𝐹𝑂𝑃𝐼𝐷  𝑠 = 𝑘𝑝 +

𝑘𝑖

𝑠𝜆
+ 𝑘𝑑𝑠

𝜇  

where 𝑘𝑝 , 𝑘𝑑 , and 𝑘𝑖  are the gain of the proportional, derivative, and integral controllers, 

respectively; 𝜆 and 𝜇 are real fractional numbers (0 ≤ (𝜆, 𝜇) ≤ 1). 

The FOPID has more control on the system than PID, since the former has five control 

parameters, as opposed to the three from PID. Still, the issue lies in optimizing these five parameters in 

FOPID instead of the three in PID.  

For this study, a new fractional-order controller is proposed, which is a combination of integer 

and fractional-order PI controllers and is named the blended proportional-integral (BPI) controller. 
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The structure of the controller is shown in Figure 3, and the transfer function of the controller is given 

by 

𝐺𝐵𝑃𝐼 𝑠 = 𝑘𝑝 +
𝑘𝑖

𝑠
+

𝑘𝑓

𝑠𝜆
 

where 𝑘𝑝  is the gain of the proportional controller, 𝑘𝑖  is the gain of the integer-order integral 

controller, 𝑘𝑓  is the gain of the fractional-order integral controller, and the exponent 𝜆 is a real 

number (0 ≤ 𝜆 ≤ 1). 

The number of parameters that need to be optimized for the BPI controller is four, which is less 

than the FOPID (five parameters). The merit of the BPI controller over other fractional-order 

controllers like FOPID and TID is that it has no derivative term. Actually, the derivative term is 

required to damp out oscillations, but it can strengthen noise if parameter estimations are incorrect. 

The results section proves that BPI presents robust performance when facing parameter variations and 

noise. 

 

Figure 3. Structure of BPI controller. 

2.2.3. Firefly algorithm for the design of BPI controller  

The firefly algorithm (FA) is an extremely popular metaheuristic optimization technique that 

takes inspiration from nature and is extensively used for solving engineering problems. In this 

algorithm, the objective function changes proportionally with the brightness of the firefly; this means 

that when brightness is reduced, the firefly will travel or search for a brighter firefly. If there is no 

brighter firefly, then the firefly will move aimlessly.  

Consider there are n fireflies where 𝑓(𝑑) represents the fitness function or objective function. 

The brightness of a firefly (𝐼𝑖) determines the current position 𝑑𝑖 . The distance between two fireflies 

is given [31,32] by  

𝑟𝑖𝑗 =  𝑑𝑖 − 𝑑𝑗 =  (𝑑𝑖𝑘 − 𝑑𝑗𝑘 )2𝑘=𝑛
𝑘=1                  (8) 

where 𝑑𝑖  and 𝑑𝑗  represent the position of i
th 

and j
th

 fireflies, respectively.  

The relationship between the attractiveness function 𝛽 and distance 𝑟 is 𝛽 = 𝛽0𝑒
−𝛾𝑟2

, where 

𝛽0 signifies the attractiveness at 𝑟 = 0 and the light absorption coefficient is denoted by 𝛾. 

Suppose that in a t-th iteration, the firefly 𝑖 at position 𝑑𝑖  is moved to a brighter firefly 𝑗. 
Now, the new position of firefly 𝑖  in (𝑡 + 1) -th iteration is expressed by the following 

equation [33,34]: 

𝑑𝑖(𝑡 + 1) = 𝑑𝑖(𝑡) + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

 𝑑𝑗 (𝑡) − 𝑑𝑖(𝑡) + 𝛼𝜖𝑖                    (9) 
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where 𝑑𝑖(𝑡) represents the old position of firefly i; 𝜖𝑖  is a random number that can be determined 

from Gaussian, uniform, or any other distribution; 𝛼  is called the randomization parameter 

 0 ≤ 𝛼 ≤ 1 . 

The pseudocode of FA is illustrated in Table 3. Optimization problems like extremely nonlinear 

and multi-modal can be handled efficiently using FA; its speed of convergence is also extraordinary. 

Table 3. Algorithm of the firefly optimization technique. 

Pseudocode of firefly algorithm (FA) 

 Input: Number of fireflies (n), no. of maximum iterations (MaxIter), attractiveness factor (𝛽0), randomization 

parameter (𝛼), light absorption coefficient (𝛾). 

 Output: Best result originated by the FA. 

1. Initialization of n, MaxIter,𝛽0,𝛼, 𝛾. 

2. Determine initial population of fireflies 𝑑𝑖 , where 𝑖 = 1,2, … , 𝑛. 

3. Define objective function 𝑓(𝑑) where 𝑑 = [𝑑1 , … , 𝑑𝑛 ]𝑇 . 

4. Calculate light intensity 𝐼𝑖  for firefly at 𝑑𝑖  using 𝑓(𝑑𝑖) for all fireflies 

Main Loop 

5. While (𝑡 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟) 

For 𝑖 = 1 to 𝑛 

For 𝑗 = 1 to 𝑛 

if (𝐼𝑗 > 𝐼𝑖) 

Travel firefly i towards firefly j according to equation (9) 

          end if 

          Evaluate new 𝑓(𝑑𝑖) and light intensity 𝐼𝑖  

       end for 𝑗 

end for 𝑖 

Rank the fireflies and determine the best global solution 

       end while  

 

For the optimization, the fitness function or cost function is considered as integral time absolute 

error (ITAE), which computes the integral of the product of the absolute value of difference between 

reference input and actual output and time. The ITAE is given by 

𝑓  𝑘𝑝 , 𝑘𝑖 , 𝑘𝑓, 𝜆 = 𝐼𝑇𝐴𝐸 =  𝑡 𝑣𝑟 − 𝑣 𝑜  𝑑𝑡
𝑡

0

 

where 𝑣𝑟  and 𝑣 𝑜  are the reference voltage and estimated output voltage by Kalman filter 

respectively.  

One of the key objectives of this research work is to minimize the time response specifications, 

like maximum peak overshoot, settling time, and steady-state error. The cost function ITAE fulfils 

these requirements better than other cost functions, like integral square error (ISE) and integral 

absolute error (IAE). The design procedure of the BPI controller using the FA algorithm is presented 

in Figure 4. 
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Figure 4. Design procedure of the BPI controller using the FA algorithm. 

3. Results 

The values of different parameters used for the buck converter are presented in Section 2.1 [7]. 

The transfer function of the considered DC-DC buck converter is 𝐺 𝑠 =
(148.9𝑠+1.489×109)

(𝑆2+2.002×104𝑠+3.652×107)
.  

For the BPI controller, four parameters, 𝑘𝑝 , 𝑘𝑖 , 𝑘𝑓 , and 𝜆 need to be optimized using the 

optimization technique FA. The lower limit (LL) and upper limit (UL) of these four parameters are 

chosen from experience as follows: 

𝑘𝑝 =  0.001(𝐿𝐿) 0.09(𝑈𝐿)  ; 𝑘𝑖 =  0.001(𝐿𝐿) 10(𝑈𝐿) ; 𝑘𝑓 =  0.001(𝐿𝐿) 6(𝑈𝐿) ; 

𝜆 =  0.001(𝐿𝐿) 0.999(𝑈𝐿) .  

Applying FA, the gains of the controller BPI are optimized considering the cost function ITAE, ISE, 

and IAE. The best cost function versus the number of iteration curves is shown in Figure 5a for 25 

iterations.  
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Figure 5. Fitness function vs. number of iteration curve (a) for different cost functions and 

(b) for different controllers. 

Table 4. Parameters of different controllers obtained using different metaheuristic algorithms. 

Optimization 

technique 

Control 

algorithm 

Value of the parameters 

𝑘𝑝  𝑘𝑖  𝑘𝑑  𝑘𝑓  𝜆 𝜇 

 

 

 

FA 

PI 0.001 9.8729 - - - - 

PID 0.0998 10 0.0362 - - - 

FOPI 0.0012 9.9803 - - 0.999 - 

FOPID 0.001 9.9317 0.0157  0.999 0.001 

BPI 0.0017 9.99 - 5.9858 0.999 - 

ABC BPI 0.0112 10 - 6 0.999 - 

PSO BPI 0.001 10 - 6 0.999 - 

HHO BPI 0.09 10 - 6 0.999 - 

 

In this case, PI, PID, FOPI, and FOPID controllers are also designed for the buck converter 

using FA to compare the potential of BPI. Table 4 represents the values of the parameters of the 

different controllers. The objective function ITAE vs. the number of iterations (25 iterations) of 

different controllers is shown in Figure 5b; it shows that, among all controllers, BPI provides the 

minimum value of ITAE. The fractional-order controller blocks are obtained using the FOMCON 

toolbox. Figure 6 represents the closed-loop output voltage and inductor current responses of the 

buck converter with Kalman filter-based controllers for an 18 V reference voltage. Performance 

measures of different controllers are given in Table 5. 
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Table 5. Performance measures of different controllers using different metaheuristic algorithms. 

 Time 

response 

specificat- 

ions 

Settling-ti

me (𝒔) 

Maximum 

overshoot 

Under 

shoot 

Integral time 

absolute error 

(ITAE) 

Integral 

square error 

(ISE) 

Integral 

absolute 

error (IAE) 

 

 

FA-bas

ed 

PI 0.0095 0 0 9.108×10
-5

 0.4736 0.04471 

PID 0.001 4.54% 0 0.0007329 0.05703 0.03065 

FOPI 0.0095 0 0 9.125×10
-5

 0.4636 0.04412 

FOPID 0.02 0 0 0.0001613 0.3343 0.04433 

BPI 0.0055 0.06% 0 3.101×10
-5

 0.3177 0.02766 

ABC-b

ased 

BPI 0.01 0% 0 4.672×10
-5

 0.2337 0.02756 

PSO-b

ased 

BPI 0.0051 0.236% 0 3.044×10
-5

 0.3261 0.02774 

HHO-

based 

BPI 0.028 0% 0 0.0001776 0.08423 0.02754 

 

To test the performance of the Kalman filter, outputs are collected for a reference voltage of 

18V with a sensor noise power of 0.1 and process noise power of 0.000001. The output voltage and 

inductor current of the buck converter with a KF-based BPI controller and without KF (only with 

BPI controller) are shown in Figure 7. 

 

Figure 6. Output voltage (a) and inductor current (b) of the buck converter with different controllers. 
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Figure 7. Output voltage of the closed-loop system with and without the Kalman filter. 

3.1. Comparison with other metaheuristic algorithms 

Besides the firefly algorithm (FA), three other metaheuristic algorithms [artificial bee colony 

(ABC), particle swarm optimization (PSO), and Harris Hawks optimization (HHO)] were used to 

estimate parameters (𝑘𝑝 , 𝑘𝑖 , 𝑘𝑓 , and 𝜆) of the BPI controller. The algorithms of these optimization 

techniques are given in the literature [42]. The estimated parameters of the BPI controller using these 

four optimization techniques are presented in Table 4. Performance measures of different 

optimization techniques for the KF-based BPI controllers are given in Table 5 and shown in 

Figure 8. 

 

Figure 8. Performance measures of different algorithm-based BPI controllers with KF. 
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The statistical analysis of the fitness function (ITAE) with different optimization algorithms is 

presented in Table 6. As the metaheuristic algorithms FA, PSO, ABC, and HHO are stochastic in 

nature, the best value, standard deviation, and mean value of ITAE are calculated for 15 individual 

trials. The p-value of Wilcoxon’s rank-sum test is also calculated and provided in Table 6. 

Wilcoxon’s test, a nonparametric test, is used to compare two paired groups. A p-value lower than 

0.05 means there is no variance between the two compared groups. 

Table 6. Statistical analysis of fitness function (ITAE) for different optimization algorithms. 

Algorithm Best Standard deviation Mean Wilcoxon’s rank-sum test 

p-value 

FA (BPI) vs 

FA (BPI) 1.75× 10
-5

 1.81548× 10
-6

 1.88× 10
-5

 

ABC (BPI) 1.77× 10
-5

 6.36946× 10
-6

 2.54× 10
-5

 6.0111× 10
-4

 

HHO (BPI) 1.78× 10
-5

 4.55625× 10
-6

 2.34× 10
-5

 0.0012 

PSO (BPI) 1.77× 10
-5

 5.10655× 10
-6

 2.30× 10
-5

 0.0047 

 

3.2. Comparison with other control techniques 

For comparison with the proposed KF-based BPI controller, an artificial neural network (ANN) 

-based controller, suggested by Dong (2021), was considered. The same system is considered, and 

simulation results are compared in both cases. The KF-based BPI controller is tested with the same 

load and parameter variations as mentioned in [7]. Responses under various conditions are illustrated 

in Figure 9, and performance measures are given in Table 7. 

Table 7. Performance comparison with the ANN-based controller. 

Changed condition % Overshoot Settling time (s) 

ANN 

controller 

Proposed 

controller 

ANN 

controller 

Proposed 

controller 

Load resistance 𝑅 changes from 7.33 to 11 Ω 38.89% 1.39% 0.002 0.002 

Reference voltage 𝑣𝑟  varies from 18 to 24 V 0% 0% 0.007 0.005 

Input voltage 𝑉𝑖𝑛  is changed from 42 to 47 V 4.44% 17.2% 0.006 0.0035 

Inductance 𝐿𝐵𝑢  decreases by 50% and load 

resistance 𝑅 changes from 7.33 to 11 Ω 

38.89% 1.39% 0.005 0.003 

Inductance 𝐿𝐵𝑢  decreases by 85% and load 

resistance 𝑅 changes from 7.33 to 11 Ω 

44.44% 1.66% 0.0017 0.0018 

 

Table 6 shows that the proposed BPI controller performs better than the ANN-based controller 

in terms of overshoot and settling time. Some ringing (oscillations) can be seen in both voltage and 

current waveforms for the ANN-based controller, which is not present at all in the proposed BPI 

controller.  
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Figure 9. Output voltage and inductor current responses when (a) load changes from 7.33 

to 11 Ω; (b) reference voltage varies from 18 to 24 V; (c) input voltage 𝑉𝑖𝑛  changes 

from 42 to 47 V; (d) 𝐿𝐵𝑢  decreases by 50% with the same load change as in (a); (e) 𝐿𝐵𝑢  

decreases by 85% with the same load change as in (a). 
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4. Discussion 

The best cost function values for IAE, ISE, and ITAE were 0.011533, 0.010004, and 1.75 × 10
-5

, 

respectively. From the convergence curve (Figure 5a) and these cost values, it is evident that ITAE 

provides better results than the other cost functions. 

From Table 5, it is clear that the proposed BPI controller demonstrates better performance in 

terms of settling time, ITAE, and IAE than the other designed controllers. Figure 6 shows that the 

output voltage with the KF-based BPI controller accurately tracks the reference voltage of 18 V, with a 

negligible amount of overshoot in both the output voltage and inductor current waveforms. Hence, the 

BPI controller is considered for the regulation of the output voltage of the buck converter. 

From Figure 7, it is clear that the converter outputs with the KF-based BPI controller are not 

influenced by the sensor and process noise; Additionally, the controller provides overcurrent 

protection to the hardware components of the buck converter. This indicates that the KF eliminates the 

influence of sensor and process noise on the system output. 

Table 5 shows that the ABC and HHO-based BPI controllers are capable of producing zero 

overshoot, but the settling time are higher than with the FA and PSO-based controllers. Also, the 

maximum peak overshoot of the PSO-based controller is greater than that of the FA-based controller. 

By comparing these performance measures, it is clear that the FA-based BPI controller outperforms 

the other three metaheuristic algorithm-based controllers. From Table 6, it is clear that the FA-based 

BPI controller provides the lowest best value, standard deviation, and mean value compared to the 

other techniques. 

Figure 9 shows the responses of the KF-based BPI controller under various parameter variations. 

A performance comparison between the proposed controller and the ANN-based controller [7] is 

presented in Table 7. The BPI controller improves maximum overshoot by 96.42% compared to the 

ANN controller under load resistance variations.  

5. Conclusions 

This study describes the design of a new Kalman filter-based blended proportional-integral (BPI) 

controller and demonstrates the regulation of the output voltage of a DC-DC buck converter. The 

responses with and without the Kalman filter reveal that it eliminates the effect of sensor and process 

noises on the output voltage. The proposed fractional-order KF-based BPI controller gives better 

time response with respect to settling time, maximum overshoot, and ITAE than other KF-based 

controllers like PI, PID, FOPI, and FOPID. Statistical analysis shows that the performance of the 

proposed FA-based controller is superior to that of other metaheuristic algorithms. A comparative 

study also shows that the KF-based BPI controller outperforms other control techniques like ANN: 

the peak value of the voltage and transient time is much lower for the BPI controller than the ANN 

controller under different load conditions and parameter variations. The BPI controller decreases the 

maximum overshoot by 96.26% when the inductance of the buck converter is reduced by 85% under a 

load change from 7.33 Ω to 11 Ω. Hence, the proposed controller is capable to provide excellent 

transient responses and robust performance. In the future, the proposed control algorithm may be 

experimentally validated with a real-time system. 
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