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Abstract - Traffic congestion and road safety are paramount challenges compounded by the rising number of cars on the roads. 

Conventional traffic management systems using fixed rules and past data find dealing with dynamic road conditions difficult. 

This study suggests an Intelligent Driving Recommendation System (IDRS) combining deep learning and rule-based algorithms 

for real-time traffic and weather observation. The key to the strategy is the use of Temporal Convolutional Networks (TCN) 

behind traffic and weather forecasting using fuzzy logic-based adaptive decision-making. The process involves data gathering 

from IoT sensors, real-time monitoring systems, meteorological sources, and preprocessing techniques such as normalization, 

outlier detection, and categorical encoding. TCN models are trained to forecast congestion and weather severity, and a fuzzy 

inference system produces context-aware driving recommendations. Experimental results demonstrate the efficacy of the 

proposed system, achieving 99.7% accuracy in predicting traffic conditions and weather effects. The proposed TCN-Fuzzy Logic 

model surpasses LightGBM, CNN, and RFCNN, achieving 99.7% accuracy with enhanced precision, recall, and F1-score, 

demonstrating superior performance in classification tasks through advanced temporal and fuzzy logic integration. A 

comparative analysis was performed with those models, showing that the proposed TCN-Fuzzy Logic approach, with its edge in 

diminishing travel risks and efficiently managing traffic flows, emerges as superior. The study adds to developing AI-enabled 

real-time driving recommendation systems based on safety, efficiency, and sustainable intelligent transportation networks. The 

reed-looking study shall delve further into enhanced integration and efficacious optimization of calmative efficiency through 

edge computing techniques. 

Keywords - Deep Learning, Fuzzy Logic, Intelligent Driving Recommendation System, Real-Time Traffic Monitoring, Temporal 

Convolutional Networks. 

1. Introduction 
Worldwide road safety alongside rising traffic congestion 

has emerged as a primary challenges due to growing 

urbanization alongside rising vehicle numbers on the streets 

[1]. Current traditional traffic management approaches utilize 

established standard procedures yet cannot handle immediately 

changing road situations [2]. Intelligent Driving 

Recommendation Systems (IDRS) implement deep learning 

with real-time data analytics together with rule-based 

algorithms to deliver performance-enhancing and safety-

focused recommendations for drivers on the fly. [3]. Happy 

Lee revealed that yearly road accidents result in 50 million 

injuries and kill about 1.2 million people. County roads and 

city driveways support 54% of all traffic collisions. A majority 

of 71 per cent of accidents occur exclusively on dry surfaces. 

The acceptance of autonomous vehicles by society stands as a 

primary barrier that modern society experiences at present [4]. 

The industry established this important fourth-revolution 

domain through which virtual sensing has become widespread. 

Autonomous vehicles remain only a few years away from 

becoming a reality. Several key questions still need resolution, 

including liability issues and sharing methods and definitions 

regarding accident responsibility and insurance coverage [5]. 

The implementation of Industry 4.0 can prove practical for this 

case since it seeks to establish fully automated cyber-physical 

systems (CPS) along with enhanced data exchange 

functionality. The term V2X represents vehicle-to-everything 

applications, including vehicle-to-vehicle and vehicle-to-

infrastructure communications. A motor vehicle’s operational 

speed directly affects comfort and safety outcomes [6]. Many 

safety experts consider speed reduction essential for better road 

safety because speeding is a leading cause of multiple 

accidents. The safety measures reach their limits when drivers 

violate speed limits and when hazardous weather conditions or 
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roads necessitate speeds below the posted limits, which 

remains individual drivers’ responsibility [7]. The evaluation 

of any road, including rural roads, requires a focus on road 

geometry design combined with infrastructure conditions 

because these elements guarantee smooth operations with 

safety for traffic [8]. AI-powered traffic management systems 

receive active study and implementation as connected vehicles 

and smart city infrastructures advance. These traffic systems 

utilize big data analytics to generate predictive information and 

calculate optimal routes, which create safer streets and better 

driving efficiency. 

1.1. Recent Innovations 

Deep learning technology has produced substantial 

improvements for autonomous driving systems regarding 

highway simulations and predicting route changes through 

lanes (LC). The DRL-based autonomous agents obtain 

interpretation frameworks through study [9], which explains 

their important driving decisions. The study technique 

combines episode timeline analysis with frame-by-frame 

inspection and statistical evaluation methods through heatmaps 

to deliver spatial information about vehicle interaction. The 

study reveals that vehicles maintain their distance from other 

cars as their primary decision factor, while decisions to pass 

require lane positioning to occur [10].  

Creating a multi-task, attention-based CNN model is an 

important advancement that helps solve weaknesses in 

available prediction systems [11]. The model benefits from 

bird’s eye view visualization, which combines attention-based 

CNN functionality to achieve accurate predictions of 

Longitudinal Cruise manoeuvres. The model achieves 1.5 

times higher long-term prediction performance metrics due to 

two innovative curriculum learning schemes that enhance the 

training process. Naturalistic trajectory datasets recorded with 

drones enhance prediction accuracy yet realistic deployment of 

automated vehicles encounters implementation obstacles from 

sensor noise and limited visual field as well as obstacles 

blocking view [12]. The future study agenda should measure 

sensor uncertainties and advance fusion techniques to improve 

reliability when predicting real-world LC. The current 

advancements work toward building better AI traffic 

management systems, which must be enhanced for practical 

implementation in real-world scenarios. 

1.2. Research Gap 

Several implementation obstacles affect the performance 

of existing traffic management systems and driving 

recommendation models in intelligent transportation systems 

today. The speed adaptation systems base their operations on 

driver preferences through fuzzy logic controllers, which leads 

to speed recommendations that negatively impact safety rather 

than comfort. Some steering control models using a 

combination of CNNs and fuzzy logic face difficulties when 

integrating rule-based systems with deep learning algorithms, 

which deteriorates their accuracy level [13]. The detection 

performance of traffic monitoring systems increases with 

ultrasonic sensors and image processing algorithms, yet 

substantial computing power is required. The implementation 

of urban traffic control recommenders supported by AI and 

decision feedback systems needs proper human oversight in 

order to function effectively [14]. Real-time traffic analysis 

systems using CNNs deliver improved congestion prediction 

through their pre-trained models while maintaining 

dependence on these carefully trained components. The self-

adaptive traffic light control system with YOLOv3 

optimization achieves better timing performances but does not 

apply reinforcement learning methods for ongoing upgrades 

[15].  

The prediction of traffic congestion with recurrent neural 

networks (RNNs) experiences source data bias from social 

media platforms in real time [16]. The performance of 

enhanced YOLOv2 detection models enhances accuracy, but 

their adaptation to new categories needs improvement [17]. 

IoT-driven traffic frameworks enhance congestion control 

performance, although they maintain expensive 

implementation requirements and raise privacy-related issues. 

A complete data merging process that includes extensive 

additional resources alongside computational power is required 

for AI-driven adaptive traffic signal control systems [18]. A 

hybrid traffic management system must be developed for urban 

environments because these environments require real-time 

adaptability, scalability, and enhanced safety and efficiency 

capabilities. 

1.3. Research Motivation 

The motivation behind this study stems from the 

increasing need for intelligent, adaptive, and data-driven traffic 

management solutions in modern cities. Despite rising road 

vehicle numbers, creating systems that forecast traffic 

congestion and generate customized immediate driving 

suggestions depending on density levels, weather conditions, 

and established safety guidelines is essential. The quick rise of 

IoT-enabled smart cities, along with connected vehicle 

technologies, enables opportunities for AI systems to use real-

time sensor data in their decision-making processes. The study 

establishes a connected framework between deep learning 

forecasting techniques and rule-based algorithms to build a 

strong solution platform for traffic safety while improving 

route planning and movement management. 

1.4. Research Significance  

The proposed research makes meaningful advancements 

in the areas of Intelligent Transportation Systems (ITS) and 

Artificial Intelligence-driven traffic management and 

regulation strategies by:  

• A proposed system implements Temporal Convolutional 

Networks as part of its design to boost congested traffic 

predictions while effectively evaluating the effects of 

weather conditions. 



Girija M & Divya V / IJETT, 73(6), 396-416, 2025 

 

398 

• The adaptive capability of decision-making emerges from 

fuzzy logic integration, which duplicates human reasoning 

functions to create intelligent driving suggestions. 

• Speed and routing recommendations change automatically 

through the model to minimize the risks of accidents while 

vehicles face dangerous driving scenarios. 

• The system maintains an efficient real-time deployment 

through its scalable design, which makes it suitable for 

complex urban traffic management. 

1.5. Research Key Contribution 

The following are the research’s main contributions 

• The study implements parking guidance recommendations 

through TCN-based traffic and weather forecasting and 

Fuzzy Logic decision-making algorithms for adaptive 

intelligent systems. 

• The traffic management framework relies on IoT sensor 

data, real-time monitoring systems, and meteorological 

sources for development. 

• When applied to traffic conditions and weather effect 

predictions, the proposed TCN-Fuzzy Logic system 

generates accurate outcomes with 99.7% accuracy 

compared to conventional methods. 

• The system features infrastructure deployment capability 

that enables smart urban cities to obtain real-time traffic 

optimization and scalable operations. 

• The proposed approach is superior to existing traffic 

recommendation models as established through 

comparative evaluations in the study, which enables 

optimal route planning and minimizes travel delays. 

1.6. Research Structure 

This study delivers a complete evaluation of the proposed 

Intelligent Driving Recommendation System through its 

organized structure.  

Section 2 reviews multiple studies on intelligent traffic 

management technologies, deep learning models, and fuzzy 

logic-based decision systems.  

Section 3 (Proposed Methodology) presents Temporal 

Convolutional Networks (TCN) alongside Fuzzy Logic 

integration by describing data acquisition procedures and 

preprocessing methods, the model structure, and the 

implementation of the decision-making framework and 

displays experimental outcomes, performance measurements, 

and system validation alongside comparative assessments of 

the designed system.  

Section 4 delivers a discussion highlighting how result 

interpretations demonstrate better capabilities of intelligent 

driving suggestions. The study summarises its achievements 

under Section 5 (Conclusion and Future Scope). The defined 

methodology provides a clear presentation of results that 

demonstrate its significance for current traffic administration 

systems and intelligent urban implementations. 

2. Literature Review  
In Barreno et al.’s [13] study, an intelligent speed 

adaptation system for cars on traditional roads is offered. In 

order to guarantee passenger comfort and safety, the expert 

system that uses fuzzy logic generates a suggested speed. The 

geometrical characteristics of the road, as well as the drivers’ 

subjective views, are included in this intelligent system. It was 

created and verified using actual measurements made on some 

two-lane highways in the Madrid Region of Spain using an 

instrument set built into a car. The output of the expert system 

determines the optimal speed for the particular type of road, 

taking into account actual elements that may change the road’s 

classification and, therefore, the suitable speed. The technique 

depends on the driver’s subjective selection of characteristics, 

such as their desired degree of comfort. This subjective input 

may not align with the best safety recommendations, resulting 

in variances in the recommended speed that do not always 

emphasize safety entirely. This was problematic if the driver 

preferred greater comfort over caution. 

Dinh and Kim suggested a recommendation system based 

on deep steering neural networks and fuzzy logic [19]. Fuzzy 

logic at a back-end stage functions as natural inferences for 

proposing velocity and adapting new controls for steering, 

while CNNs function as a front-end stage for steering control 

prediction. Using raw sensory data as input, the front-end stage 

employed CNNs to derive steering control predictions, which 

were then forwarded to the back-end stage. The primary duties 

of the back-end stage are to integrate dynamic vehicle data, 

such as steering prediction for enhanced steering control and 

velocity for the autonomous vehicle. The CNN was trained 

using hours of test and training information from the Udacity 

driving datasheet, and MATLAB was used throughout the 

whole system. One drawback of the proposed system is that 

while the simulation results showed better performance 

without using the fuzzy logic system, it highlights a limitation 

in integrating fuzzy logic with the CNN-based model for 

steering control. 

Kheder et al. [20] introduce sensors and the obstacles 

using ultrasonics’ wave time and speed to reduce road 

accidents. The data collected from the sensors and cameras 

using several image processing algorithms are transmitted to 

the cloud and made available for drivers and commuters via a 

mobile application. The proposed models show marked 

improvements in test accuracy. Modified LeNet-5 earned an 

accuracy of 99.12 and 99.78% under the GTSRB and EGTSRB 

datasets, respectively, while the second model trained on the 

LISA dataset compiled an accuracy of 98.6%. Compared to the 

related traffic monitoring systems, the findings of this study 

outperform the closest works by 3.78% in traffic sign 

recognition and by 1.02% in detecting and recognizing traffic 

lights. Ji et al. [14] present a contemporary review of urban 
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traffic control recommendation systems, which describes their 

complete components and demonstrates real-life 

implementation using data-oriented and knowledge-oriented 

methods. It further explores current field problems and possible 

future development challenges. The first step involves a traffic 

perception model that acquires traffic state data to enable the 

traffic prediction model to produce accurate future predictions. 

The traffic control recommender uses these traffic data to 

optimize different levels of traffic signal control. A decision 

feedback system uses the knowledge of traffic engineers to 

approve suitable control strategies, which is an essential 

component of this system. Future developments in this study 

area will determine its future course. The development of 

traffic-related LLMs allows authors to modify traffic 

prediction models to work with mixed traffic data. Decision 

support through AGI will become accessible with less need for 

human resources. 

Pailwan and Jitkar [21] integrate Intelligent Traffic 

Analysis Systems (ITAS) with Convolutional Neural 

Networks (CNN), a deep learning technology that provides 

highly efficient real-time data analysis. This technology, which 

the Intelligent Traffic Analysis Systems use to monitor and 

analyze traffic flow in detail, makes it possible for traffic 

monitoring systems to move carefully. Specifically designed, 

deep learning models for object detection and tracking were 

used to recognize and monitor cars, trucks, and other relevant 

entities in dipped light conditions. THE ITAS has advanced 

data analytics and predictive capabilities embedded into it; it 

can provide real-time insights to authorities on traffic 

conditions, allowing them to make informed decisions and 

implement proactive interventions to alleviate congestion, 

reduce travel times, and improve overall mobility. Instead, 

using transfer learning with several previously-trained models, 

the proposed CNN architecture, modified for traffic analysis, 

has yielded efficient techniques and algorithms to prevent 

traffic jams.  

Khan et al. [15] established a self-adjusting real-time 

traffic light management system based on machine learning 

and image processing techniques to improve signal junction 

traffic flow. By using the YOLOv3 system, the detection of 

vehicles becomes precise. At the same time, the green light 

duration is calculated using real-time traffic parameters, which 

include vehicle count, road width, and junction crossing time. 

The model delivered 81.1% average precision after training 

from various data sources and established successful 

predictions of actual vehicle numbers. The system delivers fast 

operation, low implementation cost, and low hardware 

requirements, enabling simple infrastructure deployment. The 

system’s effectiveness can be enhanced through two 

improvements: reinforcement learning integration for self-

learning abilities and time process reduction. Future system 

versions will benefit traffic management efficiency by 

integrating dedicated high-altitude cameras and special-case 

handling for emergency vehicles such as ambulances. 

Abdullah et al. [22] designed a BRNN that employs GRUs to 

analyze traffic information and determine congestion levels. 

The authors have developed a prediction system for smart city 

traffic congestion through modeling and simulation that 

depends on BRNN (Bidirectional Recurrent Neural Network). 

Traffic congestion impacts every urban area globally, and 

conventional methods to control traffic have not shown 

substantial success. This study presents a BRNN framework as 

a data-based smart city traffic management solution. The traffic 

control system becomes more effective by analyzing current 

sensor data and networked device inputs in real time. Speed 

prediction, weather conditions, water current analysis, and 

accident risk estimation belong to the primary tracking 

methods. Additional traffic-related information retrieval, 

including road and weather elements, has boosted congestion 

prediction capabilities. The model achieved better performance 

than all present techniques for metric-based operation. 

Unreliable social media data and its bias conditions challenge 

obtaining accurate traffic prediction outcomes. Akthar et al. 

[17] present an advanced YOLOv2 vehicle detection method 

that utilizes DenseNet-201 as its feature extractor network 

instead of Darknet-18 for safer small object detection. The 

model demonstrated average precision at 97.51% and mAP at 

81% after its training with 70% Kitti and Kaggle datasets, 

followed by testing with 30% Kitti and Kaggle datasets as well 

as cross-validation using Pascal VOC and COCO datasets. 

This model performed better than previously developed 

models. The dense connection patterns of DenseNet-201 create 

optimized feature extraction conditions, enhancing accuracy in 

bounding box estimation. This compact model operates at high 

speed with exceptional accuracy for recognizing three main 

vehicles: cars, buses, and trucks. Better adaptive mechanisms 

need development to boost accuracy levels in the detection 

process while preparing the technology for abnormal activity 

detection applications. Future work aims to fine-tune the model 

for better performance across object detection scenarios. 

Musa et al. [23] introduce an IoT and Intelligent 

Transportation Systems (ITS)-based sustainable traffic 

management framework that tackles congestion and 

environmental issues in smart cities. AI sensors and ITS-based 

devices collect real-time traffic and road user data, which gets 

processed. Machine Learning alongside cloud computing to 

generate valuable decisions for decision-making, traffic 

forecasting and congestion reduction. The system strengthens 

urban transportation by reducing wasted time, improving 

network planning, and advancing low-environmental footprint 

zones. The system delivers three major benefits: better 

transportation flow, decreased pollution, and better legal 

protection. The system faces difficulties because of its high 

implementation expenses, privacy risks arising from data 

collection, and technical complexity. Upcoming technological 

advancements will develop immediate decision protocols 

alongside AI ecosystem growth to establish more effective and 

environmentally friendly smart city transport systems. 
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Damadam et al. [18] introduce an ATSC system based on 

IoT and AI, which uses Multi-Agent Reinforcement Learning 

to optimize traffic signals for Shiraz City. Public authorities 

used real-time IoT sensor measurements and surveillance 

camera inputs to operate signal phase changes at six street 

intersections in real-time instead of depending on static 

scheduling protocols. Simulation results confirmed that ATSC 

produced reduced waiting times and vehicle queues in artificial 

and Shiraz-based testing environments, especially during peak 

operating periods.  

The system increases traffic performance and 

responsiveness while demanding large-scale data 

combinations and substantial computational power. 

Future development will increase system installation in 

multiple intersections while improving pedestrian safety to 

enhance traffic control. Urban traffic systems become more 

efficient by implementing MARL-based approaches, which 

deliver promising results against congestion reduction.  

Several studies have investigated artificial intelligence for 

traffic management to improve safety standards, traffic 

efficiency, and congestion management abilities. Merging 

fuzzy logic into intelligent speed adaptation systems 

determines the best driving speeds, and deep steering neural 

networks enhance vehicle control activities.  Traffic 

monitoring techniques leverage IoT sensors, image processing, 

and CNN-based models for real-time analysis. System 

optimization in urban traffic flow is achieved through machine 

learning for traffic controls, YOLO vehicle detectors, and 

reinforcement learning algorithms for signalling adaptation. 

The integration of sustainable systems that use IoT alongside 

cloud computing and AI technology generates better 

predictions for congestion while promoting environmentally 

friendly transportation. However, it faces difficulties from 

expensive system development, data processing issues, and 

computational complexity. 

Table 1 demonstrates an assessment of multiple studies 

regarding intelligent traffic management systems that divide 

studies by their approaches, results, and identified drawbacks. 

The field uses methods like fuzzy logic, deep learning (CNN, 

YOLO, BRNN), reinforcement learning and IoT-based 

systems for traffic optimization, vehicle detection, and traffic 

signal control improvement.  

Several important findings demonstrate how congestion 

prediction systems became more precise while adaptive signal 

control mechanisms showed progress and vehicle recognition 

achieved higher accuracy levels. The implementation faces 

challenges because it demands high processing power and 

raises privacy issues, which limit its effectiveness and require 

better built-in learning capabilities. The comparison details 

fundamental information about current approaches and their 

advantages and disadvantages. 

Table 1. Comparative analysis of related works in intelligent traffic management 

Author Method Findings Limitations 

Barreno et al., 

[13] 

Fuzzy Logic-based Intelligent 

Speed Adaptation System 

Generates speed recommendations 

based on road geometry and driver 

input. 

Subjective input may not 

align with best safety 

practices. 

Dinh and Kim 

[11] 

CNN and Fuzzy Logic for 

Steering Control 

Enhances steering control by 

integrating CNN predictions with 

fuzzy logic. 

Performance was better 

without fuzzy logic 

integration. 

Kheder et al. 

[20] 

Ultrasonic Sensors and LeNet-5 

for Traffic Monitoring 

Achieved 99.78% accuracy in traffic 

sign and light recognition. 

High computational demand 

and cloud dependency. 

Ji et al. [14] 
Traffic Control System with AI 

and Decision Feedback 

Optimizes urban traffic signals using 

predictive analytics. 

Requires significant traffic 

engineer input. 

Pailwan & 

Jitkar [21] 

CNN-based Intelligent Traffic 

Analysis System 

Provides real-time traffic insights for 

congestion reduction. 

Transfer learning requires 

extensive pre-trained models. 

Khan et al. [15] 
YOLOv3-based Adaptive 

Traffic Light Control 

Achieved 81.1% accuracy in 

estimating vehicle counts. 

Needs reinforcement learning 

for further self-learning. 

Abdullah et al. 

[22] 

Bidirectional Recurrent Neural 

Network (BRNN) for Traffic 

Prediction 

Improves congestion prediction 

using real-time sensor data. 

Social media data may 

introduce bias and 

inaccuracies. 

Akthar et al. 

[17] 

YOLOv2 with DenseNet-201 for 

Vehicle Detection 

Achieved 97.51% precision in 

detecting small vehicles. 

Needs improvements for 

classification accuracy. 

Musa et al. [23] 
IoT & Machine Learning for 

Smart Traffic Management 

Reduces congestion and emissions 

using AI-driven decision-making. 

High implementation costs 

and data privacy concerns. 

Damadam et al. 

[18] 

Multi-Agent Reinforcement 

Learning (MARL) for Traffic 

Signals 

Reduced queue lengths and waiting 

times in peak hours. 

High computational demand 

for real-time implementation. 
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3. Methodology 
The methodology of this study involves developing an 

Intelligent Driving Recommendation System (IDRS) that 

integrates Temporal Convolutional Networks (TCN) and 

Fuzzy Logic for real-time traffic and weather optimization. The 

process starts with data collection from IoT sensors, real-time 

monitoring systems, and meteorological sources, followed by 

preprocessing techniques such as normalization, outlier 

detection, and categorical encoding. TCN models are then 

trained to forecast congestion levels and weather severity. A 

fuzzy inference system generates adaptive driving 

recommendations based on predicted conditions. The system 

dynamically adjusts speed limits, route planning, and safety 

measures to optimize traffic flow and reduce travel delays.  

Performance evaluation involves simulation-based 

experiments that compare the proposed approach with 

benchmark models, including LightGBM, CNN, and RFCNN, 

based on accuracy, precision, recall, and F1-score. The 

proposed TCN-Fuzzy Logic model is expected to outperform 

existing methods in predicting road conditions and enhancing 

driving recommendations.  

The study contributes to AI-driven traffic management, 

emphasizing efficiency, road safety, and sustainable intelligent 

transportation networks. Future extensions may involve 

integrating edge computing for real-time data processing, 

enhancing computational efficiency, and optimizing decision-

making algorithms for intelligent driving assistance. 

 
Fig. 1 Overall workflow of TCN-Fuzzy logic 

In Figure 1, the workflow starts with Data Collection 

followed by Data Preprocessing, including data cleaning, 

Frame Extraction and Frame resizing, and other processes. A 

Temporal Convolutional Network framework, along with 

dilated convolutions, allows the prediction of traffic flow, 

congestion risks, and accident probabilities through its model 

of capturing extended temporal connections.  

Real-time driving recommendations originate from the 

Fuzzy Logic-Based Decision-Making System using predefined 

rules based on the data the predictions provide. The system 

output recommends route choices, speed recommendations, 

and traffic guidelines; the performance metrics determine 

model efficiency. 

3.1. Data Collection 

The proposed study collected data for fundamental road 

safety elements and traffic operational conditions. The study 

documented various parameters such as speed levels coupled 

with weather elements, road traffic density, infrastructure 

design timing of day and accident gravity rates. This study’s 

point of view uses two unique datasets, which functioned both 

as exploratory tools for the traffic accident environment and as 

modeling instruments. The first dataset consisted of secondary 

resources and secondary sources, namely the CADP dataset 

[24], totalling 1,416 film clips that showed various traffic 

accident types.  

The incidents were recorded through third-person video 

footage from CCTV cameras. A total of 5.2 hours of traffic 

accident records exists within this data set that contains 366 

frames on average for each film.  

The data was sourced from real-time monitoring systems, 

public datasets, and weather APIs, ensuring that conditions 

such as high traffic density during rainy mornings or low traffic 

density on highways were accurately captured. Table 2 shows 

the samples of the accident dataset. 
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Table 2. Accident dataset samples 

Speed Weather Condition Traffic Density Road Structure Time of Day Accident Severity 

19 Rainy High Four Lane & Above Afternoon High Risk 

90 Overcast Low Surfaced W.B.M Afternoon Low Risk 

21 Windy Moderate Less than 2 Lane Morning Low Risk 

39 Rainy Moderate Surfaced B.T/C.C Night Moderate Risk 

100 Windy Moderate Surfaced B.T/C.C Evening Low Risk 

3.2. Data Preprocessing  

The data preprocessing involves handling two datasets to 

ensure data quality and model efficiency. First, raw data 

undergoes cleaning, addressing missing values and 

inconsistencies. Then, frame extraction and resizing 

standardize video data, while structured storage ensures 

efficient retrieval. For the CADP dataset, outlier detection is 

performed to remove anomalies, followed by normalization 

and scaling to standardize numerical values. Similarly, the real-

time dataset undergoes data cleaning, outlier removal, and 

feature scaling. These preprocessing steps enhance model 

accuracy, ensuring optimal input for the proposed intelligent 

driving recommendation system. 

3.2.1. Data Preprocessing Steps for CADP Dataset 

The data preprocessing steps for the CADP dataset involve 

cleaning, normalization, and outlier detection to ensure data 

reliability and consistency. Initially, missing values and 

inconsistencies are handled through data cleaning. Outliers are 

identified and removed to enhance model accuracy. Finally, 

normalization and scaling techniques standardize data 

distributions, improving the efficiency and performance of the 

proposed intelligent driving recommendation system. 

Frame Extraction 

The Intelligent Driving Recommendation System (IDRS) 

requires frame extraction as its essential data preprocessing 

operation, which converts recorded traffic surveillance videos 

into static images for study purposes. The video sampling 

process uses a determined frame rate between 5 to 10 frames 

per second to capture meaningful motion data without 

unnecessary repetition. The motion-based extraction technique 

focuses on active video elements that improve the 

representation of events in the data. The frame extraction 

method creates organized storage directories, which improve 

the accessibility of images for forthcoming data processing 

operations and training routines [25]. 

 Frame Resizing 

 A deep learning model requires standard input images 

through the essential preprocessing technique known as frame 

resizing in data preparation. The procedure standardizes frame 

dimensions and makes the calculations easier to process 

without compromising essential features [26]. The proposed 

model performs traffic and weather data processing through 

frame resizing operations, establishing a fixed image 

dimension resolution. 

 
Fig. 2 Video processing pipeline for CADP data preprocessing 

Figure 2 displays a surveillance video processing sequence 

for security systems. Video surveillance leads to frame 

extraction procedures for obtaining essential footage moments.  

The processed frames receive systematized storage 

distribution for quick access needs. Recent image analysis 

frameworks need frame resizing to standardize dimensions 

before beginning advanced learning processes. 

3.2.2. Data Preprocessing Steps for Real-Time Dataset 

The data preprocessing steps for the real-time dataset 

involve cleaning, outlier detection, and normalization to 

enhance data accuracy and consistency. Initially, missing 

values and inconsistencies are addressed. Outlier detection 

removes erroneous data points, while normalization scales data 

for uniformity. These steps optimize the dataset for efficient, 

intelligent driving recommendation system processing. 

Data Cleaning 

The technique used to impute missing values, such as key 

factors, meant substitution. The mean was computed based on 

the current weather and traffic conditions. This approach has 

the merit of preserving relevant data while simultaneously 

avoiding the bias that results from obtaining data from only one 

viewpoint. Any row with more than 10% missing values or 

other discrepancies that could not be argued to have been taken 

reasonably was dropped from the dataset to avoid any 

distortion of results. 

 Outlier Detection and Removal 

For continuous numerical data, outliers were detected 

using a z-score method where values having a z-score more 

than a cut-off (for example, more than 3) were considered 

outliers. These have been scrutinized to consider them as real 

‘rare events’ in the dataset or as mere anomalies and, therefore, 

Video 

Surveillance 

Frame 

Extraction 

Organized 

Storage 
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Resizing 
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possibly disposed of [27]. By avoiding outlying data, the above 

process made figuring out more realistic, thereby arriving at 

better predictions. 

 Normalization and Scaling 

All the continuous variables were identified and 

normalized with the help of Min-Max normalization to scale 

the data between 0 and 1. This process brought about 

standardization of the dataset to avoid any skewed feature 

dominating the outcome; optimized learning efficiency and 

generalization were also achieved to improve the model’s 

accuracy [28]. Min-max normalization is represented in the 

Equation (1) 

𝑍𝑛𝑜𝑟𝑚 =
𝑍−𝑍𝑚𝑖𝑛

𝑍𝑚𝑎𝑥−𝑍𝑚𝑖𝑛
 (1) 

Especially useful when features have different scales, this 

normalization strategy keeps consistency across the features 

and improves the machine learning model’s performance 

during training. Figure 3 The illustration presents essential 

procedures for preparing real-time datasets during data 

preprocessing operations. Data cleaning initiates the process 

before outlier detection, improving data quality through 

removal. Normalization and scaling follow data cleaning to 

help standardize the dataset, thus improving model 

effectiveness. 

 
Fig. 3 Data preprocessing steps for real-time datasets 

3.3. Deep Learning Model for Traffic and Weather 

Prediction 

The proposed study aims to develop an intelligent driving 

recommendation system by accurately predicting real-time 

traffic congestion and weather severity. Temporal 

Convolutional Networks (TCN) are employed as the primary 

deep learning architecture due to their ability to model long-

range dependencies in time-series data while maintaining 

computational efficiency. The system consists of two key 

predictive modules [29]:  

3.3.1. Traffic Prediction Module Using TC 

The traffic prediction model estimates congestion levels 

by processing information from historical and current data 

observations. The main input characteristics for the model 

include the measurements of speed alongside traffic density, 

road structure information, and time-of-day context.  

Dilating the convolutional layers in TCN allows the model 

to detect long-range traffic dependencies, including peak-hour 

congestion and weekend traffic behaviour patterns. The traffic 

prediction system organizes traffic conditions into three 

defined congestion sections: Low, Medium and High.  

For a given input sequence 𝐼𝑓, the TCN-based congestion 

prediction is defined in the Equation (2), 

𝑌𝑡̂ = 𝑓(𝑊 ∗ 𝐼𝑓 + 𝑏) (2)  

The prediction model calculates (𝑌𝑡̂ ) by multiplying 𝑊 

against 𝐼𝑓 and adding bias term 𝑏. Each output neuron in the 

model obtains information from extensive regions through the 

dilated convolution process to identify brief and extended 

dependencies within traffic datasets. 

 
Fig. 4 Temporal Convolutional Network (TCN) architecture for time-series forecasting  
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Figure 4 depicts the structural design of TCN architecture 

that applies dilated convolutions on various time step levels. 

The green section at the base represents the input features, 

whereas the above red layer and purple upper layer show 

convolutional processing with extended receptive fields  (𝑑 =
1, 𝑑 = 2). The final produced 𝑦𝑡  value uses its ability to detect 

extended temporal connections in time-series information to 

make predictions. 

3.3.2. Weather Prediction Using TCN 

The TCN model receives an attention modification to 

emphasize essential weather transform dynamics in weather 

forecasting situations. This helps the model assign higher 

importance to extreme conditions like heavy rainfall or strong 

winds directly impacting road safety. The input features for this 

module include weather conditions, wind speed, rain intensity, 

temperature, and humidity. The model classifies weather 

severity into Normal, Moderate, and Severe levels. The 

attention-enhanced TCN model applies a weighting 

mechanism to each feature, represented in the Equation (3), and 

(4) 

𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝛼𝐼𝑓) (3) 

𝑌𝑡̂ = ∑ 𝛼𝑡,𝑖𝑓(𝑊 ∗ 𝐼𝑓,𝑖 + 𝑏)𝑛
𝑖=1  (4) 

Where, 𝛼𝑡 is the attention weight assigned to each weather 

feature, 𝑊𝛼 is the attention weight, 𝐼𝑓  represents input weather 

data, and, 𝑌𝑡̂  is the predicted weather severity at time 𝑡. The 

model dynamically prioritizes influential weather factors by 

incorporating attention, improving prediction accuracy. The 

dataset is split into 80% training and 20% testing sets to ensure 

reliable model performance. The Adam optimizer minimizes 

the error during training, dynamically adapting learning rates 

for better convergence. The loss function applied is Mean 

Absolute Error (MAE), given in the Equation (5), 

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑌𝑡̂ − 𝑌𝑖 ∣̂𝑛

𝑖=1  (5) 

Where, 𝑌𝑖 is the actual congestion or weather severity, 𝑌𝑖̂ 

is the predicted value, and 𝑛 is the number of samples. 

3.4. Rule-based Decision System Using Fuzzy Logic 

The Rule-Based Decision System is a vital link that 

merges current traffic information from the TCN model with 

pre-established driving rules from the user database. Adaptive 

decision-making happens through fuzzy logic within this 

system to enable flexible reasoning in uncertain conditions. 

Traditional rules-based decision systems experience failure 

when processing unprecise or imprecise input data, including 

multiple levels of traffic congestion or weather conditions. The 

implementation of fuzzy logic solves this problem by replacing 

absolute values with truth value degrees. The membership 

functions for congestion evaluation (𝐶𝑡) and weather severity 

assessment (𝑊𝑡) are described in the Equation (6), 

𝜇𝐶𝑡
= {

1,
𝐶ℎ𝑖𝑔ℎ−𝑥

𝐶ℎ𝑖𝑔ℎ−𝐶𝑙𝑜𝑤
,

0,

𝑥 ≤ 𝐶𝑙𝑜𝑤

𝐶𝑙𝑜𝑤 < 𝑥 < 𝐶ℎ𝑖𝑔ℎ

𝑥 ≥ 𝐶ℎ𝑖𝑔ℎ

 (6)  

Where, 𝐶𝑙𝑜𝑤 , and 𝐶ℎ𝑖𝑔ℎ  represent threshold values for 

congestion levels. Similarly, the weather severity function is 

given in Equation (7), 

  𝜇𝑊𝑡
(𝑦) = {

1,
𝑊𝑠𝑒𝑣−𝑦

𝑊𝑠𝑒𝑣−𝑊𝑛𝑜𝑟𝑚
,

0,

𝑦 ≤ 𝑊𝑛𝑜𝑟𝑚

𝑊𝑛𝑜𝑟𝑚 < 𝑦 < 𝑊𝑠𝑒𝑣

𝑦 ≥ 𝑊𝑠𝑒𝑣

 (7)  

Flexible traffic and weather recommendations emerge 

from the membership values between 0 and 1. 

Decision Rules and Fuzzy Inference System (FIS) 

Real-time congestion and weather severity evaluation 

relies on IF-THEN fuzzy rules, which enable the system to 

function in the 𝑔𝑒𝑡𝐴𝑙𝑙𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠() method., such as 

IF 𝐶𝑡 > 80%  AND 𝑊𝑡 > 50𝑚𝑚 /hr, THEN it is an 

alternative route. 

IF 𝐶𝑡 < 40%  AND 𝑊𝑡  is clear, THEN it is the fastest 

route. 

IF 𝐶𝑡  is high AND visibility (fog) is below threshold, 

THEN it is a speed reduction. 

The fuzzy inference system provides output 

recommendations defuzzied into crisp values to generate 

traffic rerouting and driving adjustment instructions. 

3.4.1. Deployment Strategy 

The model integrates with a cloud-based API to securely 

execute real-time retrieval of traffic and weather data for 

deployment. Predictive models get hosted on cloud servers 

through Cloud-Based Model Hosting as part of the deployment 

strategy for real-time continuous updates. The Docker 

containers within a containerized architecture system enable 

easy deployment capabilities across multiple platforms through 

their scalable nature.  

Mobile Application Interface: A mobile application 

provides real-time driving recommendations based on evolving 

traffic and weather conditions. Using cloud computing and 

containerization, the system achieves high availability, low 

latency, and scalability to handle dynamic real-world traffic 

scenarios effectively. Algorithm 1 shows the Real-Time 

Traffic and Weather Monitoring working.  

Figure 5 outlines the Fuzzy Inference System (FIS) 

process, starting with crisp input data, which is converted into 

fuzzy values through fuzzification. 
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Fig. 5 Fuzzy Inference System (FIS) flowchart 

The system then accesses the knowledge base and 

evaluates IF-THEN fuzzy rules using the inference engine. The 

fuzzy output is checked for conversion into crisp values; if not, 

membership functions are adjusted.  

Once converted, the system generates a crisp output, 

completing the process. This structured approach ensures 

accurate decision-making in fuzzy logic-based applications. 
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Algorithm 1: Intelligent Driving Recommendation System 

(IDRS) for Real-Time Traffic and Weather Monitoring 

Input: Real-time and historical traffic/weather data. 

Output: Optimized driving recommendations.  

              Clean and preprocess the dataset 

              Split into training (80%) and testing (20%) for 

predictive modeling 

TCN-based Forecasting Loop 

While True:            

      Check If the TCN model is Learning correctly; 

      If model performance is poor:  

      Tune hyperparameters;  

Train TCN model;  

       Forecast traffic and weather conditions;  

Evaluate prediction accuracy;  

        If stopping criteria are met: 

break; 

4. Result and Discussion 
A comprehensive study examines the performance of a 

TCN-Fuzzy Logic-based driving recommendation system 

when operated in different meteorological situations. The study 

findings indicate that clear atmospheric conditions enable 

drivers to follow a recommended 80 km/h speed. However, 

temperatures and storms force the speed limit to be reduced to 

30 km/h. Safety alerts peak when the environment becomes 

hazardous, especially in heavy rain, leading to 40% of alerts.  

Weather deterioration leads to performance deterioration 

in the system, which reduces accuracy from 99.7% under clear 

conditions to 88.3% in stormy weather. The implementation of 

adaptive routing improves travel time to 32 minutes while 

decreasing congestion by 29% from 45 minutes.  

During stormy weather, drivers show the most extensive 

speeding violations, driving 20% faster than the suggested 

limits. Despite its ability to modify recommendations, the 

system encounters difficulties when users do not follow them 

in practice. The system requires additional time to respond 

when faced with heavy traffic conditions, with waiting periods 

stretching from 150 to 450 milliseconds, depending on the 

congestion level. The system improves road safety and 

efficiency and necessitates ongoing development for better 

weather condition accuracy and real-time responsiveness. 

4.1. Impact of Weather Conditions on Driving 

Recommendations 

This section examines weather-related impacts on driving 

decisions through TCN-Fuzzy Logic system analysis. Under 

typical circumstances, the system functions at 80 km/h speed 

but lowers to 60 km/h when rain appears. It further reduces to 

40 km/h in fog situations and 30 km/h during storms.  

The system generates maximum safety alerts, which reach 

40% during heavy rain sessions, though the number of alerts 

stays at 4% during clear weather days. The accuracy level of 

the model decreases significantly as weather conditions 

deteriorate from clear to stormy conditions, resulting in a drop 

from 99.7% to 88.3%. Similar variations occur between the 

metrics of precision and recall. The system shows high 

adaptability, yet future development needs to improve its 

reliability to function properly in dangerous environmental 

conditions. 

 
Fig. 6 Driving speed recommendation in various scenarios  
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Figure 6 demonstrates the specified driving limits that 

depend on weather and traffic situations. The system tells 

drivers to drive at 80 km/h under clear weather with little 

traffic. The proposed speed recommendation system decreases 

patrol vehicle speed according to deteriorating conditions, 

from medium traffic in rain to high traffic in fog and heavy 

traffic in storms. Environmental conditions drive the model to 

choose dynamic speed ranges to keep journeys safe. Safety 

alerts are measured at different environmental conditions 

according to Figure 7. The system produces safety alerts most 

often during heavy rain situations followed by fog conditions, 

which trigger alerts at a rate of (25%). In comparison, 

conditions of snow and strong winds result in (12%) of alerts, 

and the system triggers alerts only (4%) during clear weather. 

Through its immediate warning responses during dangerous 

environmental conditions, the system helps attract driver 

attention effectively and thus results in improved safety 

benefits for traffic conditions. Figure 8 illustrates performance 

fluctuations of the model as weather conditions deteriorate 

through precision, accuracy, and recall of data points under 

different conditions. The model operates at 99.7% accuracy 

under clear conditions, yet its performance is lower by 88.3% 

when the weather becomes stormy. The model demonstrates 

declining correct optimistic predictions as it experiences a 

decrease from 98.5% (clear) to 83.5% (stormy). The detection 

ability of actual positives through recall reduces from 97.2% to 

85.0% in the model. The prediction reliability falls rapidly 

when road conditions and visibility worsen, according to the 

data shown in the graph. Results indicate the necessity of 

implementing strong weather adaptation to driving 

recommendation systems for preserving reliable performance 

under adverse weather conditions. 

 

Fig. 7 Safety alert frequency vs environment conditions 

 
Fig. 8 Impact of weather conditions on model performance: accuracy, precision, and recall trends 
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4.2. Adaptive Speed and Route Recommendation 

Performance 

This part assesses how adaptive speed and route 

recommendations enhance trip efficiency. The optimized path 

selection emerges from adaptive routing, which minimizes 

congestion levels and strengthens traffic management. 

Software implementation reduces travel time by 29% while 

cutting the duration from 45 to 32 minutes. According to speed 

comparison data, drivers tend to go beyond recommended 

speed limits, which leads to accident risks, especially during 

stormy weather conditions. The study demonstrates how 

adaptive traffic systems with recommendable speed limits 

jointly enhance traffic system efficiency and safety alongside 

decreased travel delays across different environmental settings. 

The simulation results showing different route 

recommendation scenarios are presented in Figure 9. The 

illustration depicts short-distance pathways through purple 

dashed lines along with the features of additional routes and 

long-distance pathways. The system depicts an intelligent path 

selection system that optimizes recommendations for enhanced 

traffic management and congestion reduction through distance 

efficiency principles. Users need to understand which aspects 

of the recommended routes the model will adjust to offer better 

driving options. An examination of the simulation 

demonstrates that the combination of the TCN-Fuzzy Logic 

model provides effective routing recommendations that work 

for real-world transportation systems. 

 
Fig. 9 Simulation result of route recommendation with various distances 

Table 3. Travel time reduction with adaptive routing 

Scenario 
Average Travel 

Time (min) 

Congestion 

Reduction (%) 

Without Adaptive 

Routing 45 0 

With Adaptive 

Routing 32 29 

 

Table 3 highlights the impact of adaptive routing on travel 

efficiency. The existence of adaptive routing does not lead to 

any reduction in congestion or decrease in the overall average 

travel duration to 45 minutes. By implementing adaptive 

routing, the time needed for travel becomes 32 minutes, so 

congestion levels decrease by 29%. Adaptive routing 

successfully optimizes traffic flow through congestion 

reduction while improving entire transport efficiency, making 

it a key strategy to minimize travel times in urban traffic 

hotspots. Figure 10 shows the distinction between travel time 

duration when adaptive routing is present or absent during the 

commute.  

The figure shows two travelling durations: without 

adaptive routing, the average travel reaches 45 minutes through 

the red bar, while adaptive routing cuts the time to 32 minutes 

through the green bar. The 29% decrease in travel time 

represents significant progress in congestion control when 

adaptive routing adjusts routes for better efficiency. Real-time 

conditions serve as a basis for adaptive routing systems that 

actively modify existing routes, resulting in better travel 
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efficiency while reducing overall delays. Adaptive routing 

emerges as a vital approach because its effectiveness becomes 

clear through visual comparisons of the two-time intervals, 

which result in a 29% improvement in congestion reduction 

benefits urban mobility systems alongside individual 

travellers. 

 
Fig. 10 Travel time reduction with adaptive routing 

Table 4. Comparison of speed recommendations table 

Weather 

Condition 

Recommended 

Speed (km/h) 

Actual 

Speed 

(km/h) 

Speed 

Deviation 

(%) 

Clear 80 82 +2.5% 

Rainy 60 65 +8.3% 

Foggy 50 55 +10.0% 

Stormy 40 48 +20.0% 

 

Different weather conditions result in different driving 

speed comparisons, according to Table 4. The actual driving 

speed in ideal weather conditions remains near 80 km/h and 

deviates no more than +2.5% from the recommendation, thus 

demonstrating very low-risk potential. During rainy weather, 

the driver’s speed reaches 65 km/h, thus surpassing the 

recommended 60 km/h limit by +8.3% because drivers 

commonly underestimate hazards on slippery roads.  

During heavy fogs, drivers sustain an average 55 km/h 

speed while facing a +10.0% deviation, thus potentially 

increasing safety hazards because of limited driving visibility. 

Windstorms present the riskiest situation because drivers 

maintain a speed of 48 km/h, which exceeds the recommended 

40 km/h limit by +20.0% and increases safety hazards from 

severe weather conditions and slippery roads. 

4.3. System Latency and Real-Time Processing Efficiency 

This segment evaluates the system latency and real-time 

processing efficiency using different computing methods and 

traffic loads. Response time extends from 150 ms to 450 ms as 

traffic levels increase because of congestion issues. Edge 

computing outperforms cloud computing in terms of response 

speed; however, it requires more computational power. Table 

5 illustrates how the model responds with slower times as 

traffic demands grow higher. The response time measures 150 

ms when traffic remains low but grows to 200 ms when traffic 

becomes medium. When traffic reaches heavy volumes, the 

system requires 325 ms to respond, but the response time rises 

to 450 ms under the most severe conditions. High traffic 

density is associated with greater system performance 

deterioration, causing extended delays and diminished 

effectiveness when dealing with high computational demands. 

Table 5. Model response time under different traffic loads 

Traffic Load Response Time (ms) 

Low 150 

Medium 200 

High 325 

Extreme 450 

Figure 11 illustrates the Model Response Time Under 

Different Traffic Loads, showing how response time increases 

as the traffic load intensifies. The plot features traffic load 

intensity as the x-axis value while Response Time (ms) is the 

y-axis measurement. During low traffic periods, the system 

responds in 150 ms, while at medium traffic, this time extends 

up to 200 ms. High traffic conditions enable response time to 

reach 325 ms until extreme loads reach a 450 ms peak. The data 

shows how response time steadily increases as traffic intensity 

grows because congestion directly affects system operational 
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performance. The system performance requires efficient 

resource allocation techniques because growing demand leads 

to network delays, which hinder optimal operation in different 

traffic scenarios. Table 6 demonstrates that Edge Computing 

delivers faster processing times (180 ms) than Cloud 

Computing (420 ms), with Edge devices handling 70% of 

computational tasks compared to Cloud Computing systems 

which process only 40% of the workload. Edge computing 

routines respond faster than cloud computing routines by 

delivering results within 180 milliseconds, yet cloud 

computing takes 420 milliseconds to produce similar 

outcomes. The heavy computational workload reaches 70% of 

local devices when utilizing this method, while cloud 

computing operates with reduced distributed loads at 40%.  

 

Fig. 11 Model response time under different traffic loads 

Table 6. Processing time comparison (Edge vs. Cloud) 

Processing 

Method 

Average 

Response Time 

(ms) 

Computational 

Load (%) 

Edge 

Computing 
180 70 

Cloud 

Computing 
420 40 

 

4.4. Confusion Matrix 

 
Fig. 12 Confusion matrix 

Figure 12 illustrates the confusion matrix plot and offers 

an intuitive display of how well the model classifies traffic 

conditions by congestion level (e.g., Low, Medium, High).  

Every cell in the matrix corresponds to the number of 

actual and predicted classes, so it is possible to spot where the 

model performs best and where it gets misclassified.  

The number of correct predictions along the diagonal is 

high for good model performance, and off-diagonal elements 

show particular misclassification patterns. This examination 

legitimizes the model’s reliability and provides areas for 

possible enhancement in classification accuracy. 

4.5. Ablation Study 

Figure 13 shows an ablation study of individual and joint 

contributions of TCN and Fuzzy Logic to the system’s 

performance.  

Though the TCN-only and Fuzzy Logic-only models 

obtained decent scores (accuracy of 95.8% and 90.3%), the 

combined TCN-Fuzzy Logic model outperformed them 

significantly on all counts.  

This indicates that the hybrid integration adds predictive 

accuracy, reliability in decision-making, and overall system 

strength. 
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Fig. 13 Ablation study 

4.6. Performance Evaluation 

The evaluation demonstrates that the model achieves high 

accuracy, precision, and recall when forecasting traffic 

situations and weather conditions. External comparisons reveal 

that the model performs better than current methods while 

delivering rapid, dependable, and adaptive real-time driving 

suggestions. 

Accuracy: The accuracy measure assigns the model the 

ability to correctly predict traffic and weather conditions to 

produce reliable and effective driving recommendations. 

Accuracy derived in Equation (8).                   

Accuracy  =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8)     

Where 𝑇𝑃 is the true positive, 𝐹𝑃 is the false positive, 𝑇𝑁 

is the true negative, and 𝐹𝑁 is the false negative of this model.  

Table 7. Performance comparison with existing model 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

score 

(%) 

Light- 

GBM [30] 
87.97 87 81 83 

CNN [31] 92 90 91 90 

RFCNN 

[32] 
99.1 97.4 93.0 94.0 

Proposed 

TCN-Fuzzy 

Logic 

99.7 95.3 97.2 96.5 

 
Table 7 shows that the suggested TCN-Fuzzy Logic model 

performs better than all considered approaches, with the 

highest accuracy (99.7%), reflecting better overall prediction 

robustness. Although RFCNN has high precision (97.4%), the 

suggested method retains better balance with larger recall 

(97.2%) and F1-score (96.5%), providing consistent detection 

of meaningful traffic and weather conditions. Meanwhile, such 

models as LightGBM and CNN have poorer performance in all 

metrics, testifying to the efficiency of integrating temporal 

forecasting and fuzzy decision-making. 

Precision: The model’s precision determines its ability to 

detect real traffic situations and weather conditions, thus 

reducing incorrect positive alerts during driver 

recommendations. The precision derived in Equation (9),   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

Recall: The recall metric evaluates the correct 

identification of genuine traffic incidents and weather 

conditions by the driving recommendation system to reduce 

misdiagnosis cases. The recall derived in Equation (10), 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

F1 score: The combination of precision and recall in the 

F1 score establishes a complete indicator to measure model 

efficiency in effective traffic and weather condition 

predictions. The F1 score derived in Equation (11), 

F1score =  
2×𝑇𝑃

(2×𝑇𝑃)+𝐹𝑃+𝐹𝑁
 (11) 

The performance metrics of the TCN-Fuzzy Logic model 

appear in Table 7, which shows its strong capabilities. The 

model demonstrates 99.7% accuracy in its overall performance 

assessment. The model effectively combats false positives 

through 95.3% precision and identifies the most relevant cases 

because of its 97.2% recall value. The F1-score is evaluated at 
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96.5% to demonstrate precision and recall, resulting in solid 

prediction capabilities. Figure 14 illustrates the performance 

metrics of the TCN-Fuzzy Logic model, showcasing Accuracy, 

Precision, Recall, and F1 Score. Accuracy achieves the highest 

value at 99.7%, indicating excellent overall model correctness. 

Precision, at 95.3%, reflects the model’s reliability in 

minimizing false positives. Standing at 97.2%, recall highlights 

its effectiveness in identifying relevant instances. The F1 

Score, at 96.5%, balances precision and recall, ensuring 

optimal performance. The graph demonstrates the model’s 

robust predictive capabilities, with minimal deviation among 

metrics, confirming its suitability for complex classification 

tasks. The high accuracy suggests effective handling of 

positive and negative cases, while the high recall ensures the 

detection of true positives. The consistency across metrics 

signifies a well-balanced system that efficiently classifies data, 

making it a strong candidate for real-world applications 

requiring precise decision-making. 

 

Fig. 14 Performance metrics of TCN-fuzzy logic 

Table 8. Performance measures of TCN-fuzzy logic  

Metrics Values (%) 
Accuracy 99.7 
Precision 95.3 

Recall 97.2 
F1 score 96.5 

 

 
Fig. 15 Performance comparison of TCN-fuzzy logic with existing models 
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The performance evaluation in Table 8 shows how the 

TCN-Fuzzy Logic model tops other existing approaches in its 

outcomes. Light-GBM and CNN demonstrate 87.97% and 

92% model accuracy, respectively. RFCNN demonstrates 

better accuracy than other systems at 99.1% yet fails to achieve 

high Recall and F1-score levels. The proposed TCN-Fuzzy 

Logic model provides the best performance with accuracy 

reaching 99.7%, precision at 95.3%, recall at 97.2%, and F1-

Score at 96.5%, thus proving its superiority in generating 

intelligent driving recommendations. 

Figure 15 visually compares the performance metrics of 

different models, including Light-GBM, CNN, RFCNN, and 

the proposed TCN-Fuzzy Logic. The TCN-Fuzzy Logic model 

achieves the highest accuracy (99.7%) and strong performance 

in precision (95.3%), recall (97.2%), and F1 score (96.5%), 

outperforming all other models. Light-GBM exhibits the 

lowest recall (81%) and F1 score (83%), while CNN shows a 

balanced improvement with 92% accuracy and 90% precision. 

RFCNN performs better than CNN and Light-GBM, achieving 

99.1% accuracy and 97.4% precision. The TCN-Fuzzy Logic 

model surpasses RFCNN, significantly improving Recall and 

F1 scores. The graph highlights the superiority of the TCN-

Fuzzy Logic model, making it an optimal choice for achieving 

high accuracy and reliability in classification tasks. 

4.7. Robustness against Edge Cases and Limitations 

Table 9 summarizes the level of user satisfaction for Route 

Accuracy, Safety Recommendations, and System Usability 

based on survey responses. Across each category, most users 

have either Very Satisfied or Satisfied ratings, and there is a 

noticeable difference in the Very Satisfied percentage for 

Route Accuracy (40%) compared to Saw Recommendations 

(~30%), indicating users are less satisfied with the 

recommendations. There are two groups of Neutral Responses, 

in the range of 15-20%, and Dissatisfied and Very Dissatisfied 

ratings for all survey items, which were low in the range 

between 5-7%. The feedback indicated that user satisfaction 

levels were positive across each category. 

Table 9. User satisfaction levels across different system features 

Satisfaction 

Level 

Route 

Accuracy 

(%) 

Safety 

Recommendations 

(%) 

System 

Usability 

(%) 

Very  

Satisfied 
40 30 35 

Satisfied 35 40 35 

Neutral 15 20 20 

Dissatisfied 5 7 7 

Very 

Dissatisfied 
5 3 3 

 

 
Fig. 16 User satisfaction analysis 

Figure 16 analyses user satisfaction based on survey 

feedback for Route Accuracy, Safety Recommendations, and 

System Usability. The stacked bar plots are classified into five 

levels: Very Satisfied (dark green), Satisfied (light green), 

Neutral (yellow), Dissatisfied (orange), and Very Dissatisfied 

(red). Users of the system indicated that Route Accuracy and 

System Usability have a higher proportion of users who are 

very satisfied compared to Safety Recommendations, which 

have a lower level of satisfaction. The Neutral category 

responses are relatively consistent across the three items rated, 

while the Displeased and Very Displeased responses are small 

but largely noticeable in response to Safety Recommendations. 

The legend to the right of the graph clarifies the colour-coded 

categories of satisfaction levels. Overall, the graph 

demonstrates that most users are satisfied with the system’s 

performance, except for Safety Recommendations, where 

users were comparatively less satisfied. This may identify 

meaningful and applicable points where user experience could 

be augmented, even relying on system accuracy. 
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Table 10. Failure cases and system response 

Failure 

Scenario 

Detection 

Accuracy Drop 

(%) 

System 

Recovery Time 

(s) 

Sensor 

Malfunction 
12.5 2.5 

Extreme 

Congestion 
8.3 3.8 

Adverse Weather 10.1 4.1 

 

Table 10 displays how different failure scenarios influence 

system performance regarding detection accuracy drop and 

system recovery time. A malfunctioning sensor causes the 

most sensitive detection accuracy drop of 12.5%, yet the 

system recovers fairly quickly in 2.5 seconds.  

Extreme congestion causes a lower sensitivity detection 

accuracy drop of 8.3%, yet it takes longer to recover at 3.8 

seconds because it indicates the system experiences longer 

processing. Adverse weather causes a 10.1% detection 

accuracy drop and appears to recover the slowest at 4.1 

seconds, which implies that weather significantly impacts 

system stability.  

Overall, this reinforces that different system failures lead 

to detection accuracy drops. However, as seen from the 

recovery time, the system is resilient to failures since detected 

failures experience a lower accuracy drop; a corrupted sensor 

can be the most troubling factor in accuracy. 

Table 11. Accuracy drop due to failure scenarios 

Failure Scenario Accuracy Drop (%) 

Sensor Malfunction 12.5 

Extreme Congestion 8.3 

Adverse Weather 10.1 

 

Table 11 illustrates the elements of varying failure 

scenarios affecting system accuracy. Sensor malfunction had 

the maximum drop (12.5%) as the most critical component of 

system performance, followed by extreme congestion (8.3%) 

that affected reliability under heavy traffic conditions, next to 

adverse weather (10.1%), representing environmental 

conditions. These factors impact robust resilience in a system. 

Figure 17 illustrates how different failure scenarios affect a 

decision’s accuracy, as measured by the percentage decrease in 

accuracy. The largest drop in accuracy, 12.5%, was caused by 

a sensor malfunction, indicating that system performance 

highly depends on the sensors that function. The second largest 

was extreme congestion, which resulted in an 8.3% drop in 

accuracy. There is a strong suggestion that conditions of heavy 

traffic impact system reliability, but nowhere near as 

dramatically as the effects experienced by sensor malfunction. 

Other Failures include adverse weather, which caused a 10.1% 

drop in accuracy. The results point to the significant 

implications of environmental factors that affect the 

performance of the decision-making system. Overall, the 

findings of this study suggest how robust a system must be to 

mitigate better sensor failure, congestion or disruptive effects 

of weather changes to be more reliable when making decisions. 

 
Fig. 17 Impact of sensor malfunction on decision accuracy 

4.8. Discussion 

The enhanced performance of the suggested Intelligent 

Driving Recommendation System (IDRS) is due to its hybrid 

integration of Temporal Convolutional Networks (TCNs) and 

Fuzzy Logic, which remedies shortcomings witnessed in the 

literature. In contrast to the common CNN or RNN models that 

perform poorly on long-range temporal dependencies or need 

large training datasets, TCNs efficiently capture sequential 

traffic and weather trends with superior temporal accuracy. 

This capability improves prediction performance for dynamic 

0

2

4

6

8

10

12

14

Sensor Malfunction Extreme Congestion Adverse Weather

A
cc

u
ra

cy
 D

ro
p

 (
%

)

Impact of Sensor Malfunction on Decision Accuracy



Girija M & Divya V / IJETT, 73(6), 396-416, 2025 

 

415 

conditions, particularly during extreme congestion or sudden 

weather changes. Fuzzy logic also brings a rule-based 

reasoning system replicating human judgment, providing 

sophisticated responses to uncertain or imprecise inputs like 

partial congestion or varying visibility. Current research, e.g., 

using CNN-fuzzy hybrids, proved performance deterioration 

due to the complexity of combining learning-based and rule-

based systems. Conversely, our system has a modular 

architecture that facilitates smooth interaction between TCN 

predictions and fuzzy logic inference. Experimental outcomes 

support this, having a 99.7% prediction accuracy and 29% 

reduced travel time over models such as LightGBM, CNN, and 

RFCNN in terms of robustness and flexibility. Adding real-

time IoT sensors and edge computing adds to responsiveness 

and scalability. These innovations combined result in a more 

efficient and responsive driving recommendation system. 

5. Conclusion 
This work proposes an Intelligent Driving 

Recommendation System (IDRS) that combines Temporal 

Convolutional Networks (TCN) and Fuzzy Logic to provide 

optimal real-time driving recommendations depending on 

traffic and weather. The system accurately predicts traffic 

jams, adaptively updates speed recommendations, and 

optimizes route planning for safer and more efficient road 

driving. Experimental findings report 99.7% accuracy in traffic 

and weather predictability, a 29% decrease in travel time, and 

better decision-making under conflicting situations.  

It outperforms classical rule-based models and models 

powered by Artificial Intelligence by registering more 

adaptability and efficiency rates under real traffic situations. It 

enhances road security, reduces bottlenecks, and increases trip 

efficiency, further rendering it broadly usable in self-driving 

vehicles, intelligent cities, and intelligent road networks. 

However, computational complexity and performance in 

extreme weather conditions pose challenges that must be 

addressed. Computational Load is a limiting factor even as 

edge computing speeds up response time. Mitigating these 

constraints will ensure the system’s robustness for large-scale 

deployment in heterogeneous urban settings. Future work will 

target improving model flexibility through reinforcement 

learning to support self-improving driving suggestions. 

Additional improvement of computational efficiency via 

hybrid edge-cloud processing will enhance real-time response 

rates. Also, including high-resolution satellite imaging and 

real-time vehicle data will make traffic forecasts more 

accurate. Enhancing the system to include pedestrian flow 

analysis and collision detection algorithms will make roads 

safer. 
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