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Abstract 

 In the banking sector, safeguarding sensitive financial transactions is critical 

to maintaining customer trust and regulatory compliance. Cybersecurity threats, 

ranging from data breaches to unauthorized access, necessitate robust protective 

measures. However, the majority of research places a strong emphasis on vertex 

dominance in security networks while ignoring the importance of edge defense for 

overall security, also hypercube and grid structures are not considered. Furthermore, 

conventional studies have ignored the potential of hypercube and grid graph structures 

in enhancing security measures. Hence this research proposed a secure vertex-edge 

domination (SVED) in hypercube and grid graphs, exploring their applications in 

optimizing cybersecurity measures for secure transaction monitoring. Moreover, 

develop a Hidden Markov Model (HMM) framework to enhance the detection of 

anomalous activities within these graph structures. This algorithm efficiently computes 

the minimum number of security agents required to monitor transaction flows, thus 

reducing vulnerabilities. This research not only fills a critical gap in existing network 

security methodologies but also proposes a novel framework for protecting complex 

networks from evolving cyber threats, thereby advancing the frontier of cybersecurity 

and mathematical graph theory. 

Keywords: Secure Vertex-Edge Domination, Hypercube graphs, Grid graphs, Graph 

theory, Cybersecurity threats, Secure Transaction  

I.    Introduction  

Digital banking becoming a norm in modern-day banking systems, and 

financial institutions must secure the transaction process. The rapid proliferation of 

online and mobile banking services has opened an exponentially larger attack surface 

for cybercriminals. Cyber threats have evolved in targeting banking infrastructures 

from traditional risks, such as phishing and unauthorized access, to more advanced 

techniques, including man-in-the-middle attacks, malware, and ransomware. These 
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attacks not only undermine individual accounts but also pose an ever greater threat to 

the system in general. With such interconnectivity of many nodes, including ATMs, 

point-of-sale, internet banking, and mobile banking, transaction monitoring has been 

brought to the forefront as an extremely critical function. While requiring real-time 

processing, transactions must also be securely maintained with the sensitive assets of 

customers. With such heightened risks, there are strong measures of cybersecurity that 

have surfaced to actively detect, prevent, and mitigate fraud activities [Angel, Uma, et 

al., (2023, October); Alzoubi, Ghazal, et al.,(2022 May); Majeed and Rauf, (2020)]. 

The architecture of modern banking networks presents unique challenges for 

transaction security. Unlike centralized systems, where a single point of failure can be 

defended using traditional security measures, the distributed nature of banking 

infrastructures requires more advanced, multi-layered security strategies. Each node in 

the network, whether it is an ATM, a digital wallet, or an online banking interface 

represents a potential vulnerability. To safeguard against cyber threats, security 

frameworks must protect both the transaction endpoints and the connections that link 

them. This requires a more dynamic approach, combining real-time monitoring, 

anomaly detection, encryption, and access control mechanisms to secure the entire 

financial ecosystem [Zhang, Wang, et al.,(2023 November); Stanikzai, Shah, (2021 

December)]. A particularly promising approach to securing banking transactions is the 

use of advanced graph-theoretic techniques. By modeling the banking network as a 

graph, with nodes representing transaction points and edges representing 

communication links, graph theory allows for deeper analysis of vulnerabilities. One 

specific area of focus is on SVED, a concept that provides insights into the strategic 

placement of cybersecurity measures, such as firewalls, intrusion detection systems, 

and transaction monitoring algorithms, to ensure comprehensive protection. SVED 

aims to not only monitor and control each node in the network but also ensure the 

security of the communication channels between nodes, thereby creating multiple 

layers of defense against cyberattacks [Zhang, Liu, (2020 March); Al-Alawi, and Al-

Bassam, (2020)]. 

I.i  Background 

While traditional cybersecurity strategies in banking have concentrated on securing 

individual devices and databases, the broader challenge lies in securing both the 

vertices (transaction points) and the edges (data transmission paths) in the network. 

This dual focus ensures that even if a single node or connection is compromised, there 

are redundancies and backups in place to maintain transaction integrity. Moreover, as 

banking institutions continue to evolve and adopt cloud-based solutions, peer-to-peer 

payment systems, and other digital innovations, the need for scalable, secure 

monitoring mechanisms becomes increasingly crucial. Despite the advances in 

transaction monitoring and cybersecurity, there remain gaps in the application of graph 

theory, particularly in the context of various models [Wang, Zhang, et al.,(2021); 

Chelvam, and Sivagami, (2021)]. These graph structures, which are vital for 

representing complex, multidimensional transaction networks, have yet to be fully 

explored in terms of their potential to enhance security in banking. Hypercube graphs, 

with their high scalability and efficiency, are especially relevant for multi-channel 

banking systems that handle vast amounts of data in real-time. Similarly, grid graphs, 
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commonly used in sensor networks and geographical applications, provide new 

perspectives on monitoring and securing distributed banking infrastructures [Kulli, 

(2016); Boutrig, Chellali, et al.,(2016); Sahin, and Sahin, (2020); DeVivo, Hladky, 

(2024); Angel, Arputhamary, et al.,(2021 February); Golubev, (2020)].  

Dumitrescu et al. [Dumitrescu, Băltoiu, et al.,(2022)] highlight the importance of 

detecting bank clients involved in suspicious activities through transaction graphs, 

employing innovative features derived from reduced egonets and random walks to 

enhance anomaly detection. Similarly, Wang and Zhu [Wang, Zhu, (2022)] propose a 

graph-based behavioral identification paradigm that integrates property-level 

associations into behavioral modeling, demonstrating the versatility of graph theory in 

addressing cybersecurity challenges across various domains. The lack of 

comprehensive studies on SVED in these graph models presents an opportunity for 

further research. By extending domination strategies to protect both nodes and edges 

in banking networks, cybersecurity frameworks are strengthened to guard against 

sophisticated threats, ensuring that digital transactions remain secure and fraud is 

swiftly detected and mitigated.  

I.ii.    Objective of this research  

The objective of this paper is as follows. 

• To design a new cybersecurity framework that employs Secure 

Vertex-Edge Domination (SVED) on hypercube and grid graphs to enhance secure 

transaction monitoring in banking systems. 

This research will bridge the gap between theoretical graph-based security models and 

practical banking applications, providing financial institutions with an effective toolset 

to defend their transactions against cyber threats. The paper's content is planned as 

follows: The preliminaries are shown in section 2, the proposed solution and theorems 

are given in section 3, applications of the proposed algorithm are given in section 4, 

and the paper is concluded in section 5. 

II.    Preliminaries 

This section defines the most important terms and concepts used in graph-

based representations, particularly directed toward the study of SVED in Hypercube 

and Grid Graphs. 

The Graph 

A graph 𝐺 = (𝑈, 𝐹) is a mathematical structure used to model pairwise relationships 

between objects. The set 𝑈 consists of vertices (or nodes), and 𝐹 consists of edges, 

which represent connections between pairs of vertices. An edge 𝑒 = {𝑣, 𝑤} is said to 

be incident to vertices 𝑣 and 𝑤. Graphs are widely used to model various types of 

networks, such as communication networks, transportation systems, and distributed 

computing systems. 
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Hypercube Graph 

A hypercube graph 𝑆𝑛 is an n-dimensional graph where each vertex corresponds to a 

binary string of length 𝑛. Vertices 𝑛 and 𝑣 are connected by an edge if and only if their 

binary strings differ by exactly one bit. The hypercube is highly symmetric and has 

2𝑛 vertices and 2𝑛−1𝑛 edges. Hypercube graphs are commonly used in parallel 

computing systems and network models due to their balanced structure and high fault 

tolerance. They are also referred to as n-cubes. 

Grid Graph 

A grid graph 𝑀𝑎,𝑏 is a graph whose vertices correspond to points in a two-dimensional 

lattice of size 𝑎 × 𝑏, where 𝑎 and 𝑏 are the numbers of rows and columns, respectively. 

Each vertex in the grid graph is connected to its immediate neighbors, forming a mesh-

like structure. Grid graphs are widely used to model physical layouts, sensor networks, 

and distributed systems. They consist of 𝑎𝑏 vertices and typically 2𝑎𝑏 − 𝑎 − 𝑏 edges 

(for interior points connected to four neighbors, and fewer for edge points). Grid graphs 

are commonly used to model two-dimensional network topologies, such as sensor grids 

and urban networks. 

Domination Set 

A dominating set 𝐷 ⊆ 𝑈 of a graph 𝐺 is a subset of vertices such that every vertex 𝑣 ∈
𝑈 ∖ 𝐷 is adjacent to at least one vertex 𝑣 ∈ 𝐷. In other words, all vertices in 𝐺 are either 

in 𝐷 or are neighbors of vertices in 𝐷. The domination number 𝛾(𝐺) is the minimum 

size of such a dominating set. The domination concept is widely used in resource 

optimization problems, where certain nodes (vertices) must control or cover the 

network efficiently. 

Secure Domination 

Assume that the basic graph 𝐺 has order 𝑛. If each vertex in 𝑈 − 𝐻 is next to a vertex 

in 𝐻, then {𝐻} ⊆ 𝑈 is a dominant set of 𝐺. Graph 𝐺 shows a stable dominating set 𝐻 

is a dominant set with the characteristic of being next to each vertex 𝑣 ∈ (𝑣– 𝐻) so that 

(𝐻 − {𝑣}) ∪ ({𝑤}) is a dominating set. The secure domination number, represented by 

𝛾𝑠(𝐺), is the minimal cardinality of a secure dominating set of 𝐺.  

Secure Vertex-Edge Domination 

A dominating set {𝑆𝑒𝑣} ⊆ 𝑈(𝐺) of a graph 𝐺 is said to be an SVED set of 𝐺 if, for all 

edges, then there exists a vertex 𝑦 ∈ {𝑆𝑒𝑣} such that 𝑦 defends the edge 𝑒. That is, a 

vertex in {𝑆𝑒𝑣} defends the edges incident on that vertex and the edges which are 

adjacent to that incident edges. A SVED set {𝑆𝑒𝑣} of a graph 𝐺 is a dominating set with 

the property that each vertex 𝑧 ∈ 𝑈– {𝑆𝑒𝑣} is either adjacent to a vertex or a vertex 

adjacent to the incident edges of 𝑧, 𝑦 ∈ {𝑆𝑒𝑣} such that ({𝑆𝑒𝑣} − {𝑦}) ∪ ({𝑧}) is a 

dominating set. The SVED Number, denoted by 𝛾𝑠𝑒(𝐺), is the minimum number of 

vertices in an SVEDS for the graph 𝐺.  
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III.     Proposed work  

This section presents the concept of SVED in the context of hypercube and 

grid graphs, with applications aimed at enhancing cybersecurity in banking systems for 

secure transaction monitoring. The following Figure 1 illustrates the network of the 

banking transaction system. 

 

Fig. 1. Network of banking transaction system 

As banking infrastructures become increasingly trusting to process financial 

transactions, protecting these systems from cyber threats is important. SVED offers a 

comprehensive security framework, ensuring that both the transaction nodes (e.g., 

ATMs, banking servers, user devices) and the communication links between them are 

safeguarded. This study explores the secure domination number for n-dimensional 

hypercubes and grid graphs, establishing a mathematical framework to optimize the 

allocation of security resources, such as encryption systems and intrusion detection 

mechanisms, for secure financial transactions. 

Secure Vertex-Edge Domination in Hypercube Graphs 

This section describes the definition of SVED on hypercube graphs as it relates to a 

very important factor concerning enhancing security in banking against cyber threats. 

Hypercube graphs, due to their high dimensionality and scalability, serve as a powerful 

model for banking systems that require robust security across multiple transaction 

channels. This concept ensures that not only are the vertices (representing transaction 

nodes) adequately monitored, but that each selected vertex is also supported by at least 

one adjacent vertex, thereby providing redundancy and enhancing the reliability of 

transaction validation. This section presents a formal definition and theorem related to 

SVED in hypercube graphs, followed by proof establishing its significance in securing 

transaction nodes and safeguarding the integrity of financial operations. The 

Hypercube Graph is shown in the following Figure 2.  
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Fig. 2. Hypercube Graph 

Theorem 3.1: 

For an 𝑛-dimensional hypercube 𝑆𝑛, the SVED number 𝛾𝑠𝑒(𝑆𝑛), is given by: 

𝛾𝑠𝑒(𝑆𝑛) = 2𝑛−1 

Proof : 

Let 𝐺 = 𝑆𝑛  be the hypercube with  2𝑛 vertices and the number of edges of the 

hypercube graph is given by 2𝑛−1𝑛.  To secure the edges of 𝑆𝑛, need to identify a subset 

of vertices (transaction nodes) that monitors all edges while ensuring that each selected 

vertex is supported by at least one adjacent vertex. This promises that each transaction 

is validated by its neighboring nodes, providing redundancy and enhancing security. 

The dominating set must thus cover both direct edge connections and ensure 

redundancy through neighboring vertices. 

To prove this theorem, mathematical induction is used for any n-dimensional 

hypercube: 

Base Case (𝒏 = 𝟏): For a 1-cube (a single edge), the secure domination number is 

𝛾𝑠𝑒(𝑆1) = 21−1 = 1. This holds. 

To prove the result for any 𝑛: Assuming for 𝑛 = 𝑘, 

𝛾𝑠𝑒(𝑆𝑘) = 2𝑘−1                for 𝑛 = 𝑘 + 1 

This means for the 𝑘-dimensional hypercube, there exists an SVED set with a size 

2𝑘−1. We need to prove that  𝛾𝑠𝑒(𝑆𝑘+1) = 2𝑘. 

The n-dimensional hypercube 𝑆𝑘+1 is constructed as two copies of 𝑆𝑘 with 

corresponding vertices in the two subgraphs connected by an edge. By the induction 

hypothesis, each 𝑆𝑘 has an SVED set of size 2𝑘−1. To extend this to 𝑆𝑘+1, we need to 

ensure that the dominating set for the additional edges connecting the two copies of 𝑆𝑘 

also satisfies the security condition. A SVED set for 𝑆𝑘+1 is constructed by taking two 

secure dominating sets from each 𝑆𝑘 subgraph, ensuring that all vertices and connecting 

edges are securely dominated. Thus, the total number of secure vertices needed for 

𝑆𝑘+1 is: 
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𝛾𝑠𝑒(𝑆𝑘+1) = 2(𝑘+1)−1 = 2𝑘. 

Therefore, by the principle of mathematical induction conclude that, for any n-

dimensional hypercube SVED for 𝑆𝑛 is,  

𝛾𝑠𝑒(𝑆𝑛) = 2𝑛−1   for all 𝑛 ≥ 1 

In practical applications, implementing SVED in hypercube-based banking networks 

allows financial institutions to mitigate vulnerabilities, ensuring comprehensive 

monitoring and robust protection against cyber threats. The integration of SVED in 

hypercube graphs into HMM for secure transaction monitoring establishes a robust 

framework that enhances the security of banking transactions. By providing a 

systematic approach to validate transactions through a dominant set of vertices, this 

method addresses the increasing challenges posed by cybersecurity threats in the 

financial sector.  

The HMM serves as a crucial algorithm in this approach to optimizing cybersecurity 

through SVED. The HMM is particularly effective for modeling sequences of observed 

data where the underlying system is not directly visible, which aligns well with the 

nature of banking transactions. 

Algorithm 3.1:  SVED of 𝑺𝒏, Algorithm 

Input: An 𝑛-dimensional hypercube graph 𝑆𝑛 

Output: A SVED set 𝑆𝑒𝑣  for 𝑆𝑛 

1. Initialization: 

 Define the hypercube graph Sn based on the number of transaction nodes. 

Set 𝑆𝑒𝑣 = ∅. 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}(Set of vertices in 𝑆𝑛) 

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛 ⋅ 2(𝑛 − 1)} (Set of edges in 𝑆𝑛) 

HMM parameters: States, observations, transition probabilities, emission 

probabilities. 

 2. Vertex Selection 

 For each vertex 𝑣𝑖∈ 𝑉  

  a. Use HMM to determine the chance of 𝑣𝑖 being part of the 

secure dominating set based on transaction history. 

b. If 𝑣𝑖 is a transaction node, add it to 𝑆𝑒𝑣 

 For each 𝑣𝑖∈ 𝑆𝑒𝑣  

  Identify adjacent vertices 𝐴(𝑣𝑖)such that 𝐴(𝑣𝑖) = (𝑣𝑗 ∈ 𝑉|(𝑣𝑖, 𝑣𝑗) ∈ 𝐸} 

Ensure that for each edge ((𝑣𝑖 , 𝑣𝑗) either 𝑣𝑖 or 𝑣𝑗 is included in 𝑆𝑒𝑣 based 

on their HMM probabilities. 
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3. Ensure complete edge coverage 

 For each edge 𝑒 ∈ 𝐸 

  If 𝑒 is not dominated by any vertex in 𝑆𝑒𝑣: 

  Select an appropriate vertex from 𝐴(𝑣𝑖) based on HMM output and add 

it to 𝑆𝑒𝑣  to ensure coverage. 

 Continuously monitor transaction patterns using the HMM: 

  Update transition and emission probabilities based on real-time 

transaction data. 

  Adapt the SVED set 𝑆𝑒𝑣 

4. Termination Condition 

 If all edges in 𝐸 are dominated 

 Exit the loop. 

5. Return  

 Return the SVED Set (𝑆𝑒𝑣) and Validated transactions. 

Incorporating SVED from hypercube graphs, enhances the robustness of 

HMMs by ensuring that transaction validations are supported by a secure and redundant 

network of nodes, represented as vertices in the hypercube graph. 

Example 3.1: SVED for 𝑺𝟒 

 

Fig. 3. 𝛾𝑠𝑒(𝑆4) = 8 

The 4-dimensional hypercube 𝑆4 has 16 vertices and 32 edges, which is shown in 

Figure 3. According to the formula: 

𝛾𝑠𝑒(𝑆4) = 24−1 = 23 = 8 

Thus, 8 critical nodes are required to securely dominate the entire network, ensuring 

that every communication link between transaction endpoints is protected. This level 

of efficiency in security resource allocation is particularly beneficial for high-

dimensional banking systems that handle large volumes of transactions across multiple 

channels. 
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Secure Vertex-Edge Domination in Grid Graphs 

Grid graphs are a suitable framework for implementing strong monitoring strategies 

due to their structured connectivity and predictable routing paths. SVED enhances the 

threat detection and resource allocation process by optimizing the choice of vertices 

and edges for surveillance. This will ensure continuous monitoring of all financial 

transactions and minimize vulnerabilities while strengthening the overall security 

architecture of banking networks. Figure 4 shows the structure of the grid graph. 

 

Fig. 4. Grid graph of (𝑀8,8) 

Theorem 3.2:  

Let 𝑀𝑎,𝑏 be a grid graph where 𝑎 is the number of rows and 𝑏 is the number of columns. 

The SVED number 𝛾𝑠𝑒(𝑀𝑎,𝑏) is the smallest amount of vertices required for each edge 

of a graph to be either incident to a dominated vertex or next to an edge that is incident 

to a dominated vertex. 

𝛾𝑠𝑒(𝑀𝑎,𝑏) = {

𝑎𝑏

2
, 𝑖𝑓 𝑎𝑏 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑎, 𝑏 ≥ 2

𝑎𝑏 + 1

2
, 𝑖𝑓 𝑎𝑏 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑎, 𝑏 ≥ 2

 

Proof: 

Case (i): Let 𝑎𝑏 be even  

If 𝑎𝑏 is even and 𝑎 = 𝑏 = 2. A possible SVED set is {𝑣11,𝑣22}, which secures both 

vertices and all edges incident to them, then the SVED number 𝛾𝑠𝑒(𝑀2,2) = 1  

Assume the theorem holds for all 𝑘 × 𝑘 grids where 𝑘 ≤ 𝑎 and 𝑘 ≤ 𝑏. Now consider 

𝑀𝑎,𝑏 where 𝑎 and 𝑏 are both even.  Each selected vertex will dominate its adjacent 

edges. In a checkerboard pattern, each dominated vertex will cover its four neighboring 

edges, effectively covering multiple edges with fewer vertices. The total number of 

vertices in a checkerboard pattern is 
𝑎𝑏

2
 because: For an even 𝑎 and 𝑏, there are 

exactly 
𝑎𝑏

2
 dominated vertices. Thus, we conclude that 𝛾𝑠𝑒(𝑀𝑎,𝑏) =

𝑎𝑏

2
 when ab is 

even. 
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Case (ii): Let 𝑎𝑏 is odd. 

Assume the theorem holds for all 𝑘 × 𝑘 grids where 𝑘 ≤ 𝑎 and 𝑘 ≤ 𝑏. Now consider 

𝑀𝑎,𝑏 where 𝑎, 𝑏 is odd:   

Since 𝑎𝑏 is odd, let’s calculate how many secure vertices are required to cover all 

vertices optimally: Place secure vertices in a checkerboard pattern to maximize the 

number of dominated vertices. For each 2𝑥2 block of the grid, we place two secure 

vertices to cover four vertices. Similar to the even case, divide the grid into 

two subgrids, with one additional row and column. Each of the four subgrids 

requires 
(𝑎−1)(𝑏−1)

2
. Consequently, the minimum number of vertices required in the 

SVEDS to achieve SVED for 𝑀𝑎,𝑏 When ab is odd is 𝛾𝑠𝑒(𝑀𝑎,𝑏) =
𝑎𝑏+1

2
. 

Therefore, the SVED number of a grid graph 𝑀𝑎,𝑏 depends on whether the product ab 

is even or odd. The domination number is 
𝑎𝑏

2
 when ab is even, and 

𝑎𝑏+1

2
 when ab is odd.  

The theorem states that the SVED number of a grid varies with the parity of its 

dimensions a and b. Each case has been proven based on the structure of the grid and 

the selection of dominators, ensuring coverage of all vertices and edges in 𝑀𝑎,𝑏.  

Example 3.2: SVED for 𝑴𝟒,𝟒 

 

Fig. 5. 𝛾𝑠𝑒(𝑀4,4) = 8 

The grid 𝑀4,4 consists of 4 rows and 4 columns, resulting in a total of 16 vertices and 

24 edges, which is shown in Figure 5. To determine the SVED number 𝛾𝑠𝑒 for this grid, 

we can apply the theorem 3. According to the theorem: 

𝛾𝑠𝑒(𝑀4,4 ) =
𝑎𝑏

2
=

4 × 4

2
=

16

2
= 8 

This demonstrates that in the grid graph 𝑀4,4, selecting secure vertices in a 

checkerboard pattern allows us to dominate all vertices and edges effectively. This 

configuration ensures that each vertex placed dominates its adjacent edges effectively. 

Each of the chosen vertices covers its four neighboring edges, thus securing multiple 

edges with each selected vertex. Therefore, the theorem holds for 𝑀4,4 and the SVED 

number is indeed 8. This efficient allocation of secure vertices is important in 
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enhancing the security of banking networks, ensuring that all transaction pathways are 

continuously monitored and protected. 

To further enhance the effectiveness of the SVED strategy, the HMM framework is 

introduced. HMMs are statistical models that represent systems with hidden states and 

continuous values. This concept is applied in modeling dynamic behaviors of vertices 

and edges, using an HMM, while treating data of observed traffic patterns, transaction 

frequencies, or other metrics relevant to security monitoring. The following algorithm 

2 utilizes an HMM framework to optimize the selection of vertices and edges for SVED 

in grid graphs. 

Algorithm 2: SVED of 𝑴𝒂,𝒃 Algorithm 

Input: A grid graph 𝐺 = 𝑀𝑎,𝑏where 𝑎 is the number of rows and 𝑏 is the 

number of columns. 

Output: A SVED set 𝑆𝑒𝑣 

Initialization: 

 a. Define the grid graph 𝑀𝑎,𝑏 with dimensions 𝑎 and 𝑏. 

b. Set 𝑆𝑒𝑣 = Ø 

c. Create an HMM model 𝐻 with states representing the vertices and edges 

of the grid. 

d. Initialize transition and observation probabilities based on the grid 

structure. 

Model Training  

 a. Train the HMM using historical data. 

b. Determine the transition probabilities 𝑃(𝑠𝑖 → 𝑠𝑗) between vertices. 

c. Establish emission probabilities 𝑃(𝑒𝑘 ∣ 𝑠𝑖) for observing specific 

threats from each vertex. 

Select Secure Vertices: 

 For each vertex 𝑣𝑖 in 𝑀𝑎,𝑏 

  a. Calculate the expected coverage of adjacent edges based on 

the HMM predictions. 

  b. If a vertex covers more than one edge, mark it as a candidate 

for 𝑆𝑒𝑣. 

Construct the Dominating Set 

 If 𝑎𝑏 is even 

  secure vertices in a grid such that 𝑆𝑒𝑣 contains 𝑎𝑏/2 vertices. 

 If 𝑎𝑏 is odd 

  secure vertices in a grid such that 𝑆𝑒𝑣 contains 
𝑎𝑏+1

2
 vertices 
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Validate Coverage: 

 For each edge 𝑒𝑖 in 𝑀𝑎,𝑏 

  a. Check if 𝑒𝑖 is either incident to a vertex in 𝑆𝑒𝑣 or adjacent to 

an edge incident to a vertex in 𝑆𝑒𝑣. 

  b. If any edge is uncovered, adjust 𝑆𝑒𝑣 by adding additional 

vertices based on HMM predictions. 

Return  

 Return the set 𝑆𝑒𝑣 as the result of the algorithm. 

The algorithm concludes with an SVED set, 𝑆𝑒𝑣  that maximizes coverage while 

minimizing vulnerabilities in the grid graph 𝑀𝑎,𝑏. This approach ensures continuous 

monitoring and enhances the security architecture of banking networks.  

IV. Application  

The proposed SVED algorithm offers the following applications practically to 

the banking sector. By utilizing the structural properties of these graphs, the algorithm 

effectively identifies a set of transaction nodes that ensures comprehensive monitoring 

and redundancy. This is crucial for safeguarding sensitive financial transactions against 

cyber threats, such as fraud and data breaches. The integration of HMMs enables 

dynamic adaptation to evolving transaction patterns and threat landscapes, allowing for 

real-time adjustments in security measures. Furthermore, the algorithm facilitates 

efficient resource allocation, ensuring that critical network components are consistently 

monitored without excessive overhead. By employing SVED, financial institutions can 

bolster their defense mechanisms, thus maintaining the integrity and confidentiality of 

transactions. Additionally, the methodology is extended to various banking 

applications, including fraud detection, risk assessment, and compliance monitoring, 

making it an adaptable tool in the dominion of cybersecurity. Overall, this approach is 

a positive way of addressing flaws in banking networks, thus promoting trust and 

security in financial operations. 

V. Conclusion 

This paper, introduced the concept of SVED in hypercube and grid graphs, 

which identify minimal SVED sets. As cyber-attacks are posing threats to financial 

transactions, this framework ensures the optimum choice of vertices and edges such 

that it can strongly monitor and validate transaction nodes. Also, the focus is on the 

unique properties of hypercube and grid graphs, both of which are highly relevant for 

complex, multidimensional banking systems and real-time transaction processing. The 

integration of HMM further strengthens the framework by allowing for adaptive 

monitoring based on real-time transaction data Also explore the implications of this 

work findings on real-world applications, particularly in securing communication 

infrastructures. This work puts the foundation for future research in graph theory and 

cybersecurity, providing a robust practice for the defense of transactions in banking 

systems. 
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