
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

109

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99880881019/19©BEIESP

DOI: 10.35940/ijitee.J9988.0981119

Journal Website: www.ijitee.org

Detecting Features Inconsitency in Cross-Platform

Applications
C.Shanthi, K.Sharmila, J.Jebathangam, R.Devi

 Abstract: The development of mobile computing has offered

rise to a differing set of computing platforms. Customers utilize

these distinctive stages for both personal and business exercises,

for example, banking, shopping and so on. The developers of

mobile computing faces many challenges which includes

numerous versions of operating systems and thousands of devices

which various in screen sizes.While developing mobile

applications, the application engineers have to determine APIs of

a home stage (e.g., Windows Phone), and consequently create

forms of the application for different target stages (e.g., iOS and

Android).Because of this cross platform application development

is a striking issue for programming engineers who need to pitch

to clients regardless of which platform they run (Windows, Mac

or Linux).

 Keywords: Mobile Application, Cross Platform, Inconsistency,

Android, iOS

I.INTRODUCTION

Maximum number of mobile devices is operated on

Android, iOS or Windows 10; these are generally known as

operating systems or platforms. The three types of mobile

application namely native application, web application and

hybrid application. Native applications are created to aim

one particular platform like android, iOS or Windows.

Mobile web applications are developed for web applications

to deliver pages on web browsers which are getting operated

in mobile devices. Hybrid applications have been developed

to aim multiple Cross platforms mobile applicationsThe

major dispute in developing Hybrid/cross platform mobile

applications for interoperability through multiple platforms

is to retain the developed application consistent across

different platforms. The next frequent issue in a cross-

platform mobile application is to identify the missing

features among the applications which are developed for

different platforms. The application developers should check

the developed mobile application on each and every

platform independently and physically executing screen-by-

screen assessment and detecting many inconsistencies in

cross-platforms. But it is very difficult, time consuming and

moreover it might have errors.

Manuscript published on 30 September 2019.
*Correspondence Author(s)
Dr.C.Shanthi, Associate Professor, School of Computing Sciences,

VISTAS.

Dr.K.Sharmila, Associate Professor, School of Computing Sciences,
VISTAS.

J.Jebathangam, Assistant Professor, School of Computing Sciences,

VISTAS.
R.Devi, Assistant Professor, School of Computing Sciences, VISTAS.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

II. LITRETURE SURVEY

The problem of solving multiple user interfaces started a

while

Fig. 1. Overview of the Technique

ago, however, to date actual insufficient effort is available

for mobile devices explicitly in the literature. Mattia Fazzini

and Alessandro Orso (2017) suggested DIFFDROID, an

innovative method that assistances developers to discover

inconsistencies in native mobile applications. DIFFDROID

syndicates contribution generation and discrepancy testing

to assess the performance of an application on different

platforms and identifies possible inconsistencies Choudhary

et al. (2014) developed a technique to examine the client-

server communication and network traces of different

versions of a web application to match features across

platforms. A.Mesbah and M. R. Prasad (2011) found an

automated solution for the problem of cross-browser

compatibility testing of modern web applications as a

'functional consistency' check of web application behavior

across different web browsers. Their method involves

mechanically examining the assumed web application under

dissimilar browser surroundings and taking the behavior as a

finite-state machine and formally comparing the generated

models for equivalence on a pair wise-basis and exposing

any observed discrepancies. L. Wei, Y. Liu, and S.C.

Cheung (2016) have reported a technique named FicFinder

to detect compatibility issues in Android applications. .

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.J9988.0981119&domain=www.ijitee.org

Detecting Features Inconsitency in Cross-Platform Applications

110

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99880881019/19©BEIESP

DOI: 10.35940/ijitee.J9988.0981119

Journal Website: www.ijitee.org

III. DETECTING FEATURES INCONSITENCY

This technique recognizes and coordinates the highlights of

a cross-platform mobile application by examining the

customer server correspondence that happens when the

mobile application is utilized on the distinctive platforms. At

a higher level, the technique operates in four major steps: (1)

to verify the traces of the system contact among the client

and server of various platform-specific versions of a cross

platform mobile applications, (2) to find each traces and

unique states in the model as a sequence , (3) to recognize a

division of these traces as feature instantiations, (4) to match

the feature sets recognized for each and every platform-

specific version of the cross platform mobile application

which is used to recognize 78 matched and lost features ,and

different functionality of applications across versions, (5) to

create a image of the different models, finding the detected

data inconsistencies.The Fig 1 shows the overview of the

featCHECK. It captures the activities of the Android and

iOS application running on two unique stages and various

Shapes have been captured for the two platforms discretely.

It can be an obviously expressed model or can be the

runtime trace of the mobile application. At this point,

reasonable captured data is then compared over numerous

platforms and can prompt both matched and unmatched

behavior over the platforms. Which matches the number of

edges and unique states in the shapes of the mapping

features.

A. featCHECK

The featCHECKis used for exactly identifying matched and

un-matched features finding in cross platform mobile

application. Figure 1 gives a high-level vision of the

technique used, featCHECK. The first and foremost step of

featCHECK is to group a set of system level traces for both

mobile application versions. The resulting feature mapping

has been developed by the premise of trace-sets. The

fundamental process of mapping features generally

independent and based on trace collection. There are three

principal stages, reflecting the three difficulties discussed

which has been given below. The primary step, the system

traces are found to recognize request which are examples of

the same action. In this stage, all requests are preoccupied

and mapped onto a little alphabet of actions. In the next step,

the unique traces from each and every platform are bundled

and canonicalzed into a center arrangement of traces. In the

third step, the canonicalzed traces from the cross platform

mobile applications are looked at against each other to

locate mapping between features.

B. Algorithm: 1

I/p: T: Locate traces

O/p: CA: Collection of actions

Begin

K ←TraceSimplify(T)

 Level 1 Collection

Level 1Collection ←SimpleCollection(T; url-path

equals)

 Level 2 Collection

 Level 2 Collection ← {}

TD← {TanimotoDistance(k1; k2) | k1; k2∈ K}

underCollection← split(Level

1Collection; size = = 1)

overCollection← split(Level 1Collection;

size > 1)

L2Collection:

add(AggloCollection(underCollection;TD; (<; t1)))

For eachc∈overCluster do

 L2Collection: add(AggloCollection(c;

TD; (>; t2))

return L2Collection

C. Algorithm: 2

Trace Simplify

I/p : T: Set of cross platform traces = {T1, T2, .., Tn}

O/p: W: Set of words tuple sequences = {w1, w2, ..,wm}

Begin

W ← ()

For each T ∈ T do

For each<request, reaction>∈ T do

 while isRedirect(reaction.code) do

 reaction ← followRedirect(reaction)

 if isCodeOrData(reaction.type) then

w ← getWordsws(request.path,

request.qs)

 W.add(w)

Return w.

In iOS and Android have diverse User Interface

(UI) components; mapping process is expected to discover

identical gadgets. The Graphical User Interface (GUI)

components that exist for both local Android and iPhone

platforms are distinguished based on the dissimilarity and

similarities on both the platforms. These UI identical

mappings are made freely accessible. The relation returns 1

if both components are viewed as mapped and 0 if not.The

traces and feature mapping stages which yields individual

models with an arrangement of registered secondary

mapping properties for their unique states and limits (FMIG

and FMAG). This algorithm works based on the following

assumptions (1) the application model begins with first edge

that prompts an initial state and (2) competently, the two

models begin with a similar starting states and edge Pairs of

iPhone and Android. In order to discover the edge-pairs, all

the outgoing iPhone edges are acquired. The feature

mapping illustrates the matching problem which has the

extreme weighted bipartite coordinating (MWBM) issue. It

gives a bipartite chart G = (V: E) where V and E represents

Vertices and Edges respectively. The information for states

and edges are utilized as a part of this phase to outline

feature of two models. The Fig 2 demonstrates unmatched

features from both the platforms

Fig..2. Bipartite graphs of features mapping

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

111

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99880881019/19©BEIESP

DOI: 10.35940/ijitee.J9988.0981119

Journal Website: www.ijitee.org

This issue is to find out similar of maximum weight

wherever the weight of matching M is given by w(M)

=Pe2M w(e).

The definition of the MWBM is utilized in

Hungarian Algorithm. The edge E operates amongst iOS

and ANDROID and signifies the opportunity of similar and

comparing features. The weight on an edge denotes the

profits of matching both the features, the possibility is that

they are surely right matches. On the other side, features A-

E from the iOS Platform (FMIG) are connected with

features 1-4 from the Android platform (FMAG) through

edges, labeled for each pair.On the right side of the figure 3

is the answer for the MWBM problem where only the edges

adding to the extreme profit are engaged. This process of

matching is the last and final consequence of the calculation

and gives a summary of matched features, which is [(A, B,

C, D, E); (A, B, C, E)] for the representation.. Table I shows

the collective numeral of ‘Unique States’, ‘Edges’, User

Interface essentials aimed at all the circumstances operating

on every Android and iPhone application, developed by

featCHECK. The last splinter of the table 1exhibits the

quantity of states which are unique and the result

demonstrates that featCHECK can differentiate the new

constraints of a specified iPhone and Android application-

pair and creates a couples of situations both in iPhone

applications and Android applications wherever the quantity

of physical noteworthy exclusive states which do not

accurately synchronize the quantity of states which are

exceptional and poised through the vibrant analyzer. This is

primarily approach now receipts into account the type of the

class (both chat in Android and missing chat in iOS) in

major a unique state and thus divided for different views.

The Table above makes to evaluate a step by step

process, in finding the traces of the applications which

makes the task easy to find the data inconsistencies in given

25 open-sources cross platform applications.

 Fig. 3. Graph Representations of Edges

 Fig 3 shows the graphical representation of the edges

extracted from the applications of iOS and Android.

Table- I: Traces and Actions of iOS and Android

34

12
15

8
12

16

22

16

8
12

1617
22

16

34

12
15

8
12

1617
22

12
1716

0

10

20

30

40
EDGES OF iOS AND

ANDROID

EDGES iOS EDGES AND

S.N

o

Name of cross

platform apps
Type

EDGES
UNIQUE

STATES

iOS AND iOS
AN

D

1 Whatsapp Chat 22 34 14 17

2
Facebook

messenger
Messaging 7 12 4 11

3 Drop box Upload files 6 15 5 13

4 Wunderlist
List and

Notes
3 8 5 11

5 Sunrise Calendar Calendar 3 12 7 8

7 Microsoft Word Documents 7 16 5 14

8 Spotify Music 12 17 9 10

9 Pocket Cast Service apps 15 22 8 9

10 IF
Update

Photos
5 16 5 12

11 Hangouts Access files 3 8 5 11

12 Google Drive
changes to a

file
3 12 7 8

13 OneDrive
Word or

Excel
7 16 5 14

14 Google Photos photo apps 12 17 9 10

15 Amazon Photos Compression 15 22 8 9

16 Google Keep reminders 5 16 5 12

17 Evernote
Upload

documents
22 34 14 17

18 Google Calendar
Upcoming

agenda
7 12 4 11

19 Google Docs
Microsoft's

DOCX
6 15 5 13

20
Google Play

Music
Online radio 3 8 5 11

21 Apple Music
Music

catalog
3 12 7 8

22 News Republic
Latest

headlines
7 16 5 14

23 Flipboard
News

Republic
12 17 9 10

24 Four Square
Local

reviews
15 22 8 9

25 Bean hunter Find cafes 3 12 7 8

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/

Detecting Features Inconsitency in Cross-Platform Applications

112

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99880881019/19©BEIESP

DOI: 10.35940/ijitee.J9988.0981119

Journal Website: www.ijitee.org

Fig. 4 Graph Representations of Unique States

The Fig 4 shows the Unique States evaluated from the given

25 open-source cross platform application. The graph

clearly shows the difference in the states of both iOS and

Android.

 Table- II: Bug Severity Descriptions

Table II gives the descriptions about the bug severity. The

majority of the false encouraging points in the detailed data

inconsistencies are expected to the UI configuration state

which has been implemented differently on both the

platforms.

IV. CONCLUSION

The need for cross platform mobile application development

has become an undeniably regular industry practice. In order

to make the developed application consistent across multiple

platforms is very important. So there is need for mobile

developers and analyzers to test the application’s

consistency and guarantee that the behavior of the

application is same across multiple platforms. In this work,

the implemented featCHECK technique consequently

identifies and visualizes inconsistencies among iOS and

Android versions which have same mobile applications

 The performance valuation on 25 application couples

demonstrates that the GUI based perfect could offer a good

solution and also it maps the application-pairs.

REFERENCES

1. Signal, O. (2013). Android fragmentation visualized. Retrieved from

opensignal. com: http://opensignal. com/reports/fragmentation-
2013.

2. Martin, W., Sarro, F., Jia, Y., Zhang, Y., & Harman, M. (2017). A

survey of app store analysis for software engineering. IEEE
transactions on software engineering, 43(9), 817-847.

3. Williamson, L. (2012). A mobile application development primer. A

guide for enterprise teams working on mobile application
projects. IBM Whitepaper.

4. Hu, H., Wang, S., Bezemer, C. P., & Hassan, A. E. (2018). Studying

the consistency of star ratings and reviews of popular free hybrid
Android and iOS apps. Empirical Software Engineering, 1-26.

Calabash. http://calaba.sh/.
5. Android Market Stats. http://www.appbrain.com/stats/.

6. Tolk, A., & Muguira, J. A. (2003, September). The levels of

conceptual interoperability model. In Proceedings of the 2003 fall
simulation interoperability workshop (Vol. 7, pp. 1-11). Citeseer.

7. Guédria, W., Naudet, Y., & Chen, D. (2008, November).

Interoperability maturity models–survey and comparison–. In OTM
Confederated International Conferences" On the Move to Meaningful

Internet Systems" (pp. 273-282). Springer, Berlin, Heidelberg.

8. Mesbah, A., & Prasad, M. R. (2011, May). Automated cross-browser
compatibility testing. In Proceedings of the 33rd International

Conference on Software Engineering (pp. 561-570). ACM.

9. Choudhary, S. R., Prasad, M. R., & Orso, A. (2013, May). X-PERT:
accurate identification of cross-browser issues in web applications.

In Software Engineering (ICSE), 2013 35th International Conference

on (pp. 702-711). IEEE.
10. Roy Choudhary, S., Prasad, M. R., & Orso, A. (2014, July). Cross-

platform feature matching for web applications. In Proceedings of the

2014 International Symposium on Software Testing and Analysis (pp.
82-92). ACM.

11. Griebe, T., Hesenius, M., & Gruhn, V. (2015, September). Towards

automated UI-tests for sensor-based mobile applications.
In International Conference on Intelligent Software Methodologies,

Tools, and Techniques (pp. 3-17). Springer, Cham.

12. Joorabchi, M. E., Ali, M., & Mesbah, A. (2015, November).
Detecting inconsistencies in multi-platform mobile apps. In Software

Reliability Engineering (ISSRE), 2015 IEEE 26th International

Symposium on (pp. 450-460). IEEE.
13. Wei, L., Liu, Y., & Cheung, S. C. (2016, August). Taming Android

fragmentation: Characterizing and detecting compatibility issues for

Android apps. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (pp. 226-237).

ACM.

14. Kang, Y., Zhou, Y., Gao, M., Sun, Y., & Lyu, M. R. (2016, October).
Experience report: Detecting poor-responsive ui in android

applications. In Software Reliability Engineering (ISSRE), 2016 IEEE

27th International Symposium on (pp. 490-501). IEEE.
15. Menegassi, A. A., & Endo, A. T. (2016, October). An evaluation of

automated tests for hybrid mobile applications. In Computing

Conference (CLEI), 2016 XLII Latin American (pp. 1-11). IEEE.
16. Fazzini, M., & Orso, A. (2017, October). Automated cross-platform

inconsistency detection for mobile apps. In Automated Software

Engineering (ASE), 2017 32nd IEEE/ACM International Conference
on (pp. 308-318). IEEE.

17

11
13

11
8

14

9
1211

8

14

109
12

17

11
13

11
8

14

109 8
10

14

0

5

10

15

20
UNIQUE STATES OF iOS

AND ANDROID

UNIQUE STATES iOS UNIQUE STATES AND

http://www.ijitee.org/
http://calaba.sh/
http://www.appbrain.com/stats/

