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CT

Convolutional Neural Networks (CNNs) are gaining popularity for analyzing 
endoscopic images due to their many benefits. Since certain gastric polyps 
can lead to stomach cancer, it's crucial to detect and remove them accurately 
and promptly. CNN-based semantic segmentation helps by precisely outlining 
polyp areas, aiding endoscopists in identifying and treating them effectively. 
Despite the potential benefits, there is a scarcity of studies employing 
CNN for automated gastric polyp identification, particularly in the realm of 
semantic segmentation. Thus, we present groundbreaking research focused 
on segmenting gastric polyps in endoscopic images using CNNs. Various 
traditional semantic segmentation models, such as U-Net, DeepNet, SegNet, 
FuNet, and CustomNet (referred to as GISTNet), employing encoders like 
U-Net, ResNet50, MobileNetV2, or EfficientNet-B1, were constructed and 
scrutinized using a comprehensive dataset. Given the complexity of the 
problem and the multitude of criteria, selecting the most suitable CNN model
poses a challenge. To address this, we propose an integrated evaluation 
approach that combines subjective considerations with objective data to
identify the optimal CNN model. Our proposed network, CustomNet (GIST-
Net), employing ResNet as the encoder, emerged as the top performer
according to our integrated evaluation method and was selected to construct
the automated polyp segmentation system. This investigation underscores 
the clinical significance of semantic segmentation models in gastric polyp 
diagnosis and highlights the efficacy of the integrated evaluation approach 
in impartially selecting suitable models. Additionally, our research has the 
capacity to progress the identification techniques of gastric cancer, and the 
proposed evaluation methodology has implications for selecting diagnostic
techniques based on mathematical models.
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INTRODUCTION

Gastric cancer ranks among the most prevalent malignant tumors 
worldwide, with approximately 1 million new cases diagnosed 
annually. Particularly in China, it stands as one of the top three 
cancers, boasting a daunting 12.4% mortality rate. 

Given its significant impact on morbidity and mortality, gastric 
cancer is recognized as a formidable health threat. Current 
diagnostic methods primarily rely on gastroscopy, a procedure 
heavily dependent on the expertise of skilled physicians. 
Studies indicate a modest accuracy rate of 69%-79% for manual 
gastroscopy [1]. With the advent of deep learning techniques 
in medical imaging, Convolutional Neural Networks (CNNs) 
have emerged as a promising tool for segmenting stomach cancer 
images. Hirasawa et al. utilized CNNs to detect stomach cancer 
in endoscopic images, albeit encountering limitations due to 
complex lesion characteristics. PAN et al. improved the SSD 
model for distinguishing between early-stage stomach cancer 
and non-cancerous images. They introduced the DSF module 
to enable better feature fusion across various levels. Zhang et al. 
introduced SSD-GPNet, which enhances the SSD architecture 
by including cross-layer interaction to improve the network's 
receptive field and feature extraction abilities. While CNNs have 
improved identification accuracy, their outputs may not always 
meet supplementary medical diagnostic criteria. Consequently, 
there's a growing need for customized network architectures 
to enhance segmentation performance. In 2022, Ronneberger 
et al. introduced U-Net, which employs skip connections to 
incorporate richer low-level feature information into the final 
recovered feature map, demonstrating wide applicability in 
medical image segmentation. Several studies have improved 
the U-Net for segmenting gastric cancer lesions. It refined the 
U-Net model by incorporating a pyramidal structure to precisely
identify lesion locations in gastric cancer. Additionally, Zhang et
al. introduced SERES and DAGC modules are integrated into
a modified U-Net network to substitute pooling operations,
thereby improving the fusion of high-level and low-level feature
information. Despite the advancements achieved with upgraded
U-Net techniques, inherent limitations hinder their ability
to capture explicit long-range relationships [2]. Due to the 
complex folds of the stomach mucosa, models need to capture 
global information effectively in order to differentiate lesion 
characteristics from background noise. Therefore, the accurate 
and efficient gathering of global contextual information remains a 
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crucial challenge that requires focus.

Zhang et al. introduced the Transfuse model, which integrates 
both Transformers and CNNs to collaborate. Similarly, Chen et 
al. proposed Transnet, which employs U-Net to retain local spatial 
information while incorporating the Transformer as an encoder 
for medical image segmentation. However, directly feeding 
deep features from convolutional layers into the Transformer 
leads to insufficient global information and underutilizes the 
Transformer's potential. To balance global context modeling 
efficiency with the retention of low-level features, Zhang et al. 
introduced the TransFuse model, which combines Transformers 
and CNNs to work together synergistically. Similarly, suggested 
TranUnet, which utilizes U-Net to maintain local spatial details 
while incorporating the Transformer as an encoder for medical 
image segmentation. However, directly inputting deep features 
from convolutional layers into the Transformer results in 
insufficient capture of global information. Utilization, limiting 
the Transformer's effectiveness. Thus, a recommendation is made 
to independently pass original images through Transformers 
and CNNs are employed to comprehensively extract unique 
features from each, although this leads to heightened model 
complexity [3]. To address the computational burden imposed 
by deep-level features, a decoder structure is suggested to replace 
the original, thereby isolating the influence of low-level features. 
Additionally, Transformers utilize computationally demanding 
global self-attention mechanisms. Liu et al. tackled this issue by 
introducing Windows Multi-Head Self-Attention (W-MSA) in 
the Swin-Transformer, thereby notably decreasing computational 
complexity.

In medical image analysis, Hirasawa et al. reported a sensitivity 
of 89.2% and a positive predictive value of 29.06% for automated 
stomach cancer detection using a Single-Shot Multi-Box Detector 
(SSD) for object detection. However, the high false-positive 
rate and inability to delineate invasive areas remain unresolved 
challenges. Hence, the focus shifts to segmentation for precise 
identification and extraction of objects from images. The U-Net 
architecture consists of an encoder layer for down sampling 
images while extracting features and a decoder layer for up 
sampling images. A bypass link between these layers allows for 
object segmentation without compromising image resolution [4]. 
However, traditional semantic segmentation methods process 
the entire image, leading to time constraints and an inability to 
identify individual items within an image.

To address these limitations, like researchers, introduced Mask 
R-CNN, which combines object segmentation with individual
object identification in an image. This approach, presented Mask
R-CNN, which was recognized with the Best Paper Award at
the 16th International Conference on Computer Vision (ICCV)
in 2019. Identifies object regions through bounding boxes and
marks the corresponding real regions in a mask layer [5]. By 
providing class names and probabilities along with bounding 
boxes, detection reliability is improved.

Expanding on this study, we suggest a Dual-Branch Hybrid 
Network for segmenting stomach cancer images, which integrates 
both the Swin-Transformer and U-Net architectures. The 
combination of the Swin-Transformer and U-Net forms a decoder 
structure aimed at capturing intricate feature details to precisely 
localize lesions [6]. Our investigation focuses on developing an 

efficient feature fusion approach to merge features extracted 
from both the U-Net and Transformer components. This multi-
modal fusion process enhances correlation information extraction 
across different scales, facilitated by the linear Hadamard 
product. During network training, we calculate losses from the 
Transformer, U-Net, and fused outputs with ground truth labels 
to produce high-quality segmentation results.

This study focuses on several key aspects: proposing a novel 
approach for detecting stomach cancer using Deep Learning 
techniques, showcasing cutting-edge technology, addressing the 
problem at hand, presenting the basic proposal, and demonstrating 
the effectiveness of the suggested strategy through various trials 
and results [7]. We also provide a summary and outline future 
efforts at the end of the publication.

Our Dual-Branch Hybrid Network simultaneously employs the 
Swin-Transformer and U-Net to segment lesions in stomach 
cancer images. We introduce the Deep Feature Aggregation 
Decoder (DFA) to replace the original decoders, which reduces 
model complexity while retaining information about lesion 
regions. Furthermore, the Feature Fusion (FF) module facilitates 
multi-modal fusion mechanisms for independent feature 
interaction. It employs the linear Hadamard product for feature 
fusion. Experimental results demonstrate the model's accurate 
segmentation of gastric cancer lesion regions, surpassing cutting-
edge techniques [8]. The rest of this document is structured as 
follows: "Related Works" examines the utilization of enhanced 
U-Net and Transformer architectures in medical image
segmentation, "Method" outlines our proposed framework,
encompassing the Swin-Transformer branch, U-Net branch,
DFA, FF, and Decoder modules, and "Experiments" presents
experimental results on multiple datasets. Finally, we visualize the
results and draw conclusions.

Related work
The objective of image categorization is to assign labels to 
photographs based on predefined categories. Deep learning 
methodologies, notably those leveraging Convolutional Neural 
Networks (CNNs), yield optimal results for tasks such as 
object recognition and segmentation by creating hidden feature 
representations [9]. These technologies offer faster analysis and 
computation compared to traditional methods. In the medical 
field, systems are being developed to aid clinicians in early cancer 
detection, particularly in stomach cancer. More research and 
applications for classification, detection, and segmentation in 
stomach cancer have advanced, with an increase in annotated 
datasets that are freely accessible or available with limited access 
restrictions.

One approach involves the creation of artificial networks capable 
of learning characteristics from publicly available datasets. 
However, much of the research focuses on the progression of 
stomach cancer rather than on the identification and localization 
of tumors, which is crucial for diagnostic accuracy. Models like 
YOLO-V2 are employed for multi-object detection within 
the same image. In a similar vein, researchers have developed 
detectors for small objects by augmenting feature information 
from fundamental network models [10]. Additionally, techniques 
like label smoothing weighted loss have been utilized to improve 
feature representation, as seen in Retina Net, an enhanced version 
of Faster R-CNN. Lesion-based CNNs, a type of deep learning 
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method, utilize endoscopic images to detect complete lesions. 
While endoscopy aids in the identification of Gastro Intestinal 
(GI) tract issues, its diagnostic accuracy is limited by practitioner 
experience and environmental factors. For instance, the false-
negative rate for gastric cancer detection using Esopha Gogastro 
Duodenoscopy (EGD) ranges from 3.2% to 30.8%. These models 
are typically built using the Cafe deep learning framework, a widely 
used and versatile platform. Recent studies have shown promising 
results, with CNNs achieving a sensitivity of 88.2% and a positive 
prediction value of 28.6% in identifying gastric cancer lesions. 
Further advancements include improving the network topology 
of models like Mask R-CNN for medical image detection and 
utilizing additional data augmentation techniques. Researchers 
have explored various approaches for stomach cancer detection 
using convolutional neural networks. For instance, Sakai et al. 
achieved an accuracy of 81.8% using 764 endoscopic images to 
train their CNN model. Ishihara et al. employed a patch-based 
CNN on X-ray scans of the stomach, though limited by single-
angle imaging [11]. Researchers trained their CNN with 11,372 
endoscopic images, accurately detecting 70 of 71 lesions. Similarly, 
Ishioka et al. utilized a CNN to identify stomach cancer from 
video images, achieving success rates of 92.2% for smaller lesions 
and 98.6% for larger ones.

Xu Zhang et al. utilize a straight forward Convolutional Neural 
Network (CNN) model to classify gastric precancerous conditions, 
which, if misdiagnosed, may progress to cancer. Despite achieving 
an accuracy of 72.90%, this GPDNet model exhibits lower 
accuracy compared to other detection methods. The focus of this 
article is on leveraging CNNs for the segmentation of endoscopic 
images to detect gastrointestinal disorders. Segmentation, the 
process of partitioning an image into relevant sections, plays a 
crucial role in identifying and characterizing specific abnormalities 
within the gastrointestinal system.

This study aims to provide insights into the strengths, limitations, 
and potential future directions of CNN-based segmentation 
approaches in gastrointestinal disease detection by reviewing the 
current state of research and breakthroughs in this area [12]. The 
utilization of CNNs in endoscopic image segmentation holds 
promise for revolutionizing gastrointestinal disease detection by 
enhancing accuracy, reducing false positives, and expediting the 
analysis process.

Our investigation will delve into the methodologies, datasets, and 
performance metrics employed in research focused on leveraging 
CNNs for gastrointestinal disease identification through 
endoscopic image segmentation [13]. Through a comprehensive 
examination, we aspire to contribute to the evolving landscape of 
medical imaging technologies, ultimately fostering breakthroughs 
that enhance clinical outcomes and patient care in the realm of 
gastrointestinal health.

MATERIALS AND METHODS
Data collection 
Data collection is a pivotal stage in any research endeavor. For 
this study, datasets were sourced from various online platforms 
and reputable hospitals. These datasets consist of endoscopic 
scan images captured over a specific timeframe, with each patient 
contributing a sequence of images is acquired at different pixel 
densities over a specific timeframe.

This dataset, valuable, requires careful handling due to variations 
in endoscopic results. Fiber-optic endoscopes utilize bundles 
of optical fibers to transmit images, with each fiber conveying 
images to the top of the bundles. Subsequently, these images are 
viewed through an eyepiece after passing through a focusing lens. 
Endoscopies, as minimally invasive procedures, utilize natural 
orifices like the mouth or anus, employing optical sensors for 
imaging.

The aim of this study is to provide easily accessible information 
that can ultimately improve medical care quality, particularly 
in the context of malignancy diagnosis in images of the Gastro 
Intestinal (GI) tract, these devices have the potential to assist in 
image processing and the identification of endoscopic discoveries 
within the GI tract, including the intestines, bowel, and bladder. 
Significant benefits include improved identification accuracy, 
reduced workload for healthcare professionals, lower average costs, 
decreased patient discomfort, and potentially increased patient 
participation in procedures. Enhanced screening is expected to 
reduce mortality rates and instances of basal GI disease.

This dataset is versatile and can be applied in various applications 
aimed at developing and testing image analysis algorithms [14]. By 
utilizing the same dataset, researchers can compare methodologies 
and experimental outcomes more efficiently, facilitating result 
replication and further analysis.

Pre-processing techniques
The endoscopic imaging technique typically generates images 
characterized by unique contrasts and artifact coloring, which 
may vary based on the particular type of endoscopy employed. 
These images are crafted to enhance sensitivity in dimly lit 
regions, preserve image sharpness, and mitigate interference from 
noise. To achieve this objective, we have devised a dependable 
method for augmenting endoscopic contrast and mitigating noise 
[15]. This method entails the utilization of various techniques, 
including Median Filtering, Gaussian Filtering, Weiner Filtering, 
and Wavelet Filtering. Additionally, we leverage texture analysis 
metrics such as mean, standard deviation, variance, kurtosis, and 
skewness as part of this process. By experimenting with various 
combinations of these techniques, we aim to identify active areas 
within the stomach in regular endoscopy imaging.

Problematic 
This research endeavors to identify abnormal tissue areas, 
potentially indicative of tumors, within the gastric organ. To 
accomplish this objective, we have developed a methodology 
utilizing the U-Net architecture, which we've named GAS-Net. 
U-Net is a widely used architecture in medical image segmentation, 
originally designed for understanding and segmenting medical
images, and has been pivotal in medical imaging research. The
U-Net architecture consists of two main pathways: a contracting
path and an expansive path. In the contracting path, a variety
of operations including convolutional, normalization, max-
pooling, activation, and concatenation are employed to extract
crucial features from input images, resulting in a feature vector of
predetermined length. Subsequently, the expansive path utilizes
the information obtained from the contracting path to perform
up-convolutions, progressively generating an output segmentation 
map [16]. The underlying concept of the GAS-Net architecture
revolves around constructing a network that accepts a series of



4 −

©Oncology and Radiotherapy 18(6) 2024: 001-009

Tab. 1. Equational metrics

input images along with their corresponding ground truth masks. 
Using probabilistic and generalized functions, the network learns 
to identify tumor areas from these ground truth masks based 
on the input images. Subsequently, a correspondence is created 
between the input images and their corresponding ground truth 
masks to facilitate accurate segmentation.

Existing semantic segmentation methods
Numerous semantic segmentation algorithms have shown 
impressive efficacy by leveraging Convolutional Neural Networks 
(CNNs) in natural images. Typically, CNNs are trained to 
learn a mapping from input images to ground-truth masks 
through a series of operations, including convolution, pooling, 
and up-sampling. In this research, different classical semantic 
segmentation models including U-Net, DeepNet, SegNet, FuNet, 
and CustomNet (GISTNet), are utilized with different encoders 
for accomplishing end-to-end semantic segmentation of gastric 
polyps. To prevent redundancy, a generic U-Net architecture 
is employed to illustrate the underlying concept shared by most 
semantic segmentation models. The encoder phase typically 
diminishes spatial resolution and extracts image features using 
convolution and max-pooling to aid feature extraction. Conversely, 
the symmetric decoder phase upscales the extracted features to the 
original input resolution, generating low-dimensional predictions 
[17]. Within the symmetric decoder, feature maps are combined 
from the up-sampling path and the skip connection. The skip 
connections in U-Net are notable and innovative because they 

supplement and enhance semantic information from the up-

sampling process. These connections play a crucial role in 
retaining detailed information and improving the performance 
of semantic segmentation models.

Performances of the network
The network implementations were performed on a workstation 
featuring an Intel i7-6800K CPU with 64 GB of RAM. 
Throughout the training process, a batch size of 64 was employed, 
and a uniform learning rate of 0.004 was set for all layers. The 
learning rate was subsequently reduced to 0.0004 every 15 
epochs starting from the 100th epoch. The primary objective 
across the literature is to enhance efficiency in both training 
and testing phases, aiming for a more user-friendly system. In 
our study, the execution time during both training and 
testing phases varied depending on the number of regions of 
interest processed per image, ranging from 400 milliseconds 
to 930 milliseconds for images sized 256 pixels × 256 
pixels. Additionally, networks heavily rely on 
hyperparameters [18]. Hence, we conducted numerous 
experiments to determine the optimal values for these 
hyperparameters and validate the effectiveness of our approach.

Performance metrics
This stage of the study is crucial for assessing the model's 
performance and determining whether it fulfills its objectives. 
Various performance metrics are commonly employed in the 
literature for tasks such as in table 1.

Accuracy TP+TN/TP+TN+FP+FN
Precision TP/TP+FP

Recall (Sensitivity) TP/TP+FN
F-measure 2 × (Precision × Recall)/Precision+Recall

Dice coefficient 2 × TP/(TP+FN+FP)

These metrics provide valuable insights into different aspects of 
the model's performance, helping to evaluate its effectiveness in 
various tasks [19].
The following note that (TP) refers to True Positives, (TN) de-
notes True Negatives, (FP) represents False Positives, and (FN) in-
dicates False Negatives [20]. These parameters are calculated using 
the confusion matrix, which provides insights into the accurate 
and inaccurate classification of images across all categories. Addi-
tionally, sensitivity played a crucial role when there was an overlap 
observed between the identified tumor area and the ground truth 
generated by the team mentioned earlier.

RESULTS AND DISCUSSION 

In semantic segmentation, the role of feature extraction networks 
is pivotal in categorizing pixels accurately. Therefore, the encoders 
employed in this study comprise three distinct advanced 
CNNs: ResNet50, MobileNetV2, and EfficientNet-B1. Re 

Net50, a member of the ResNet series algorithms, stands out 
for its speed and accuracy, making it a popular choice it offers 
faster process-ing while still achieving impressive results. 
Moreover, ResNet50 outperforms shallower networks such as 
ResNet18 and ResNet34 in terms of both training outcomes and 
resource efficiency, thanks to its superior feature extraction 
capabilities. Hence, based on the criteria of speed and precision 
for the polyp segmentation task, ResNet50 was selected as the 
encoder for the proposed Custom-Net (GIST-Net) class.
The newly proposed network, CustomNet (GIST-Net), adopts 

the U-Net architecture with ResNet as its encoder, achieving 
the highest segmentation accuracy among the conducted experi-
ments. It attains an Intersection Over Union (IOU) of 91.22%, 
accuracy of 98.12%, recall of 96.18%, precision of 98.12%, and 
F1-score of 98.14%. However, its detection speed is the slowest 
at 25 frames per second (FPS) compared to other U-Net experi-
ments. When ResNet50 is utilized as the encoder for U-Net, the 
model exhibits a significantly higher number of parameters and 
Multiply Accumulate Operations (MACs) compared to others, 
requiring greater storage and processing resources. 
Additionally, its segmentation accuracy is comparatively lower. 
While UNet++ models boast more parameters than U-Net, they 
effectively enhance segmentation accuracy compared to the de-
signed network. Among the UNet++ models, UNet++ with the 
Efficient Net-B1 encoder achieves the highest segmentation accu-
racy but has the slowest detection speed at 20 FPS. UNet++ with 
the MobileNetV2 encoder strikes a balance between segmentation 
accuracy and computational efficiency, outperforming other U-
Net++ models and obtaining the highest score among all semantic 
segmentation models tested in the trial.
Efficient Net-B1 encoded with ResNet50 demonstrates the high-
est segmentation accuracy within the U-Net class. It achieves an 
Intersection over Union (IOU) of 90.18%, accuracy of 95.95%, 
recall of 95.99%, precision of 96.73%, and F1-score of 97.63%. 
Despite its complexity, this model achieves exceptional detection 
speed, reaching 29 Frames Per Second (FPS).
In table 1, FuNet exhibits the best performance in terms of model 
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complexity when MobileNet-v2 serves as the encoder. Although 
it delivers somewhat satisfactory segmentation accuracy, with an 
IoU of 91.83%, accuracy of 92.09%, recall of 98.86%, precision of 
92.71%, and F1-score of 95.52%, FuNet with the ResNet50 en-
coder shows significant improvements in segmentation accuracy 
and detection speed.
When EfficientNet-B1 serves as the encoder, Seg-Net attains the 
highest segmentation accuracy and model complexity. Specifi-
cally, it achieves an Intersection over Union (IOU) of 96.17%, 
accuracy of 93.12%, recall of 95.16%, precision of 92.14%, and 
F1-score of 93.14%. Nonetheless, its notably slow detection speed 
leads to an underwhelming overall score. Conversely, SegNet us-
ing the ResNet50 encoder and with the EfficientNet-B1 encoder 
yield satisfactory segmentation accuracy results.
When ResNet50 is utilized as the encoder, DeepNet exhibits be-
low-average performance concerning model complexity. Further-
more, its segmentation accuracy is notably deficient, marked by an 
Intersection over Union (IOU) of 69.53%, accuracy of 78.19%, 
recall of 81.96%, precision of 83.21%, and F1-score of 85.12%. 
Despite this, DeepNet, when equipped with the ResNet50 en-
coder, does not realize substantial improvements in segmentation 
accuracy or detection speed.
Each model exhibits distinct characteristics as per quantitative 
metrics. Usually, achieving high segmentation accuracy entails 
increased complexity, which may compromise computational ef-
ficiency. Conversely, models prioritizing computational efficiency 
often sacrifice segmentation accuracy. The suggested integrated 
assessment approach provides a measurable score for comparison. 
As per the findings, the proposed network, CustomNet (GIST-
Net), employing U-Net with the ResNet encoder, garners the 
highest scores across subjective and overall categories. This indi-
cates the model's superior overall performance, regardless of the 
factors evaluated, including quality, quantity, or a blend of both.
The reflecting patches and stomach mucosal folds in endoscopic 
images are often mistaken as gastric polyps. Even with the naked 
eye, these areas are often misinterpreted due to lighting or angles. 
It demonstrates that the system fails to detect certain polyps. 
These missing polyps are little polyps that appear at the borders 
of the photographs. Due to technological restrictions, endoscopic 
pictures are reduced to 256 × 256, affecting the accuracy of tiny 
polyp segmentation process, while having room for enhancement, 
still achieves a commendable level of accuracy with the chosen 
model (Figure 1).
Overall, the automated polyp-segmentation approach showcases 
notable clinical benefits owing to its consistently high perfor-
mance [21]. The system can act as a secondary observer by instant-
ly segmenting identified polyps on a separate display next to the 
primary monitor. This feature holds promise for to address skill 
disparities among endoscopists and enhance the quality of routine 
Esopha Gogastro Duodenoscopy (EGD). However, it's important 
to note that the final decision remains with the endoscopist. Nev-

ertheless, it may encourage endoscopists to perform additional 
procedures, thus decreasing the chances of missing particular pol-
yps through visual inspection thus decreasing the chances of miss-
ing particular polyps through visual inspection.
From the patients' perspective, the proposed approach can stream-
line physical examinations, reducing waiting times and examina-
tion durations. Moreover, it has the capability to provide expert-
level diagnostics, thereby boosting patients’ confidence, fostering 
collaboration, and enhancing overall satisfaction [22]. Addition-
ally, the system is expected to become open-source and freely 
available, contrasting with commercial software, which will make 
it highly accessible for medical students and young doctors to ac-
quire and improve their clinical abilities (Table 2).
However, this system is subject to several limitations. Firstly, it is 
limited to segmenting gastric polyps and cannot simultaneously 
identify other gastric diseases during Esopha Gogastro Duodenos-
copy (EGD). Secondly, it can be difficult to differentiate between 
benign and malignant lesions using traditional white-light imag-
ing endoscopy [23]. However, incorporating histopathological 
evaluation alongside other advanced endoscopic techniques can 
offer more clinically relevant insights after identification. Thirdly, 
the system's robustness in managing diverse clinical scenarios has 
not been thoroughly evaluated through multicenter clinical trials 
with extensive datasets. Below, a comparison of neural   networks 
is presented in a table format to illustrate the differences (Figure 
1-6 and Table 3).
The output images generated through Python utilizing deep learn-
ing algorithms convey a compelling narrative of segmentation 

analysis, revealing insights into the accuracy levels attained. These 

images depict the intricate delineation of objects within the input 

data, showcasing the efficacy of the employed algorithms in iden-
tifying and segmenting distinct features. Accompanying the visual 
representations, the associated accuracy levels provide quantita-
tive validation of the segmentation performance. Such precision 

in segmentation analysis is paramount across various domains, 
including medical imaging, autonomous driving, and industrial 
quality control, where accurate delineation of objects is critical for 
decision-making processes. Through this amalgamation of trans-
formative potential of deep learning methodologies in advancing 

image processing tasks with unparalleled efficacy and precision. 
In reviewing the table detailing the strengths and weaknesses of 
various CNN models, several notable patterns emerge. The table 

underscores the robustness of models like UNet and DeepNet, 
CustomNet, FuNet, SegNet in handling deep architectures, excel-
ling in feature extraction and classification tasks. Conversely, while 
effective, exhibits a weakness in computational efficiency due to its 
substantial parameter count.Overall, this comprehensive compar-
ison highlights the diverse landscape of CNN architectures, each 

with its distinct strengths and weaknesses, catering to different 

needs and constraints in machine learning applications (Figure 7).
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Image Segmentation 
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  Evaluation Metrics 
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Precis ion 

 Input Image 
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Computational Efficiency 

Parameters model 
detection Speed 
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Fig. 1. Flow Chart of segmentations techniques
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Tab. 2. Configuration details Configuration Version

Operating system Windows 10

Programming language Python 3.9

Frame Pytorch-1.10.0

Fig. 2. Seg-Net

Fig. 3. U-Net

Fig. 4. Deep-Net

Fig. 5. Custom-Net (GIST-Net)

Fig. 6. Fu-Net
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Tab. 3. Comparison of Networks 
Model visual outputs and accuracy 
metrics, the Python-driven segmen-
tation analysis 

Model Strength Weakness

U-Net
Minimalistic architecture The optimal architecture's depth remains 

unknown

Requires fewer training samples The fusion scheme for feature maps at 
the same scale is needlessly restrictive

DeepNet
A broader framework Issue of gridding effect

It effectively segments objects across multiple 
scales

Long-range information may not be 
pertinent

Segnet

It effectively utilizes global contextual infor-
mation.

A substantial volume of training data is 
necessary

It requires lightweight and minimal computa-
tional resources

Precisely pinpointing small objects poses 
a significant challenge

FuNet

Focused on real-time operation A substantial volume of training data is 
necessary

Features a straightforward structure and 
minimal computational requirements Limited precision or accuracy is observed

CustomNet

It has the capability to capture intricate con-
textual relationships

Demanding and costly in terms of com-
putational resources

It exhibits commendable performance Requires a significant amount of time

Fig. 7. Representation of graph on networks accuracy level

RESULT

• U-Net and GIST-Net Networks provide good accuracy
results for segmentation and Analysis.

• Seg-Net also provide results but not that satisfactory 
• So, a Custom Network has been Designed from U-Net

and Res-Net called GIST-Net (Gastrointestinal stromal
tumors) is improves the level of accuracy in analysis for
segmentation.

DISCUSSION

To address class imbalance and variance distribution, we employed 
two loss functions during training. Our dataset comprised images 
from a private clinic and a secondary dataset to validate our ap-
proach against ground truth annotations. Experimental results 
demonstrate the proposal's ability to accurately distinguish lesions 
in input images and achieve precise tumor segmentation.
Future efforts will focus on extending the adopted backbone to 
enhance instance segmentation of tumor regions. Moreover, our 
aim is to create a model that can distinguish between healthy and 

diseased data and identify specific diseased areas like cancerous 
lesions. We'll achieve this by employing different training sets or 
classifier networks. This advancement will pave the way for design-
ing an automated system that can detect and categorize abnormal-
ities in endoscopic stomach images, ultimately enhancing disease 
management and treatment decision-making.

CONCLUSION AND FUTURE SCOPE

In this research, we presented an innovative method utilizing 
state-of-the-art deep learning techniques to tackle the difficul-
ties associated with automatically detecting, identifying, and cat-
egorizing different types of tumors in gastric medical images. We 
designed and assessed various architectural models to accomplish 
this task. It includes U-Net, DeepNet, SegNet, FuNet, and Cus-
tomNet (GIST-Net), with the latter showing the most promising 
results in terms of accuracy performance. This proposed network, 
GIST-Net, effectively identifies abnormal tissue within the stom-
ach. By generating binary masks for the five types of tumors across 
different grades and also achieved segmentation with minimized 
training time for improved generalization.
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