EVALUATION OF PERFORMANCE AND EMISSION FEATURES OF JATROPHA BIODIESEL -TURPENTINE BLEND AS GREEN FUEL

Karikalan LOGANATHAN^{*1} and Chandrasekaran MANOHARAN²

Department of Mechanical Engineering, VELS University, Chennai, India

* E-mail ID: karilk2005@yahoo.co.in

An experimental study was conducted to measure the suitability of Jatropha biodiesel-Wood Turpentine blend as a replacement for diesel fuel in a compression ignition engine. Tests were performed in a four stroke, single cylinder, air cooled diesel engine. The results show that the performance factors for various blends were found to be near to diesel, emission features were improved and combustion characteristics were found to be comparable with diesel. The brake thermal efficiency of the blends establishes 9.2% lower than that of diesel at 75% load. Brake specific fuel consumption increases for blends at part load and remains same at full load. Carbon monoxide, Hydrocarbons and Smoke emissions were reduced by 75%, 64-78% and 33-66% respectively compared to diesel at 75% load. Nitric oxides were increased. Jatropha biodiesel-Wood Turpentine blends offered comparable performance and combustion features, reduced emissions and it is capable of replacing standard diesel in compression ignition engines.

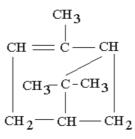
Keywords: Engine; Vegetable Oil; Turpentine; Emissions; Performance

1. Introduction

The energy requirements of the world are growing faster than ever [1]. The depletion of fossil fuel reserves and the pollution level rising made vegetable oil viable as a fuel in diesel engines in the practice [2-6]. Rudolph Diesel, the inventor of the diesel engine performed experiments by using fuels from crushed coal to vegetable oil. Renewable fuels like plant oils take away more CO₂ from the atmosphere during their growth than it is added by burning them. Therefore, they reduce the growing CO₂ content in the atmosphere [7]. Numerous researchers tested the use of vegetable oils as fuel in conventional engines and described that their performances were reduced due to the higher viscosity and lower volatility [8-13]. To overcome these difficulties, several researchers recommended the usage of transesterified vegetable oils with reduced viscosity, which was termed as biodiesel [14-17]. This rigorous manufacturing and commercialization of biodiesel have raised some serious environmental issues. Its extensive production can lead to the global food market by radically raising consumption, oil prices, which largely affect emerging countries. In order to alleviate these ecological concerns, alternative oilseeds are being examined as substitute feedstocks. The claim for energy around the globe is constantly growing, precisely in the mandate for petroleum-based energy. Global warming is linked to the greenhouse gases which are typically discharged from the combustion of petroleum fuels [18-21].

To resolve both the energy alarm and environmental issue, the renewable energies with lower environmental impact should be considered.

Many experimental studies were conducted to study fuel properties, performance and emissions of different blends of methyl ester of pongamia, jatropha and neem with reference to diesel [22-25]. The results show that diesel blends displayed similar efficiencies, lower smoke, CO and HC. The vegetable oil esters from edible oils may not be the right option for their substitution in diesel engine due to an insufficient production of edible oil in India. Hence, attention has been diverted to test the suitability of non-edible vegetable oils for diesel engine. Biodiesel is a substitute fuel that can be environmentally friendly, preserve energy and green protection. Biodiesel is biodegradable, non-toxic and sulphur free [26-29]. The purpose of this work is to measure the performance and pollutant features of a diesel engine running on selected fuels (Jatropha biodiesel – Wood Turpentine blends) in comparison to diesel without any engine modifications.


2. Biodiesel

Vegetable oil is one of several alternative fuels designed to extend the competence of petroleum, the flexibility and cleanliness of diesel engines. Vegetable oils and biodiesel have the potential to reduce the level of pollution and global warming. Biodiesel is described as a fuel that contains mono-alkyl esters of long chain fatty acids resulting from plant oils [30-32]. Biodiesel is a substitute fuel, cleaner than diesel and it could be used straight as fuel for CI engines without modifying the engine system [33-35]. It has high biodegradability, excellent lubricity and no sulfur content.

3. Wood Turpentine Oil

Wood Turpentine made history of use as a viable fuel reserve and can substitute the diesel and biodiesel. Turpentine had been made by man and used as a fuel in the 1700s for burning lamps, boilers and furnaces. Turpentine oil derived by pyrolysis mechanism from the pine tree dissolved in a volatile liquid is admitted as a substitute to diesel in compression ignition engines. Turpentine oil was used as an engine fuel, but was waived in detriment of the more easy availability of fossil fuels. The turpentine oil used for this work was procured from a neighbouring saleable shop. Turpentine is a yellowish, impervious, gummy, unstable, flammable combination of HC isomers gained both from pine resin and wood. Turpentine has a smaller α -pinene content of 40 % by mass. It comprises chemically of 58 - 65 % γ -pinene, β -pinene and added isometric terpenes. Turpentine mixes freely in any quantity with jatropha biodiesel and it is presumed that turpentine oil might be a decent contender for diesel fuel due to its high global production. The cost of turpentine oil is usually greater than that of diesel, but it is least cost substitute through the global emissions management cost [36-37].

Wood Turpentine is a combination of biological composites largely terpenes and its structure can differ significantly conferring to the kind of pine tree from which it was resultant. Oil of turpentine consists of hydrocarbons (terpenes) of the formula C10H16. The search of oleoresin-derived terpenes from renewable pine woods as distinct fuels and in whole or limited standby of conservative fuel centered engines. Both qualitative and quantifiable features of oleoresin from pines provide backing to an extensive choice of aspirant terpenes for the growth of substitute biofuels. The molecular arrangement of turpentine is given below.

Resin tapping methods:

- 1. Bark chipping method Shaving of bark up to 5 cm wide along one-third of the tree's boundary
- 2. Borehole method A closed collection apparatus captures the volatile oleoresin and prevents premature solidification of the resin acids.

The oleoresin thus obtained from the above processes is finally steam distilled to obtain turpentine oil. The physical and chemical properties of wood turpentine are given in the table. 1

Formula	C10 H16	
Molecular weight	136	
Physical state	Clear Liquid	
Melting Point	-60 [°] to -50 [°] C	
Boiling Point	150 ⁰ C	
Flash Point	35° C	
Specific Gravity	0.864	
Vapor Density	4.7	

Table 1 Physical-chemical properties of Wood Turpentine

4. Materials and Methods

The key aspect of the present analysis is to assess the performance, combustion and emissions of different alternative green fuels. In the current work, Jatropha Biodiesel was blended with wood turpentine oil. The different combination of Jatropha biodiesel and Jatropha turpentine blends used in this experiment are J100 (Jatropha Biodiesel 100%), JWT10 (Jatropha Biodiesel 90%+ Wood Turpentine 10%) and JWT20 (Jatropha Biodiesel 80%+ Wood Turpentine 20%), JWT30 (Jatropha Biodiesel 70%+ Wood Turpentine 30%) and JWT40 (Jatropha Biodiesel 60%+ Wood Turpentine 40%) and JWT50 (Jatropha Biodiesel 50%+ Wood Turpentine 50%). The properties of the blended fuels are given in the table. 2.

Table 2 Properties of Fuel

Description	Diesel	Jatropha	Wood	JWT	JWT	JWT	JWT	JWT
		Biodiesel	Turpentine	10	20	30	40	50
Density @15°C, kg/m ³	860	890	880-900	895	893	891	888	886
Viscosity @ 40 ⁰ , mm ² /s	4.25	5.65	3.89	5.37	5.19	5.04	4.87	4.71
Flash Point, ⁰ C	50	170	35-40	154	140	128	112	98
Cetane Number	48	50	38	-	-	_	-	-
Calorific Value, MJ/kg	43.50	42.25	44.00	42.43	42.60	42.78	42.96	43.13

5. Experimental Setup

A KIRLOSKAR-TAF1 model single cylinder, air-cooled diesel engine was used for the tests. The engine specifications are stated in the table. 3. The engine is attached to a 240V swing field electrical dynamometer for loading the engine through a resistive load bank. Power-Star (Swing filed) Electrical Dynamometer is coupled with the test engine crankshaft on the right side. Crank Angle Encoder AVL 365C is connected to the crankshaft open end. The model 21-9 is having a maximum rating of 5kW with the highest current rating of 21A. Electrical resistance loading is used to load the engine from 0%, 25%, 50% and 100%, representing 1.1KW, 2.2KW, 3.3KW and 4.4KW respectively. Loading can be easily done by switching on the required resistance bank, according to the testing requirements.

The measurement methods are detailed below.

5.1. Load and Speed Measurement: The engine was set to run at a constant speed of 1500 RPM. The load of the engine was obtained from load cell reading. The speed of the engine was monitored using sensor along with digital speed indicator.

5.2. *Temperature Measurement*: Temperature of the cooling water inlet, outlet and exhaust gas was measured with Chromel Alumel (K-Type) thermocouples. A digital indicator with automatic room temperature compensation facility was used.

5.3. Fuel Consumption Measurement: The fuel was supplied from a vessel weighing 5kgs (Vessel weight plus fuel weight) placed nearer to the engine and the fuel to the engine will flow through a hose. The fuel flow rates were obtained by noting the time taken for 10gms of fuel consumption.

5.4. Exhaust Emission Measurement: the smoke opacity was measured with the help of AVL 415 smoke meter and the pollutants like HC, CO, NO_x, CO₂ and O₂ were measured with the help of (AVL DI- GAS 444) five gas analyzer.

5.5. *The cylinder pressure* was measured with the help of a piezoelectric air-cooled transducer. A hole was drilled vertically through the cylinder head to mount the pressure transducer. The pressure transducer is used to measure the dynamic pressure inside the cylinder.

5.6. The heat release rate was measured with the help of combustion analyzer.

The diagram of the experimental setup for the current study is presented in fig. 1. and fig.2. The engine initially ran with Jatropha biodiesel and then it is changed to Jatropha-Wood Turpentine Oil blends.

Model	KIRLOSKAR, TAF1
Туре	4 Stroke, Air Cooled, Direct Injection, Constant Speed
Number of cylinders	One
Bore	80 mm
Stroke	110 mm
Compression ratio	16.5:1
Power Output, kW/HP	4.42 (6)
Rated Speed, RPM	1500
Nozzle pressure	200bar
Fuel injection timing	23 ⁰ CA BTDC

Table 3 Engine Specifications

The EGT was quantified by a thermocouple mounted on the exhaust. To quantify the current and voltage delivered by the load bank, an ammeter and voltmeter were used. Smoke was measured using a smoke meter (AVL Smoke Meter 415). The exhaust gas was analyzed using an exhaust gas analyzer (AVL DIGAS 444) to determine CO_2 , CO, HC, NO_X and O_2 absorptions. Tests were preceded by Jatropha biodiesel and Jatropha-Wood Turpentine oil blends were injected at a pressure of 200 bar. For testing purpose, some blends of different concentrations were arranged stretching from 100% (Jatropha biodiesel) to 50:50 (Jatropha-Wood Turpentine oil blends) through 10%, 20%, 30%, 40% and 50%. These blends were then exposed to performance and pollutant tests on the engine. The performance, combustion and pollutant data were examined for all tests and the outcomes are presented in the subsequent division.

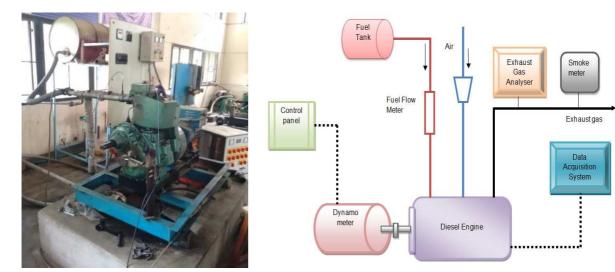
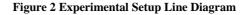



Figure 1 Experimental Setup

6. Results and Discussion

6.1. Performance Parameters

6.1.1. Brake specific fuel consumption (BSFC)

By running the engine with JWT instead of diesel fuel, the BSFC increases with the percentage of JWT for the entire load range (Fig.3). The BSFC of JWT30 is similar to that of diesel. Jatropha oil has an inferior lower calorific value and therefore higher content share of Jatropha oil in mixture reduces the heating value of the mixture which leads to an increased BSFC. Other causes that lead to higher fuel consumption were: higher density as well as viscosity.

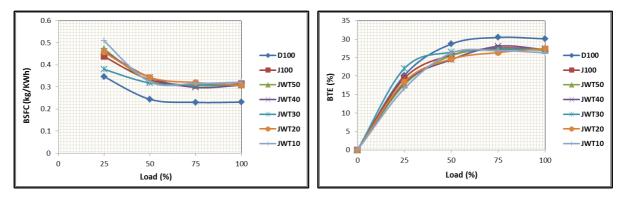
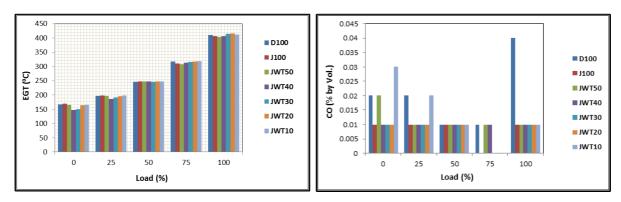
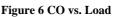


Figure 3 BSFC vs. Load


Figure 4 BTE vs. Load

6.1.2. Brake Thermal efficiency (BTE)


BTE of Jatropha-Wood Turpentine oil mixtures were lower than that of diesel. However, the thermal efficiency of blend JWT40 was very similar to diesel at 75% load (Fig.4). The Oxygen contained in the fuel improves the combustion quality, but higher viscosity and reduced volatility of plant oils. However, the higher viscosity and reduced volatility lead to poor atomization and combustion properties. It was determined that for higher WT concentrations, the BTE deceases as compared to mineral diesel.

6.1.3. Exhaust gas temperature (EGT)

The EGT of Jatropha, Jatropha – Mineral Turpentine blends were comparable to those of diesel at all the loads (Fig.5). It was observed that the exhaust gas temperature increased with a rise in load in all cases. The highest value of the exhaust gas temperature of 422° C was obtained when using the JWT10 blend. In the same case, the temperature value of D100 was found to be 410° C.

6.2. Pollutant emissions

6.2.1. Carbon Monoxide (CO)

The emissions of CO increase with load (Fig.6). The greater the load, the richer air-fuel mixture is burnt, and hence more CO is formed owing to the oxygen deficiency. The increase in CO emission at no load and part load may be due to the availability of less oxygen for the combustion. At 75% Load, the CO emissions for J100, JWT30, JWT20 and JWT10 are negligible. In all other cases the CO increases when using JWT. This is considered to be the result of: (1) At the maximum engine load, the temperature inside the cylinder is higher, which favor the atomization of the blends, mix and then an

improved burning can be accomplished; (2) Oxygen content of the plant oil creates it at ease to burn at the upper temperature in the cylinder [9, 30].

6.2.2. Hydrocarbons (HC)

Jatropha- Wood turpentine oil blend JWT10, JWT20, JWT30, JWT40 and JWT50 exhibit lower HC emissions compared to diesel. The increase in HC emission for unloaded engine may be due to the availability of less oxygen during the combustion. At 75% load, HC emissions for J100, JWT10, JWT20 and JWT30 are 78.6%, 42.8%, 50% and 64.3% lower and at 100% load, HC emissions were 57.1%, 61.9%, 66.67% and 71.4% lower as compared to diesel (Fig.7). It could be observed that HC emissions rise with the percentage of WT in the blends. This is due to relatively more oxygen available for the reaction when added JWT10, JWT20 and JWT30 blends are injected into the cylinder at higher engine load. The plant oil fuel blend emits lower HC emissions than diesel, except for 50% of the plant oil with 50% diesel blend [9, 30].

6.2.3. Carbon Dioxide (CO₂)

The lowermost CO_2 emission values were obtained for JWT20 (Fig.8). CO_2 emissions for lower blend concentrations were near to diesel. However, for higher mixture concentrations, CO_2 releases increased considerably, since plant oil contains oxygen portion; the carbon content is reasonably lower in the same volume of fuel consumed at the identical engine load, subsequently the CO_2 releases commencing the plant oil and its mixtures are lesser.

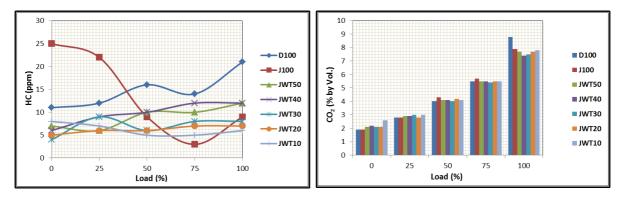


Figure 7 HC vs. Load

Figure 8 CO₂ vs. Load

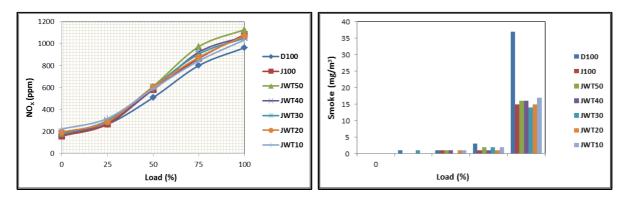


Figure 9 NO_x vs. Load

Figure 10 Smoke vs. Load

6.2.4. Nitric oxides (NO_x)

The variation of NO_x emissions from jatropha biodiesel, jatropha-wood turpentine mixtures with respect to diesel are displayed in Fig.9. The NO_x emissions increased with the load for all jatropha-wood turpentine mixtures. The most important issue of the NO_x emissions is the burning temperature inside the cylinder and the confined stoichiometric ratio of the blend. The NO_x emissions at 75% of load for JWT10, JWT20, JWT30, JWT40, JWT50, J100 and neat diesel are 845 ppm, 877 ppm, 907 ppm, 924 ppm, 974 ppm, 867 ppm and 802 ppm respectively. At full load, the NO_x values for JWT10, JWT20, JWT30, JWT40, JWT50, J100 and neat diesel are 1035 ppm, 1071 ppm, 1052 ppm, 1066 ppm, 1129 ppm, 1084 ppm and 964 ppm respectively. The NO_x emission reduces with jatropha-wood turpentine blends due to the reduced combustion temperature in the cylinder at 75% load and full load. Biodiesel premixes have greater oxygen absorptions at lower loads and therefore create more NO_x. This behavior has been linked with the nonlinear nature of the chemical rate disparity with temperature. NO_x creation and destruction is a kinetically-controlled system. NO_x emissions decrease at higher loads as a concern of smaller residence periods of gases in the combustion chamber. The greater cetane number of biodiesel infers shorter ignition delay which diminishes the burning temperature as well as the residence time, consequently producing less NO_x formation at higher loads [10,13].

6.2.5. Smoke Opacity

The smoke opacity rises with an increase in Jatropha oil concentration in mixtures predominantly at upper loads (Fig.10). At 75% load, the smoke opacity for Diesel, J100, JWT10 and JWT20 are 3mg/m³, 1mg/m³, 2 mg/m³ and 1mg/m³, while at 100% load the smoke opacity for Diesel, J100, JWT10, JWT20, JWT30, JWT40 and JWT50 were 37mg/m³, 15mg/m³, 16mg/m³, 16mg/m³, 14mg/m³, 15mg/m³ and 17mg/m³. Higher smoke opacity is considered to be a cause of the poorer atomization properties. Bulky fuel particles and higher viscosity of Jatropha oil effect in poor atomization of fuel mixtures.

6.3. Combustion Parameters

6.3.1. Cylinder Pressure

The peak pressure established at maximum load is displayed in Fig.11. The magnitude of peak pressure depends on the quantity of fuel vaporized in ignition delay time, which is a distinctive of the fuel. The viscosity has a substantial role in the quantity of fuel vaporized. The peak pressure established for J100 is 72.33 bar at 8deg ATDC, JWT10 is 72.76 bar at 8deg ATDC, JWT20 is 72.97 bar at 8deg ATDC, JWT30 is 71.17 bar at 8deg ATDC, JWT40 is 72.51 bar at 9deg ATDC, JWT50 is 72.55 bar at 10deg ATDC and for neat diesel it is 72.33 bar at 8deg ATDC. It can be observed that the cylinder pressure of jatropha biodiesel, jatropha – turpentine blends are nearer to neat diesel due to better atomization and mixing. In a CI engine, the rate of pressure rise depends on the combustion rate in the early phases, which in turn is prejudiced by the volume of fuel taking part in the uncontrolled combustion. The uncontrolled combustion stage is influenced by the auto ignition delay as well as the fuel quantity injected during this time frame.

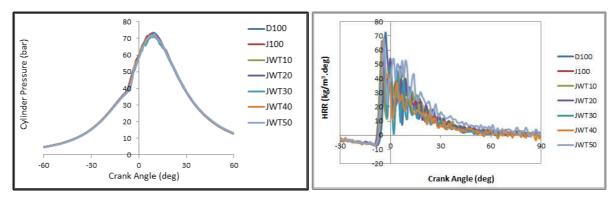


Figure 11 Cylinder Pressure vs. Crank Angle

Figure 12 HRR vs. Load

6.3.2. Heat Release Rate (HRR)

The HRR for straight jatropha biodiesel, jatropha – wood turpentine mixture and diesel are displayed in Fig. 12. The HRR at 50% of load for diesel is 72.44 kJ/m³deg.CA, for JWT30 blend it is 65.41 kJ/m³deg.CA and for JWT40 blend it is 68.39 kJ/m³deg.CA. The HRR at 75% of load for J100 biodiesel is 66.27 kJ/m³deg.CA, for JWT10 blend, it is 65.37% and for JWT20 blend it is 57.03 kJ/m³deg.CA. The HRR at full load for JWT50 biodiesel is 67.83 kJ/m³deg.CA. The HRR of diesel, JWT40 and JWT50 blends is similar. With the increase of turpentine in the jatropha biodiesel mixture it is observed that the CA of peak HRR is advanced.

7. Conclusion

The main objective of this work is to search a green fuel as a replacement for diesel for CI engines. The performance, combustion and pollutant features of Jatropha biodiesel-Wood Turpentine (JWT) blends have been explored and equated to the standard diesel.

- BSFC increases with a higher proportion of JWT blends as compared to diesel in the entire load range due to lower calorific value. BTE of JWT50 blend was similar to diesel at 75% and 100% loads. The EGT of J100 and JWT blends were similar to diesel at all the loads and EGT increases with the rise in load.
- The emissions of CO rise with increasing load. At 75% load, CO emissions for J100 and JWT blends were negligible. The HC emissions of JWT blends were lower at 75% of load due to more oxygen available for the reaction in the cylinder. CO₂ for lower blend concentrations were similar to diesel, but for higher blend concentrations, CO₂ increased significantly. The NO_x emissions increased with the load for all JWT blend. At 75% and 100% loads smoke opacity for JWT blends were lower than that of diesel.
- The peak pressure developed for J100 is 72.33 bar and JWT20 is 72.97 bar at 8deg ATDC. The degree of peak pressure depends on the quantity of fuel vaporized over ignition delay time. The peak HRR observed for JWT40 blend is 68.39kJ/m³deg.CA. With the rise of turpentine in the jatropha biodiesel mixture it is witnessed that the CA of peak HRR is progressive.

The experimental results prove that JWT blends can be substituted for diesel in CI engines.

Nomenclature

C.I	:	compression ignition
J100	:	jatropha biodiesel
JWT	:	jatropha biodiesel-wood turpentine
JWT 10	:	jatropha biodiesel (90%) + wood turpentine (10%)
JWT 20	:	jatropha biodiesel (80%) + wood turpentine (20%)
JWT 30	:	jatropha biodiesel (70%) + wood turpentine (30%)
JWT 40	:	jatropha biodiesel (60%) + wood turpentine (40%)
JWT 50	:	jatropha biodiesel (50%) + wood turpentine (50%)
BTE	:	brake thermal efficiency, [%]
BSFC	:	brake specific fuel consumption, [kg/kW-hr]
EGT	:	exhaust gas temperature, [⁰ C]
CO	:	carbon monoxide, [%]
НС	:	hydrocarbons, [ppm]
CO_2	:	carbon di-oxide, [%]
NO_x	:	nitrides of oxygen, [ppm]
HRR	:	heat release rate, [kJ/m ³ .deg]
CA	:	crank angle, [deg]
ATDC	:	after top dead centre
BTDC	:	before top dead centre

References

- [1] Imdat Taymaz., Mehmet Coban., Performance and emissions of an engine fuelled with a biodiesel fuel produced from animal fats, *Thermal Science*, 17 (2013), pp. 233-240.
- [2] Becker, K. and Makkar, H.P.S., Toxic effects of Phorbol esters in carp (Cyprinus carpio L.), *Veterinary Human Toxicology*, 40 (1998), pp.82–86.
- [3] Ahmet Necati Ozsezen and Mustafa Canakci, The emission analysis of an IDI diesel engine fueled with methyl ester of waste frying palm oil and its blends, *Biomass and Bioenergy*, 34 (2010), pp. 1870-1878.
- [4] Mofijur, M., Masjuki, H.H., *et al.*, Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective, *Energy*, Vol.55 (2013), pp.879-887.
- [5] Palash, S.M., Kalam, M.A., *et al.*, Impacts of biodiesel combustion on NOx emissions and their reduction approaches, *Renewable and Sustainable Energy Reviews*, 23 (2013), pp.473– 490.
- [6] Ramesh, D., Sampathrajan, A., Investigations on Performance and Emission Characteristics of Diesel Engine with Jatropha Biodiesel and Its Blends, *Agricultural Engineering International*, *CIGR E-journal*, 10 (2008), pp. 07-13.
- [7] Demirbas, A., Biodiesel fuels from vegetable oils via catalytic and non-catalytic super critical alcohol transesterifications and other methods: a survey, *Energy Conversion and Management*, 44 (2003), pp.2093–2109.
- [8] Schuchardt, U., *et al.*, Transesterification of vegetable oils: a review, *Journal of the Brazilian Chemical Society*, 9 (1998), pp.199–210.

- [9] Wang, Y.D., *et al.*, An experimental investigation of the performance and gaseous exhaust emissions of a diesel engine using blends of a vegetable oil, *Applied Thermal Engineering*, 26 (2006), pp.1684–1691.
- [10] Kumar, A. and Sharma, S., An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review, *Industrial crops and products*, 28 (2008), pp.1–10.
- [11] Karikalan, L. and Chandrasekaran, M., Investigation on Emission Characteristics of C.I Engine using Vegetable Oil with SCR Technique, *International Journal of Renewable Energy Research*, 3 (2013), 4, pp.969-975.
- [12] Jain, S. and Sharma, M.P., Engine performance and emission analysis using oxidatively stabilized Jatropha curcas biodiesel, *Fuel*, 106 (2013), pp.152–156.
- [13] Mofijur, M., *et al.*, Performance and emission analysis of Jatropha curcas and Moringa oleifera methyl ester fuel blends in a multi-cylinder diesel engine, *Journal of Cleaner Production*, 65 (2014), pp.304-310.
- [14] Nabi, M., Theoretical investigation of engine thermal efficiency, adiabatic flame temperature, NOx emission and combustion-related parameters for different oxygenated fuels, *Applied Thermal Engineering*, 30 (2010), pp.839–844.
- [15] Kasaby, M.E. and Nemit-allah, M.A., Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel, *Alexandria Engineering Journal*, 52 (2013), pp.141–149.
- [16] Mofijur, M., *et al.*, Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective, *Energy*, Vol.55 (2013), pp.879-887.
- [17] Palash, S.M., *et al.*, Impacts of biodiesel combustion on NOx emissions and their reduction approaches, *Renewable and Sustainable Energy Reviews*, 23 (2013), pp.473–490.
- [18] Ramesh, D. and Sampathrajan, A., Investigations on Performance and Emission Characteristics of Diesel Engine with Jatropha Biodiesel and Its Blends, *Agricultural Engineering International, CIGR E-journal*, 10 (2008), pp. 07-13.
- [19] Nitin, S., *et al.*, An experimental investigation of performance and exhaust emission of a diesel engine fuelled with Jatropha biodiesel and its blends, *International Journal of Energy and Environment*, 3 (2012), pp.915-926.
- [20] Rajasekar, E., et al., Review of NO(x) reduction technologies in CI engines fuelled with oxygenated biomass fuels, *Renewable and Sustainable Energy Reviews*, 14 (2010), pp.2113– 2121.
- [21] Shivakumar, P., *et al.*, Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings, *Applied Energy*, 88 (2011), pp.2344–2354.
- [22] Robert, J.L., *et al.*, Emissions and Performance Characteristics of A 4-Stroke, Direct Injected Diesel Engine Fueled With Blends of Biodiesel and Low Sulfur Diesel Fuel, *SAE* Paper No. 950054, 1995.
- [23] Senthil Kumar, M., *et al.*, An experimental comparison of methods to use methanol and Jatropha oil in a compression ignition engine, *Biomass and Bioenergy*, 25 (2003), pp.309 318.
- [24] Sundaresan, M., *et al.*, Analysis of combustion, performance and emission characteristics of blends of methyl esters of Jatropha Oil (MEJ) in DI diesel engine, *SAE* 2007-32-0066, 2007.

- [25] Teoh, Y.H., et al., Effects of Jatropha biodiesel on the performance, emissions, and combustion of a converted common-rail diesel engine, *Royal Society of Chemistry Advances*, 4 (2014), pp.50739–5075.
- [26] Gunea, C., *et al.*, The effects of pilot fuel quantity on dual-fuel engine ignition delay, *SAE* Paper No. 982453, 1998.
- [27] Jain, S. and Sharma, M.P., Prospects of biodiesel from Jatropha in India: A review, *Renewable and Sustainable Energy Reviews*, 14 (2010), pp.763–771.
- [28] Mofijur, M., *et al.*, Comparative Evaluation of Edible and Non-Edible Oil Methyl Ester Performance in a Vehicular Engine, *Energy Procedia*, 75 (2015), pp.37 43.
- [29] Gayatri, K.M., et al., Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging. Journal of Energy Resources Technology, 138 (2016), pp.011202-13.
- [30] Deepak, A. and Avinash Kumar, A., Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine, *Applied Thermal Engineering*, 27 (2007), pp.2314–2323.
- [31] Chauhan, B.S, *et al.*, Performance and emission studies on an agriculture engine on neat Jatropha oil, *Journal of Mechanical Science and Technology*, 24 (2010), pp.529-535.
- [32] Ganapathy, T., *et al.*, Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine, *Applied Energy*, 88 (2011), pp.4376–4386.
- [33] Biswas, P.K., *et al.*, Biodiesel from jatropha: Can India meet the 20% blending target, *Energy Policy*, 38 (2010), pp.1477–1484.
- [34] Cenk Sayin and Metin Gumus, Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel, *Applied Thermal Engineering*, 31 (2011), pp.3182-3188.
- [35] Chauhan, B.S., *et al.*, A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends, *Energy*, Vol.37 (2012), pp.616-622.
- [36] Mahalakshmi, N.V. and Karthikeyan, R., Performance and Emission Characteristics of Four Stroke D.I. Diesel Engine Fueled With Turpentine Diesel Blends, *Proceedings*, Internal Combustion Engine Division Fall Technical Conference, 2005, pp. 233-239.
- [37] Anandavelu, K., *et al.*, Performance and Emission Evaluation of Low Heat Rejection Direct Injection Diesel Engine Fueled by Diesel–Turpentine Oil Blends, *Proceedings*, International Mechanical Engineering Congress and Exposition, 7 (2010), pp.1581-1587.