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Abstract
Optical coherence tomography (OCT) is a widely used imaging technique in ophthalmology for diagnosis and treatment.

Recent advances in deep neural networks (DNNs) and vision transformers (ViTs) have paved the way for automated eye/

retinal disease classifications and segmentations using OCT or spectral domain OCT (SD-OCT) images. Diabetic macular

edema (DME), choroidal neovascularization (CNV), and Drusen are particularly challenging to accurately classify using

OCT images because of their subtle differences and intricate features. Currently, the algorithms reported in the literature

using DNNs or ViTs are computationally complex, consider fewer diseases, and are less accurate. This study proposes a

hybrid SqueezeNet-vision transformer (SViT) model that combines the strengths of SqueezeNet and vision transformer

(ViT), capturing local and global features of OCT images to achieve more accurate classification with less computational

complexity. The proposed model uses the OCT2017 dataset for training, testing, and validation, and it performs both binary

classification (normal vs disorders) as well as multiclass classification (DME, CNV, Drusen, and normal). As compared to

state-of-the-art CNN-based and standalone Transformer models, the proposed SViT model achieves an overall classifi-

cation accuracy of 99.90% for multiclass classification (CNV: 100%, DME: 99.9%, Drusen: 100%, and normal: 100%).

With a good generalization ability, the model can be used to improve patient care and clinical decision-making across a

broader range of applications.

Keywords OCT � Eye disorders � Retinal diseases � Classification � SqueezeNet � Vision transformer � Hybrid model

1 Introduction

In ophthalmology, early detection and diagnosis of retinal

diseases is a key component of patient care. Retinal disease

detection is one of the most challenging areas of biomed-

ical optics research. A rapid, high-resolution imaging sys-

tem is being developed that is capable of detecting disease-

specific markers in the retina but hasn’t met clinical needs

yet. OCT is a non-invasive, contactless imaging modality

that provides cross-sectional images of a variety of retinal

abnormalities [1]. OCT images are frequently used in

ophthalmology to assess Diabetic Macular Edema (DME),

diabetic retinopathy (DR), and Choroidal Neovasculariza-

tion (CNV). OCT has several advantages over other
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imaging procedures, including real-time imaging, three-

dimensional imaging without dilation of the patient, and

the use of a harmless imaging probe. Additionally, OCT

images can be used in the early diagnosis of retinal diseases

by determining the underlying causes of the condition [2].

Classification of OCT images is a critical step in retinal

image analysis for medical applications. This includes fully

automated or semi-automated OCT image analysis or OCT

image-based diagnosis [3]. The accurate classification of

OCT images is essential for medical professionals to

diagnose retinal diseases quickly and accurately. In con-

trast, manual interpretation of OCT images can take a long

time and be prone to errors. Aside from clinical diagnosis

by eminent ophthalmologists, artificial intelligence (AI)

methods play an important role in retinal image diagnosis,

and they produce results that are as similar as possible to

those of an ophthalmologist. The development of auto-

mated deep-learning models for OCT image classification

has become one of the hottest research topics in ophthal-

mology in the last few years [4–6]. In addition to being

more efficient than conventional machine learning models,

deep learning models extract more detailed information

from input pathological images for better decision-making.

In the past few years, deep learning has become

increasingly popular in retinal image classification based

on Convolutional Neural Networks (CNNs) using OCT

images [5, 6], transfer learning approaches [6, 7], capsule

networks [4], and vision transformers [8]. Deep learning

models are effective at the classification of OCT images

because they can extract patterns and features from labeled

images. As a result, the labeled images are fed into the

model, which then learns a relationship between inputs and

labels. As a result of the training, the model can be used to

classify unknown OCT images based on learned patterns

and features. In medical image classification applications,

CNNs are the most commonly used type of DNNs

[5, 9–11]. CNNs are used to automatically extract relevant

features from images. As a result, CNN is especially

effective when dealing with images that have a high

dimensionality, like those found in medical settings. Over

the past few years, several CNN-based image classification

models have been proposed [12–14]. However, these

models have some limitations, including a requirement for

a large number of training images, an inability to capture

long-range dependencies between features, and limited

ability to incorporate prior knowledge of retinal structure.

Recent developments in OCT image classification have

led to the development of vision transformer (ViT) [15]

models to address the limitations of existing CNN or DNN-

based models. The ViT model converts input images into

token sequences that can be encoded by a transformer. ViT

can capture long-range dependencies among image fea-

tures, which contributes to its ability to classify and

segment images effectively [20, 21]. The model has

demonstrated remarkable performance in retinal image

classification tasks [8, 16–19]. Due to its ability to capture

long-range dependencies between features, ViT is most

suitable for OCT image classification because it is more

effective for tasks that require a global understanding of the

image. The tokenization process of OCT images can also

be enhanced by incorporating the unique structural char-

acteristics. Hence, it is more efficient and cost-effective

than other methods to train on a relatively small number of

images [8, 16, 17].

Even though ViT performs well in medical image

classifications or retinal image classifications, its perfor-

mance depends only on the number of images and features

used. The hybrid Transformer model combines the benefits

of CNNs and Transformers to revolutionize image pro-

cessing across a wide range of fields [16–19, 22]. A hybrid

transformer combines the ability of CNNs to capture local

spatial features with the ability of transformers to model

long-range dependencies. Through these models, it is

possible to process medical images efficiently and to cap-

ture long-range dependencies between features, which

results in better accuracy in tasks like segmentation and

classification [23].

In a recent study, Khan et al. [24] examine the inter-

actions between ViTs and CNNs, emphasizing the emer-

gence of hybrid models combining convolution operations

and self-attention mechanisms. Besides discussing key

components such as attention mechanisms, positional

embeddings, and convolution operations, it provides a

detailed taxonomy of hybrid architectures that can capture

both local and global image features. A total of nine

variants are presented in this context for integrating CNNs

with ViTs. Nanni et al. proposed a CNN-based image

classification system combining CNNs with Transformer

models in [25]. In this paper, the ensemble approach is

presented as a novel optimization algorithm, and it out-

performs traditional optimization methods. The first-of-its-

kind research demonstrates a significant improvement in

detecting small/medium images by combining CNNs and

transformers. Despite this, these models are often difficult

to train because they have high computational require-

ments. Because there is a trade-off between computational

efficiency and model accuracy, developing accurate hybrid

models that are efficient and accurate at the same time is

difficult. A lightweight, efficient model must balance

accuracy and computational complexity in automated

medical image-driven diagnosis.

The previous works had several major limitations: (i) a

less accurate classification of retinal images, (ii) a higher

computational complexity, (iii) ViT-based models require

more training images for better classification, and (iv)

fewer classes are considered for classification (retinal
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diseases). Hence, we are motivated to develop a light-

weight hybrid DNN-ViT model with less computational

complexity and high classification accuracy for retinal

image classification. In this study, we present a hybrid

OCT image classification method that combines Squeeze-

Net and ViT for retinal image classification. In comparison

to traditional CNNs, SqueezeNet is lightweight and

achieves high accuracy with fewer parameters. This is

accomplished through SqueezeNet’s ‘‘fire modules’’ that

reduce the number of parameters required for conventional

CNNs. As a result of the research, the following contri-

butions have been made.

1. This study proposes a lightweight hybrid model for

OCT image classification called SViT, that extracts

low-level and high-level features as well as global

dependencies using SqueezeNet and Vision Trans-

former (ViT).

2. Compared to other hybrid or standalone retinal image

classification models, the proposed hybrid model uses

fewer parameters and requires a shorter inference time.

3. A hybrid model was developed for binary classification

(normal and retinal diseases) and multi-class classifi-

cation (normal, DME, CNV, and Drusen).

4. An explainable analysis was performed on the hybrid

model to interpret its learned features and shed light on

its significant features.

SViT is tested and trained on the publicly available

OCT-2017 [26] dataset, which demonstrates superior per-

formance metrics and computational efficiency compared

to existing state-of-the-art models. In the remainder of this

paper, we organize the information as follows. This paper

is organized as follows: Sect. 2 presents a review of rele-

vant literature, emphasizing the most recent studies on

similar topics. Section 3 describes the dataset and

methodology used in this study. We present the mathe-

matical description of the classification problem and the

model’s architecture in Sect. 4. In Sect. 5, empirical find-

ings, an explanation of the analysis, a graphic representa-

tion, and an ablation study are presented. In Sect. 6, we

conclude this paper with future research directions.

2 Related works

Over the past several decades, deep learning techniques for

classifying OCT images have evolved and diversified.

According to Omid et al., they categorized twelve different

types of pathologies based on the MedMNIST-2D database

using the medical vision transformer (MedViT). The pro-

posed CNN/vision transformer hybrid model has achieved

a mean classification rate of 0.961 for four classes (DME,

CNV, normal, and Drusen) using a limited number of

parameters (45.8 M). Ma et al. propose a hybrid ConvNet-

Transformer network (HCTNet) has been proposed for

classifying retinal images into four classes from two

datasets (Spectral Domain OCT image (SD-OCT) [6],

OCT2017) [16]. With the OCT2017 dataset, they achieved

a maximum classification rate of 91.56%, and with the SD-

OCT dataset acquired in [6], they achieved a maximum

classification rate of 86.18%. A hybrid CNN-Vit (Hybrid

CNN-ViT) method was used for segmenting retina layers

from OCT images [17]. In this hybrid network, called

transformer segmentation network (TransSegNet), two

datasets have been used to train and test it. They found that

their proposed network performed better than fully con-

volutional networks (FCNs), segmentation networks (Seg-

Nets), and U-Nets in terms of segmentation performance.

In accordance with TransSegNet, datasets 1 and 2 exhibit

88.28/82.40 precision, recall, and dice similarity coefficient

(DSC) of 92.29/83.57, 89.76/81.48, respectively.

The ViT proposed by Jiang et al. al. [18] is used to

classify three classes (AMD, DME, and normal) in OCT

images, as reported. A comparison was conducted between

the proposed ViT and conventional CNNs such as VGG16,

ResNet50, DenseNet121, and EfficientNet. A maximum

mean classification rate of 99.69% was achieved by the

proposed ViT in classifying three classes with an inference

time of 17 ms. A new method of classifying retinal dis-

eases was developed using texture features extracted from

OCT images by using InceptionV3 and ResNet-50 DNNs,

as well as shape features extracted from vision transform-

ers (ViT) [19]. In multiclass classification using images

from the OCT2017 dataset, the maximum F1-score was

0.92 with an accuracy of 0.9237 achieved by the

researchers. A deep multi-layered CNN was trained by

Kuwayama et al. to categorize OCT images into healthy,

dry age-related macular degeneration (AMD), wet AMD,

and diabetic macular edema (DME). In a study, Islam et al.

[28] and Li et al. [29] used deep transfer learning models to

automatically diagnose diabetic retinopathy in OCT ima-

ges, demonstrating the power of pre-trained networks in

automatic diagnosis. A Multi-scale Deep Feature Fusion

(MDFF) network developed by Das et al. [30] contributed

significantly to this field by combining discriminative

features with complementary information for more accu-

rate classification.

In this study, Huang et al. [31] proposed a Layer-Guided

CNN (LGCNN) to improve the classification of OCT

images of normal retinas and common macular pathologies

like CNV and DME. The ensemble learning models for

retinal thickness assessment and classification developed

by Cazaas-Gordón et al. [32] and Anoop et al. [33] built

upon the success of CNN-based approaches. In a new

study, Tsuji et al. [4] propose a capsule network based on

OCT images to classify eye diseases. As a result, they
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achieved a mean accuracy of 99.60% in classifications. The

authors of [34] proposed using OCT images to construct a

network for the classification of retinal images based on a

fusion of networks. Three DNNs (Inception V2, Inception-

ResNet, and Xception) have been combined to identify

retinal images as normal, CNV, DME, and Drusen. As a

result of their proposed fusion network, they were able to

achieve a maximum mean classification rate of 98.7% with

an AUC of 99.1%. This network also achieved a maximum

recall and specificity of 0.987 and 0.996, respectively.

Many factors are limiting the use of CNN-based OCT

image classification, such as their high computational

complexity and long training times, which make it

unsuitable for real-time clinical applications. Moreover,

they require extensive annotated datasets, making it diffi-

cult to obtain expert-labeled data [35]. It is difficult to

interpret CNNs because of their black-box nature, resulting

in a lack of acceptance among medical professionals. The

inconsistency of OCT devices, inconsistencies in acquisi-

tion protocols, and variations in image quality also com-

promise their performance, emphasizing the necessity of

robust models. It is imperative that CNNs be able to

overcome these limitations in clinical settings if they are to

be used more widely.

In terms of OCT image classification, the ViT algorithm

[36] might be able to address the limitations of CNNs. As

images are treated as sequences of tokens, ViTs allow an

understanding of the global context, which improves model

interpretability and addresses the black-box issue. Due to

their ability to learn with fewer samples, ViTs reduce the

need for large, annotated datasets by incorporating self-

attention mechanisms. Moreover, ViTs can be trained on

large-scale external datasets and fine-tuned for specific

tasks using transfer learning. As a result of their scalability

and computational efficiency, ViTs are suitable for real-

time clinical applications despite variations in image

quality and acquisition protocols.

ViTs have been widely employed to detect eye disorders

and other image classification problems. The classification

of glaucomatous eye conditions based on fundus images by

ViT-based ensembles is effective by Wassel et al. [37]. In

this paper, they evaluated several vision transformer

models and suggested an ensemble approach based on six

publicly available datasets. The best standalone model of

ViTs has a sensitivity of 92.57%, a specificity of 96.94%,

and an AUC of 97.9%, which indicates that they can be

used to diagnose glaucoma. Using state-of-the-art tech-

nology, Fan et al. [38] examined the applicability and

interpretability of ViT for glaucoma detection. These

comprehensive experimental results demonstrate strong

generalization across diverse ethnic groups represented in

the external test data, according to the authors. In addition,

the ViT used in this study could locate the neuroretinal rim

and detect glaucoma based on its features.

OCT images present numerous challenges in the

detection and classification of eye disorders, including

image quality issues, high dimensionality, heterogeneous

appearances, imbalanced data, inter- and intra-observer

variability, as well as interpretability and generalizability.

By leveraging self-attention mechanisms that capture glo-

bal context and relationships, ViTs can meet these chal-

lenges effectively with high-dimensional OCT images.

Using the Transformer architecture, ViTs can handle

heterogeneity in appearance and provide better inter-

pretability through attention maps, making their decision-

making process more understandable. Furthermore, ViTs

can benefit from pre-training on large datasets, reducing the

scarcity of large, annotated OCT datasets and improving

the generalization of models across multiple device types

and patient populations. Consequently, ViTs is capable of

providing a more robust and reliable solution for detecting

and classifying eye disorders based on OCT images. Wen

et al. [39] developed a novel Lesion Localization Convo-

lution Transformer (LLCT) for ophthalmic disease classi-

fication and lesion detection using OCT images. As

compared to conventional deep learning architectures,

LLCT combines convolution and self-attention mecha-

nisms to improve classification accuracy, sensitivity, and

specificity. As a result of the experiments, overall accuracy

improved by 7.6%, sensitivity improved by 10.9%, and

specificity improved by 9.2%. Furthermore, LLCT suc-

cessfully localized lesions in retinal OCT images without

labeling them.

According to He et al. [40], an interpretable Swin-Poly

Transformer network was developed to automate retinal

OCT image classification. A network forms connections

between adjacent non-overlapping windows in the pre-

ceding layer by adjusting the window partition, allowing

features to be modeled across several scales. Furthermore,

by altering the significance of polynomial bases, the Swin-

Poly Transformer improves classification by fine-tuning

cross-entropy. Additionally, a confidence score map is

provided as part of this approach to guide medical pro-

fessionals in understanding how the model makes its

decisions. Based on the OCT2017 dataset, this model

shows an overall classification accuracy of 99.80% for

CNV, DME, Drusen, and Normal cases. The authors also

evaluated this dataset using ViT, Swin Transformer [41],

and LLCT, all of which showed marginally lower

performance.

Swin Transformer’s complexity results in higher com-

putational costs and memory requirements, which could

inhibit its use in real-world scenarios, especially when

dealing with large datasets or resource-constrained devices.

Furthermore, Swin Transformer adjusts window partitions,
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so the choice of window size and partitioning strategy may

influence its effectiveness. Considering these limitations,

hybrid transformer models, such as SqueezeNet-ViT,

appear to be a compelling option. Through the combination

of SqueezeNet and Vision Transformer strengths, a hybrid

approach is intended to achieve high classification perfor-

mance while maintaining a lightweight network structure.

3 Materials and methods

The proposed hybrid model (SviT) for retinal image clas-

sification using OCT images is shown in Fig. 1. In this

section, the dataset and underlying methods used in this

investigation are described, allowing replication of the

experiments and validation of the results. In addition to

providing information about the nature, origin, quality, and

preparation of the dataset, the comprehensive section pro-

vides the context needed for accurate interpretation and

application of the results.

3.1 Dataset and preprocessing of OCT images

In this research, the proposed SviT is trained and tested on

the OCT2017 [42] dataset. According to Table 1, this

dataset contains images of four different classes: CNV,

DME, Drusen, and Normal. The images are all JPEG for-

mats with different dimensions, which are resized to

227 9 227 as required by SqueezeNet.

3.2 SqueezeNet model

The SqueezeNet architecture is a lightweight deep CNN

design developed to reduce parameters while maintaining

competitive performance on image classification tasks [11].

SqueezeNet’s architecture is shown in Fig. 2 and summa-

rized as follows:

1. Initial convolutional layer: A single 3 9 3 convolu-

tional layer with 96 filters and has a stride factor of 2.

2. Max-pooling layer: A 3 9 3 max-pooling layer with a

stride factor of 2.

3. Fire modules (FM): A sequence of 8 Fire modules

(Fire2 to Fire9), each consisting of a squeeze layer and

an expand layer.

• Squeeze layer: A 1 9 1 convolutional layer with a

smaller number of filters. This layer is responsible

for reducing the number of channels in the input

feature map.

• Expand layer: A combination of 1 9 1 and 3 9 3

convolutional layers that increase the number of

channels, effectively expanding the compressed

feature map obtained from the squeeze layer.

4. Final convolutional layer: A 1 9 1 convolutional

layer with a number of filters equal to the number of

classes in the classification task (e.g., 1000 filters for

ImageNet).

5. Global average pooling (GAP) layer: A global

average pooling layer that reduces the spatial dimen-

sions of the feature map to 1 9 1.

6. Softmax activation: A softmax activation function

applied to the output of the global average pooling

layer to produce class probabilities.

The following steps are taken to incorporate SqueezeNet

for feature extraction:

1. Removal of the final classification layers: The

architecture of SqueezeNet has been modified to

remove the final convolutional layer, global average

pooling layers, and softmax layers. In this way, high-

level feature maps can be generated before the feature

extractor is able to classify them.

2. Processing of input images: OCT images are fed into

the modified SqueezeNet architecture, which produces

feature maps at the highest level. Feature maps

constructed with SqueezeNet retain their efficiency

and compactness while capturing important input

image information.

3. Integration with ViT: A feature map is imported into

ViT after being extracted from SqueezeNet. In this

step, feature maps are flattened and divided into

nonoverlapping patches, which ViT linearly embeds

and processes.

3.3 Vision transformer

A ViT architecture for image classification includes

embedding, position encoding, and Transformer encoder

layers [8]. It consists of several sub-layers, including Multi

Head Self Attention (MHSA), Feed Forward Network

(FFN), and Layer Normalization (LN). Below is a

description of the key components of the ViT, based on the

schematic shown in Fig. 3.

1. Input image processing: First, the input image is

resized to a fixed resolution and divided into equal-

sized non-overlapping patches. By using a linear

projection layer, patches are flattened into 1D vectors

and linearly embedded into continuous representations.

Hence, a sequence of embeddings of fixed-size patches

is generated.

2. Positional encoding: A positional encoding is added to

patch embeddings to incorporate spatial information. It

uses these encodings to distinguish patches based on

their positions in the input image, and they can either

be learned or fixed.
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3. Transformer encoder layers: This sequence of patch

embeddings is fed into a Transformer architecture,

which consists of identical encoder layers. There are

multiple sub-layers in an encoder layer, including a

multiheaded self-attention (MHSA) layer, a feedfor-

ward layer, a normalization layer, and a dropout layer.

During the multi-head attention layer, relationships

between patches are captured, while in the feedforward

layer, embeddings are transformed nonlinearly.

Additionally, the LN stabilizes the training process

and prevents overfitting. Finally, the output is produced

by the encoder’s last normalization layer.

4. Classification head: During the image classification

task, the embedding associated with the first position

(usually called a ‘‘classification token’’) is used to

generate the output probabilities. It is usually achieved

by applying a linear layer followed by a softmax

activation function.

ViT has demonstrated strong performance in image

recognition, rivaling or even surpassing traditional CNNs.

Furthermore, the model’s performance improves as the size

and scale of the dataset increase, proving that it is capable

of efficiently utilizing large datasets and computational

resources.

Fig. 1 Overall proposed methodology for retinal image classification

Table 1 OCT2017 Data Distribution [27]

Classes No. of training images No. of testing images

CNV 37205 250

DME 11348 250

Drusen 8616 250

Normal 26315 250

Total 83484 1000
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4 Proposed OCT image classification model

The mathematical formulation of the proposed OCT clas-

sification problem and the architecture of the SViT clas-

sifier are described in detail in this section. The proposed

SViT classifier is illustrated in Fig. 4.

4.1 Problem definition

The OCT classification problem is modeled as a multiclass

classification problem. Given a training dataset

Tr ¼ x1; y1ð Þ; x2; y2ð Þ; :::; xn; ynð Þ, where xi is an OCT

image and yi 2 CNV; DME; Drusen; Normalf g is its

corresponding label, the goal is to learn a function f : X !
Y that maps each input image xi to its correct label yi. The

function f is trained to minimize a loss function defined as

the average of the per-class cross-entropy loss LCLS and the

regularization loss LREG. The loss function is given as in

Eq. (1), where fh is the learned mapping function, k is the

regularization coefficient and n is the number of samples.

L h;Trð Þ ¼ 1

n

Xn

i¼1

LCLS xi; yi; fhð Þ þ kLREG fhð Þ ð1Þ

The loss function LCLS is calculated using cross entropy,

which is defined as in Eq. (2). The loss function LREG is to
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encourage the network to learn compact and non-overlap-

ping regions, defined as in Eq. (3).

LCLS xi; yi; fhð Þ ¼ � 1

n

Xn

i¼1

yi log fh xið Þð Þ ð2Þ

LREG fhð Þ ¼ 1

2n

Xn

i¼1

fh xið Þ � xik k22 ð3Þ

4.1.1 Local feature extraction with SqueezeNet

A local feature extraction process using SqueezeNet is

described in this section. Let I be an input image of size

H �W � C, where H is the height, W is the width, and C

is the number of channels. Image transformations through

various layers are given in the following steps.

i. Convolutional layers: The image I is passed

through several convolutional layers with various

filter sizes and strides. Layers that extract local

features from an input image apply convolution

operations between the input image and the learnable

filters. The operation can be described as in Eq. (4),

where � is the convolution operation, F is the filter

size of m� n, i and j are the spatial indices of the

output feature map.

I � Fð Þ i; jð Þ ¼
X

m

X

n

I i� m; j� nð Þ � F m; nð Þ

ð4Þ

ii. Fire module: Several building blocks make up

SqueezeNet, but the Fire module is the most

important. The structure is composed of two layers,

one squeezed and one expanded.

a. Squeeze layer: Squeeze layers apply 1 9 1

convolutions to reduce the number of channels

in the feature maps, thus compressing the feature

representation. It generates the output calculated

using Eq. (5), where W sqz and bsqz are the

learned weights and biases of the convolutional

filters.

Fig. 4 SqueezeNet-ViT

classifier model
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Osqz ¼ Conv1� 1 I; Wsqz; bsqz
� �

ð5Þ

b. Expand layer: Expand layers use a combination

of 1 9 1 and 3 9 3 convolutions to expand the

number of channels in feature maps, resulting in

richer feature representations. The output of this

layer is represented mathematically by Eq. (6),

where Wexp1, bexp1, Wexp3 and bexp3 are the

learned weights and biases of the 1 9 1 and

3 9 3 convolutional filters, respectively.

Oexp ¼ Concat Conv1� 1 Osqz;Wexp1; bexp1
� �

;
�

Conv3� 3 Osqz;Wexp3; bexp3
� ��

ð6Þ

iii. Pooling layers: Following transformations by the

fire modules and convolutional layers, the output of

the final convolutional layer is input to the GAP

layer to reduce the spatial dimensions of the feature

maps. The output of the GAP is shown in Eq. (7).

Fmap ¼ PoolðConv1� 1 Oexp

� �
ð7Þ

4.1.2 Global feature extraction with vision transformer
(ViT)

In this section, we describe the process of extracting global

features from SqueezeNet using Vision Transformer (ViT).

Let Fmap be the input feature map of size H0 �W 0 � C0,

obtained from the SqueezeNet as described in Eq. (7). The

target label is assigned to the input imageI, by processing

the Fmap as below.

i. Patch extraction and tokenization: The input

feature map is divided into non-overlapping patches

of size P� P, resulting in a total of N ¼ H0W 0ð Þ=P2

patches. Each patch is then linearly embedded

(flattened) into a 1D vector of length D, where D is

the dimension of the transformer’s input as in

Eq. (8).

xp ¼ Flatten Patch Fmap

� �� �
ð8Þ

ii. Positional encoding: Positional embeddings are

concatenated with the patch embeddings to retain

spatial information as in Eq. (9). The combined

patch and positional embeddings form the input

sequence for the transformer.

x0p ¼ xp � PEp 8p ¼ 1; 2; � � � ;N ð9Þ

iii. Transformer encoder: The input sequence

x01; x
0
2; � � � ; x0N is fed into the transformer encoder,

which consists of multiple layers of multi-head self-

attention and feed-forward networks. The output of

the transformer encoder is a sequence of transformed

feature vectors as in Eq. (10).

zp ¼ TE x0p

� �
8p ¼ 1; 2; � � � ;N ð10Þ

iv. Pooling and classification: A pooling operation,

such as mean pooling or attention pooling, is applied

to the sequence of transformed feature vectors to

obtain a single global feature vector zglobal as in

Eq. (11). This global feature vector is then passed to

the classification head to perform multiclass classi-

fication as in Eq. (12). The output ypred represents the

predicted class probabilities for the input OCT

image.

zglobal ¼ Pool z1; z2; . . .; zNð Þ ð11Þ

ypred ¼ MLP zglobal
� �

ð12Þ

5 Experimental results and discussions

In this section, we discuss the experimental setup and

empirical evaluations of the SViT model using training and

testing datasets. An evaluation is conducted using objective

performance metrics, visualizations, and comparisons with

other approaches. In addition, an explainable analysis is

conducted to better understand the model’s behavior, and

an ablation study is conducted to demonstrate the effec-

tiveness of the method.

5.1 Experimental setup

SViT is implemented in MATLAB R2023a on an Intel

Core i10 with 64 GB of RAM and an NVIDIA GeForce

RTX 3090 GPU. The implementation of NVIDIA CUDA

and its cuDNN library results in significant improvements

in training time and overall performance. Based on the

OCT2017 dataset, a meticulously designed SViT model is

trained, tested, and validated using hyperparameters listed

in Table 2. An initial set of parameter values is selected

after evaluating the model with the data subset to select the

most appropriate hyperparameters. To assess the model’s

generalization capabilities, these initial values are used to

train and validate the model. By exploring various com-

binations of values with grid search, optimal hyperparam-

eters are identified systematically. The model’s

performance is closely monitored throughout the search

process, and the best-performing hyperparameters are

selected. In this way, the model configuration is tailored to

the dataset and task at hand, so that it is both effective and
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robust. In training, the training dataset is divided by 70:30

between training and validation groups.

A preliminary assessment of the effectiveness of the

SViT’s learning process is made by examining the training

process for different hyperparameters. In Fig. 5, the train-

ing progress for one epoch is shown, showing an initial

validation accuracy of 90.27% for the model.

5.2 Performance evaluation

In Eqs. (13)–(17), we evaluate the model’s accuracy,

specificity, sensitivity, precision, and F1 metrics. The True

Positive (TP), the True Negative (TN), the False Positive

(FP), and the False Negative (FN) values are obtained from

evaluating the model on the test dataset. According to

Eq. (13), accuracy is the proportion of instances that were

correctly classified out of all instances in the dataset. True

negative rate (TNR), or specificity, is a measure of whether

the model identifies negatives correctly. Sensitivity is also

known as True Positive Rate or recall, which is a measure

of how well the model identified actual positives (Eq. 15).

Positive predictive value (PPV) measures the number of

samples that are positive among those predicted to be

positive as in Eq. (16). To balance precision and recall, the

F1 score, the harmonic mean of precision and recall, is

used. Performance is measured on a scale of 0–1, with

higher values indicating better performance (Eq. 17). In

addition, AUC is another metric used to evaluate classifi-

cation model performance. The area under the curve

(AUC) value ranges from 0 to 1, where 0.5 represents a

random classifier, and 1 indicates an excellent classifier.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð13Þ

Specificity ¼ TN

TNþ FP
ð14Þ

Sensitivity ¼ TP

TPþ FN
ð15Þ

Precision ¼ TP

TPþ FP
ð16Þ

F1 ¼ 2� Precision� Recall

Precisionþ Recall
ð17Þ

5.3 Classification performance

In this study, the performance of SViT is evaluated with

the subsets of training and testing data under binary clas-

sification and multiclass classification. Table 3 provides

objective metrics for binary, multiclass, and class-wise

detections. According to these findings, the SViT model is

exceptionally good at both binary and multiclass classifi-

cation on the OCT dataset, as evidenced by its high scores

across all evaluation metrics. Figures 6 and 7 illustrate the

confusion matrices corresponding to binary and multiclass

classifications, respectively. The analysis of confusion

matrices provides deeper insights into the model’s classi-

fication accuracy since they reveal correctly predicted

classes and the distribution of misclassifications. Among

the Disorder and Normal categories, there are one and two

misclassifications based on binary classification. Multiclass

classification shows only one misclassification from CNV

to DME, while the other classes are correctly classified. In

this way, the classifier was able to learn disorders with a

good degree of accuracy without raising false alarms.

Additionally, Receiver Operating Characteristics (ROC)

curves are valuable tools for assessing the trade-offs

between true positives and false positives across different

decision thresholds. According to Figs. 8 and 9, the ROC

curves show that the model reaches its best classification

performance at around 0.95.

We compare the proposed SViT model with the state-of-

the-art models on the OCT2017 dataset to demonstrate its

effectiveness and competitiveness. A comparison of the

Table 2 SViT optimal

hyperparameters used for retinal

image classification

Parameter Values

Maximum number of epochs 100

Learning rate 0.001

Batch size 32

Optimizer SGDM

Momentum 0.9

Loss function Cross-entropy loss

Learning rate schedule Step decay

Weight initialization Random

Regularization L1

No. of transformer layers 3

Stopping criterion Validation loss does not decrease further
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multiclass classification performances of representative

models reported in the literature is presented in Table 4.

Most of the earlier studies reported in the literature have

used the OCT2017 dataset. The majority of researchers

have considered binary classifications (normal vs retinal

disorders) and few have considered multiclass classifica-

tions (DME, CNV, Drusen, and normal). Compared to

conventional DNNs, hybrid models and hybrid DNNs with

ViT produce higher accuracy in binary as well as multi-

class classification. A multi-class classification using the

HCT-Net produced the lowest accuracy (0.9156) of the

different works reported in Table 4. It is important to note,

however, that the inference time required for classification

is much less than in all of the earlier studies, including the

present one. In comparison to the other models, the SViT

has some differences in performance metrics. The Swin

Transformer model lags behind the proposed SViT model

in mean accuracy, sensitivity, and precision by 0.0190,

0.0201, and 0.0090, respectively. In the LLCT model, there

are differences of 0.0120 in mean accuracy, 0.0169 in

mean sensitivity, and 0.0147 in mean precision. Even

though Swin-Poly Transformers provide impressive per-

formance, on average their accuracy, sensitivity, and pre-

cision are still 0.0008, 0.0009, and 0.0022 behind those of

the SViT. In retinal OCT image classification tasks, this

numerical difference indicates SViT’s superior

performance.

As a result of the synergistic combination of SqueezeNet

and ViT, the SViT model performs exceptionally well. In

addition to offering an efficient and compact architecture,

SqueezeNet effectively reduces the size of the model

without compromising accuracy. In this way, the model is

Fig. 5 SViT training progress

Table 3 Performance of retinal

image classification using SViT
Classification Accuracy Sensitivity Specificity Precision F1 AUC

Binary 0.9970 0.9987 0.9920 0.9973 0.9980 0.9896

Multiclass (Overall) 0.9990 0.9990 0.9997 0.9990 0.9990 0.9961

CNV 0.9960 0.9960 1.0 1.0 0.9980 0.9991

DME 1.0 1.0 1.0 1.0 1.0 1.0

DRUSSEN 1.0 1.0 1.0 1.0 1.0 1.0

Normal 1.0 1.0 1.0 1.0 1.0 1.0
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capable of capturing important local features and process-

ing complex OCT images. Furthermore, the ViT compo-

nent enhances the model’s ability to recognize global

contextual information as well as intricate patterns in

retinal OCT images. As a result of integrating the strengths

of SqueezeNet and ViT, the SViT model achieves excep-

tional performance in retinal OCT image classification

tasks, outperforming both models individually. Further-

more, SViT’s inference time is the shortest among the

other models after analyzing the inference time. The

SViT’s performance is attributed to the Transformer’s

ability to make quick and accurate predictions, based on

the SqueezeNet feature maps.

5.4 Explainable analysis

The Grad-CAM method uses Explainable Artificial Intel-

ligence to provide insight into the decision-making process

of deep learning models such as SViT, which combines

SqueezeNet and ViT. In addition to creating easily

understandable class activation maps based on input ima-

ges, clinicians are able to confirm that model predictions

match medical knowledge by reviewing the class activation

maps [43]. Grad-CAM validates predictions with mean-

ingful information by visualizing the final convolutional

layer in SqueezeNet. Grad-CAM’s flexibility and applica-

tion to different architectures make it ideally suited to XAI

analysis of the SViT model, which ultimately contributes to

better patient outcomes.

Fig. 6 Confusion matrix for

binary classification

Fig. 7 Confusion matrix for

multiclass classification
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This procedure involves selecting the final convolutional

layer in the SqueezeNet portion of the SViT model, per-

forming a forward pass on the OCT image, and computing

the gradients of the predicted class score using the feature

maps of the target layer. Grad-CAM weights are calculated

and used to create weighted activation maps that are then

resized to match the input OCT image dimensions. A final

step involves overlaying the resized class activation map

on the original OCT image to highlight the most significant

areas. This assists clinicians in verifying the model’s pre-

dictions. Figure 10 shows the heat maps and classification

scores for Normal, CNV, DME, and Drusen classes based

on XAI. It is evident that the model is capable of localizing

the infected areas accurately. Based on the results of this

analysis, it can be concluded that the model is highly

reliable.

5.5 Ablation study

Ablation studies were conducted to compare the perfor-

mance of the SViT model with various components and

design choices. The analysis provides insight into the most

important factors contributing to the model’s success in

OCT image classification. During the ablation study, the

following variations were taken into account. This study’s

results are summarized in Table 5 along with those from

the SViT.

1. SqueezeNet only: SqueezeNet architecture was used

without the ViT component.

2. ViT only: A standalone ViT model was used without

SqueezeNet.

There are substantial differences in performance

between the SViT model and its components, according to

the ablation study. Based on performance metrics, the

SqueezeNet-only model performs worse than the ViT-only

model, indicating the limitations of SqueezeNet alone for

OCT image classification. Due to its powerful global

context capabilities, the ViT-only model outperforms the

conventional model. Based on the results of the ablation

study, there was a significant difference in the performance

metrics among the three model variants. Compared to SViT

alone, SqueezeNet increased mean accuracy by 3.9%,

sensitivity by 4.8%, precision by 3.5%, and F1-score by

4.15%. Comparison between the ViT-only variant and the

SViT-only variant. Even more pronounced increases were

observed: 2.4% in mean accuracy, 3.2% in mean sensi-

tivity, 2.1% in mean precision, and 2.65% in mean F1-

score. By combining SqueezeNet and ViT, the hybrid SViT

model significantly improves the classification perfor-

mance of OCT images.

5.6 Discussions

Based on retinal OCT images, a hybrid SqueezeNet-Vision

Transformer (SViT) model is proposed to classify eye

disorders such as CNV, DME, Drusen, and normal cases.

In many cases, these disorders exhibit subtle differences

and intricate characteristics that can be challenging to

distinguish, making their correct classification essential for

clinical decision-making. Our objective metrics demon-

strate significant improvements in performance compared

to other state-of-the-art models. A hybrid architecture that

combines the strengths of both SqueezeNet and ViT is key

to the SViT model’s performance. As a result of the

improved model, both local and global features can be

captured from the OCT images, which leads to more

accurate classifications. In addition, the SViT model

exhibits greater robustness and generalization, showing

Fig. 8 ROC for binary classification

Fig. 9 ROC for multiclass classification
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that it can be applied to a variety of challenging cases,

including CNV and DME, which are likely to have minute

differences.

A comparison of the SViT model with other represen-

tative works shows that the SViT model represents a sig-

nificant advance in the detection of retinal disease using

OCT images:

1. Focused Optimization for OCT Images: The SViT

model was specifically designed to optimize OCT

images, unlike the general ViTs combined with CNNs

described in [17]. By taking a tailored approach, it is

able to effectively address the challenges unique to

retinal diseases, such as Diabetic Macular Edema

(DME), Choroidal Neovascularization (CNV), and

Drusen. OCT image analysis model does not simply

combine existing technologies but tailors the integra-

tion to suit the specific needs of the application.

2. Seamless Integration for Enhanced Feature Extrac-

tion: The SViT model extends beyond the ensemble of

CNNs and transformers explored in [18]. In our

proposed work, SqueezeNet’s compact and efficient

architecture has been seamlessly integrated with ViT’s

feature extraction capabilities. The integration does

more than juxtapose two architectures; it enhances the

model’s capability to extract local and global features

from OCT images. It is particularly important in retinal

disease detection, where the distinction between var-

ious conditions is often based on minute, but critical,

image details.

3. Superior Computational Efficiency and Accuracy:

SViT leverages SqueezeNet’s lightweight architecture,

known for computational efficiency. As a result of this

choice, the SViT model is both fast and resource-

efficient, a significant advantage in clinical settings

where quick and accurate diagnosis is crucial. More-

over, the model’s exceptional accuracy of 99.90% in

multiclass classification, as compared to the ConViT

[19], highlights its superiority. An increased level of

accuracy, especially in a field like medical imaging,

can improve patient outcomes and increase the relia-

bility of clinical decision-making.

The model’s focus on localized neuroretinal rim fea-

tures, as seen in the explainable analysis, aligns with

clinical practice in glaucoma management and facilitates

differentiation between pathological and normal cases. An

ablation study examines the impact of individual compo-

nents in the SViT model along with design choices. The

results indicate that SqueezeNet and ViT components are

integral to achieving optimal performance. There is a sig-

nificant performance difference between the individual

Table 4 Comparison with State-of-the-art retinal image classification using OCT2017 dataset with ViT and Hybrid ViT networks

References &

Year

Model Database No of

classes

Mean

accuracy

Mean

sensitivity

Mean

precision

Mean

F1

Model characteristics

Omid et al. [8]

(2023)

MedViT OCT2017 4 0.9630 N/A N/A N/A Parameters: 45.6 M

Ma et al. [16]

(2022)

HCTNet OCT2017 4 0.9156 0.8857 0.8811 N/A Inference time:

3.74 ms

Dutta et al. [19]

(2023)

Conv-ViT OCT2017 4 0.9237 N/A N/A 0.92 N/A

Ai et al. [34]

(2020)

ViT OCT2017 4 0.9906 0.9917 0.9921 0.9907 Parameters:86 M

Inference time:

26.9 ms

He et al. [40]

(2023)

SwinT OCT2017 4 0.9801 0.9799 0.9910 0.9824 Parameters: 88 M

Inference time:

35.3 ms

LLCT OCT2017 4 0.9870 0.9821 0.9853 0.9824 Parameters: * 89 M

Inference time: 41 ms

Swin-

PolyT

OCT2017 4 0.9982 0.9981 0.9978 0.9987 Parameters:88 M

Inference time:

10.9 ms

Ours SViT OCT2017 4 0.9990 0.9990 1.0000 0.9995 Parameters: 87.1 M

Inference time:
6.9 ms

The bold values refer to the highest performance achieved in the proposed method

N/A: not available/not reported
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components and the hybrid model, demonstrating the

effectiveness of the SViT architecture.

Nevertheless, there are some limitations to this research.

In addition to showing enhanced performance, the SViT

model has not been evaluated with variants of SqueezeNet

(a) Set of original and heatmap images of CNV and DME

Original Image Drusen Original Image Normal

(0.9904)
\ 

(0.9772)

Original Image CNV Original Image DME

(0.9851) (0.9929)

(0.9957) (0.9917)

(0.9914) (0.9902)

(0.9523) (0.9631)

(0.9945) (0.9923)

(0.9936) (0.9971)

(0.9404) (0.9619)

(b) Set of original and heatmap images of Drusen and normal

Fig. 10 XAI analysis of SViT

model
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and ViT to determine their optimal combination. The

optimal number of Transformer Encoder layers for

improving SViT performance can be determined by ana-

lyzing different Transformer Encoder layers. Nevertheless,

these drawbacks can be overcome by performing additional

experiments to identify the optimal combination of

SqueezeNet and ViT variants and the optimal number of

Transformer Encoder layers to build an optimal model

without sacrificing performance. Furthermore, the pro-

posed eye disorder detection model would be improved by

applying DeepLab3 ? [28] based local feature extraction

and Few-Shot learning [29]-based classification.

There is room for optimizations and adaptations for a

broader range of applications and modalities, including

Optical Coherence Tomography Angiography (OCTA),

fundus photography, and Adaptive Optics Scanning Laser

Ophthalmoscopy (AOSLO). In general, the SViT model is

a promising tool for augmenting patient care and clinical

decision-making to diagnose and manage a variety of eye

disorders. It combines improved performance metrics,

robustness, generalizability, and explainability.

6 Conclusion

The purpose of this study is to propose SViT, a hybrid

SqueezeNet-ViT (SviT) model for the accurate classifica-

tion of retinal OCT images, targeting conditions such as

CNV, DME, Drusen, and normal cases. In comparison to

other state-of-the-art models, this model combines the

strengths of both SqueezeNet and ViT, leading to signifi-

cant improvements in performance metrics, robustness,

generalizability, and explainability. The classification

accuracy of SViT is 99.70% for binary classifications and

99.90% for multiclass classifications. Additionally, the

proposed network requires fewer hyperparameters and

requires less inference time than existing models. In this

study, the SViT model was shown to be an effective tool to

enhance patient care and clinical decision-making for the

diagnosis and management of various types of eye disor-

ders. Moreover, SViT can serve as a baseline for future

research, providing a solid foundation to explore potential

adaptations to different medical imaging modalities and

ophthalmology subspecialties, such as anterior segment

imaging, ocular oncology, and orbital disorders. This

model can play a significant role in improving patient

outcomes and care by extending its application to oph-

thalmic imaging and diagnosis in a broader sense.

Data availability The OCT2017 dataset is available as open-source

data and can be accessed from https://www.kaggle.com/paultimothy

mooney/kermany2018.
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32. Cazañas-Gordón A, Parra-Mora E, Cruz LADS (2021) Ensemble

learning approach to retinal thickness assessment in optical

coherence tomography. IEEE Access 9:67349–67363

33. Anoop BN, Pavan R, Girish GN, Kothari AR, Rajan J (2020)

Stack generalized deep ensemble learning for retinal layer seg-

mentation in optical coherence tomography images. Biocybern

Biomed Eng 40(4):1343–1358

34. Ai Z, Huang X, Feng J, Wang H, Tao Y, Zeng F, Lu Y (2022)

FN-OCT: disease detection algorithm for retinal optical coher-

ence tomography based on a fusion network. Front Neuroinform

16:876927. https://doi.org/10.3389/fninf.2022.876927

35. Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the

recent architectures of deep convolutional neural networks. Artif

Intell Rev 53:5455–5516

36. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X,

Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S,

Uszkoreit J (2020) An image is worth 16x16 words: transformers

for image recognition at scale. arXiv preprintarXiv:2010.11929

37. Wassel M, Hamdi AM, Adly N, Torki M (2022) Vision trans-

formers based classification for glaucomatous eye condition. In:

2022 26th international conference on pattern recognition

(ICPR), IEEE, pp 5082–5088

38. Fan R, Alipour K, Bowd C, Christopher M, Brye N, Proudfoot

JA, Goldbaum MH, Belghith A, Girkin CA, Fazio MA, Liebmann

JM, Weinreb RN, Pazzani M, Kriegman D, Zangwill LM (2023)

Detecting glaucoma from fundus photographs using deep learn-

ing without convolutions: transformer for improved generaliza-

tion. Ophthalmol Sci 3(1):100233

39. Wen H, Zhao J, Xiang S, Lin L, Liu C, Wang T, An L, Liang L,

Huang B (2022) Towards more efficient ophthalmic disease

classification and lesion location via convolution transformer.

Comput Methods Progr Biomed 220:106832

40. He J, Wang J, Han Z, Ma J, Wang C, Qi M (2023) An inter-

pretable transformer network for the retinal disease classification

using optical coherence tomography. Sci Rep 13(1):3637

41. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B

(2021) Swin transformer: hierarchical vision transformer using

Neural Computing and Applications

123

https://doi.org/10.1016/j.compbiomed.2023.106791
https://doi.org/10.1016/j.compbiomed.2023.106791
https://doi.org/10.1007/s00521-023-08407-1
https://doi.org/10.1007/s00521-023-08407-1
https://doi.org/10.1016/j.measurement.2022.111485
https://doi.org/10.1016/j.measurement.2022.111485
https://arxiv.org/abs/2006.03677
https://doi.org/10.3390/bios12070542
https://doi.org/10.3390/bios12070542
https://doi.org/10.3390/life13040976
https://doi.org/10.3390/life13040976
https://doi.org/10.1142/S1793545822500092
https://doi.org/10.1142/S1793545822500092
https://doi.org/10.3390/jimaging9070140
https://doi.org/10.1016/j.imed.2022.07.002
https://doi.org/10.1016/j.imed.2022.07.002
http://arxiv.org/abs/2305.09880
https://doi.org/10.1109/ACCESS.2023.3330442
https://doi.org/10.1109/ACCESS.2023.3330442
https://doi.org/10.3389/fninf.2022.876927
http://arxiv.org/abs/2010.11929


shifted windows. In: Proceedings of the IEEE/CVF international

conference on computer vision, pp 10012–10022

42. Retinal OCT Images (optical coherence tomography) | Kaggle.

https://www.kaggle.com/paultimothymooney/kermany2018.

Retrieved on 2 June 2023

43. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra

D (2017) Grad-cam: visual explanations from deep networks via

gradient-based localization. In: Proceedings of the IEEE inter-

national conference on computer vision, pp 618–626

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications

123

View publication stats

https://www.kaggle.com/paultimothymooney/kermany2018
https://www.researchgate.net/publication/378431124

	Automated retinal disease classification using hybrid transformer model (SViT) using optical coherence tomography images
	Abstract
	Introduction
	Related works
	Materials and methods
	Dataset and preprocessing of OCT images
	SqueezeNet model
	Vision transformer

	Proposed OCT image classification model
	Problem definition
	Local feature extraction with SqueezeNet
	Global feature extraction with vision transformer (ViT)


	Experimental results and discussions
	Experimental setup
	Performance evaluation
	Classification performance
	Explainable analysis
	Ablation study
	Discussions

	Conclusion
	Data availability
	References


