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A B S T R A C T   

Technological advancement in the rise of the Internet of Things (IoT) and computational modelling and appli-
cation development has revolutionized medical care. Monitoring cardiovascular risks is faster, easier, and more 
accurate than ever. Using IoT-enabled computational modelling and application development, medical pro-
fessionals can detect, monitor, and predict certain conditions more efficiently. That paper explores the Internet of 
Things (IoT) enabled computational model and application development that can be used to monitor cardio-
vascular risks effectively. Cardiovascular diseases are the leading cause of death globally, and currently, there is a 
lack of comprehensive and reliable monitoring systems to assess the risk of such diseases. IoT enables the 
integration of different data sources, such as physical activity, diet, BMI and the environmental context, to form a 
comprehensive tracking tool that can provide accurate cardiovascular risk assessment. The developed application 
can offer personalized health coaching, leveraging machine learning algorithms to identify patterns and adapt a 
user’s healthcare journey. Ultimately, this paper assesses the potential of IoT technology for monitoring car-
diovascular risks and integrating it into current healthcare systems.   

Introduction 

The increasing proportion of people in their later years has made 
providing remote health monitoring an absolute need. In health moni-
toring, healing, and supported living for older people and therapeuti-
cally tested folks, one of the most pressing challenges is maintaining 
consistent system administration between individuals, various pieces of 
medical equipment, and specialized organizations [1]. As a consequence 
of this, there is a need for wearable, low-control, inexpensive, and 
dependable medical technology that has the potential to enhance the 
quality of life of specific people who are afflicted with certain disorders 
[2]. 

To properly monitor cardiovascular risks, IoT-enabled computa-
tional models and applications must be able to receive, analyze, store, 
and process real-time data from sources such as wearable devices, mo-
bile phones, and fitness trackers. AI and machine learning algorithms 

can be applied to these data to classify risk factors associated with CVDs 
[3]. That analysis can be used to detect and monitor CVDs, develop 
prevention strategies, and reduce mortality and disability from CVDs. 
These IoT-enabled computational models and applications can be used 
in various ways. For example, a wearable device can measure a user’s 
heart rate, blood pressure, and other vital signs. The collected data can 
generate personalized individual risk profiles and track health trends 
over time [4]. In recent years, cloud computing frameworks have also 
offered support for new applications by providing reliable and robust 
infrastructure and services [5]. Moreover, fog computing utilizes gate-
ways, nodes, and routers to provide services with the most minor energy 
consumption, network latency, and response time. Recent research 
studies explore the problems of fog computing in medical applications 
and recognize that response time and latency are the most challenging 
and significant for optimizing the quality of service constraints in 
practical fog environments [6]. 
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The existing approaches may need help with these complexities in 
healthcare and equivalent IoT applications, where they face complex-
ities in getting the accuracy rate in real-time applications [7]. As edge 
computing has given the immense benefit of minimizing response time, 
it provides a novel way of conducting research with integrated edge 
computing and complex ensemble deep learning models for getting 
high-accuracy results in practical applications. Because of the emer-
gency requiring healthcare applications, there is a need to adopt auto-
matic heart disease diagnosis models using IoT and fog computing 
technologies and enhanced deep learning applications [8]. As the 
number of connected devices grows and data-driven insights continue to 
evolve, developing these models and applications is critical for creating 
a healthy and safe environment. The construction diagram is shown in 
the following Fig. 1. 

The benefit of IoT-enabled computational models and application 
development to monitor cardiovascular risks is immense [9]. Physicians 
can now easily track and record vitals and other medical data without 
using invasive measures like wires or straps. Moreover, because of the 
accuracy with which these systems collect patient data, physicians can 
make informed decisions about treatments or devices that may help 
improve or prevent the condition. That saves time and money, as 
diagnosing a patient can be quick and inexpensive. As more health re-
cords are stored digitally, physicians can access a patient’s medical 
history and data quickly and efficiently to make more informed de-
cisions about preventive treatments and medication [8–9]. That enables 
better long-term management of the patient’s condition and helps avoid 
further medical risk. 

Furthermore, IoT Enabled Computational Model and Application 
Development can also work with Wearable Devices, such as Fitbits, to 
monitor and track all the physiological data, such as heart rate, blood 
pressure, oxygenation, and respiration [10]. That makes each patient’s 
data available to anyone in the medical team, thus allowing for a fast, 
accurate, and informed assessment of the patient’s condition. The 
increased use of IoT-enabled computational models and application 
development for monitoring cardiovascular risks is a breakthrough in 
modern medical care [11]. The combination of sensors, data analysis, 
and medical decision-making has allowed physicians to assess risk fac-
tors more accurately and comprehensively and make more informed 
medical decisions. In turn, it can help reduce the possibility of further 
medical complications and costs while improving patient care overall 
[12]. 

The main contribution of the research has the following, 

• The paper proposes a monitoring system equipped with an ECG de-
vice for patients with cardiovascular diseases, specifically arrhyth-
mias. The system can send the ECG signal to a service located in the 
Fog layer using the LoRa communication protocol.  

• The article contains an intelligent e-health system for heart disease 
detection using artificial intelligence and the Internet of Things. A 
biosensor-enabled stethoscope collects the heart sounds of a patient. 
A wireless sensor network is used to connect all sensors and IoT 
devices.  

• IoT devices connect with a centralized cloud server, where all heart 
sound files are accumulated. Heart sound signal is separated from 
other noises using the blind source separation algorithm. The 
PASCAL data set trains and tests the deep convolutional neural 
network. 

Related works 

IoT-enabled computational models and applications for cardiovas-
cular risk monitoring face several issues that must be addressed to 
ensure they work as intended:  

1. There is a need to develop data collection and storage standards to 
ensure compliance with privacy laws. 

2. Security is a significant issue facing these models, particularly con-
cerning malicious actors gaining access to sensitive data. 

3. Algorithms and software used for analytics must be reliable and ac-
curate to ensure accurate results. It is also essential to ensure that the 
data collected is suitable for predictive modelling and risk stratifi-
cation [13].  

4. It is necessary to ensure that the models and applications are user- 
friendly and easy to understand so that users can benefit from the 
insights they provide. 

Implementing an IoT-enabled computational model and application 
development to monitor cardiovascular risks is a powerful tool for 
improving public health [14]. It leverages the advantages of IoT to 
monitor, record, and track patients’ real-time health data and use pre-
dictive analytics to identify potential risks. Such an application can help 
healthcare providers identify any fluctuating behaviour or activity 

Fig. 1. Construction diagram.  
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linked to a rise in cardiovascular risks [15]. It can also be used to track 
the patient’s health history to review any fluctuating patterns or activ-
ities that could increase risk. To develop such an application, acquire the 
necessary IoT hardware and software, such as a Raspberry Pi, Arduino, 
or similar electronic device [16]. 

A new framework named HealthFog was introduced as an edge 
computing device through an integrated ensemble deep learning tech-
nique for automatically assisting practical applications of heart disease 
diagnosis [17]. This healthcare service model has served as a fog service 
by managing the data of heart patients and gathering data using IoT 
devices. The integrated fog-derived cloud scheme was termed FogBus. It 
was used to deploy and test the efficacy of the suggested model 
regarding execution time, accuracy, jitter, latency, network bandwidth, 
and power consumption [18]. Heart disease increases the mortality rate 
around the world. Thus, predicting heart diseases is necessary, but 
identifying heart diseases is challenging and requires both sophisticated 
and expert understanding. The Internet of Things (IoT) has frequently 
been implemented in various medical systems to collect sensor readings 
to identify and predict heart diseases [19]. Even though many re-
searchers have concentrated on heart disease diagnosis, the accuracy of 
the outcomes could be better. 

An IoT structure for accurately evaluating heart diseases through 
"Modi7ed Deep Convolutional Neural Network (MDCNN)" was sug-
gested [20]. The heart monitoring device and smartwatch were fixed to 
the patient for monitoring the electrocardiogram (ECG) and blood 
pressure. The gathered sensor data was classified using MDCNN to get 
the classes as abnormal and usual. An IoMT scheme was implemented to 
diagnose heart disease through "Modified Salp Swarm Optimization 
(MSSO) and an Adaptive Neuro-Fuzzy Inference System (ANFIS)," which 
has enhanced the searchability through the Levy Light technique [21]. 
The MSSO algorithm was used to optimize the learning parameters to 
get superior results for ANFIS. The designed MSSO-ANFIS model has 
given promising results in precision and accuracy compared with other 
methods [22]. 

This model considered ECG readings and monitored the high- or 
middle-risk level of heart disease [23–25]. If any abnormalities in ECG 
readings were observed, then alerts were instantly forwarded to the 
mobile phones of users and to the healthcare service providers to take 
necessary and immediate action early to track patients’ wellness 
[26-27]. The simulation results have shown that the designed model has 
effectively and efficiently categorized the risk levels in less response 
time. 

Problem Definition 
In recent years, remote monitoring systems are becoming more 

efficient. Algorithms for Remote monitoring systems have evolved from 
simple to more complex and informative algorithms. Now, they don’t 
just provide simple information about a patient, like sleeping hours, but 
they can also provide more informative data to the end user. In recent 
studies, more complex information related to CVD is presented using 
machine learning techniques. Data acquisition for disease prediction 
remains a challenging task. Acquiring accurate data is crucial for 
decision-making, especially in diagnosing CVD. An e-health system aims 
to detect CVD in its early stages to reduce the risk associated with dis-
ease and mortality. It also aims to accurately detect disease and provide 
an appropriate patient health improvement recommendation. There is a 
need to generate a customized and suitable recommendation for CVD 
patients to improve their health in remote areas, especially in the 
absence of a cardiologist. The system can also be helpful for a new 
cardiologist. The existing recommender systems for cardiovascular dis-
ease use machine learning (ML) classification techniques to classify 
disease in one of the available diseases. 

Proposed model 
The IoT-enabled computational model and application development 

for monitoring cardiovascular risks are essential tools for medical 
practitioners. However, several challenges can arise in developing such 
models and applications. These challenges include:  

• Accurate and consistent data collection: Data collected from various 
sources, such as wearable devices, can be unreliable due to incorrect 
readings and incompleteness. Additionally, variation consistency in 
data collection processes and protocols across different regions can 
lead to consistency and poor application performance.  

• Complex and time-consuming models: Building models from large, 
multivariate datasets is very difficult and time-consuming. The 
development process must involve specialists with a strong under-
standing of statistical techniques, machine learning, and the domain 
at hand.  

• Determining the right features and metrics: Determining the right 
features and metrics to monitor cardiovascular risks is challenging. 
Models must be carefully tuned to identify outliers without artifi-
cially inflating false positives.  

• Hardware limitations: To monitor cardiovascular risk effectively, the 
application must be able to capture large amounts of data. Increasing 
hardware limitations make it difficult for applications that require 
storage and processing resources.  

• Privacy and security: Storing and processing sensitive health data 
requires reliable security measures. These can also involve regula-
tory compliance to protect the privacy of patients. 

These challenges, however, can be addressed by leveraging existing 
research and implementing data collection and processing best prac-
tices. Developing successful and robust applications to monitor cardio-
vascular risk can tremendously benefit patients at risk. 

Construction of proposed model 

The health industry is undergoing unprecedented changes with the 
enhanced capabilities of the Internet of Things (IoT). The integration of 
IoT technology has offered a range of opportunities for efficient and 
cost-effective monitoring of different diseases. The development of IoT- 
enabled computational models and applications can revolutionize how 
cardiovascular diseases can be monitored and treated. The IoT-enabled 
computational models and applications can be used for various appli-
cations related to cardiovascular diseases. These applications include 
monitoring patients’ vital signs, tracking and analyzing exercise and 
dietary data, and personalized risk assessments. Monitoring systems 
such as coronary artery bypass grafts (CABG) using these models is also 
possible. Moreover, these models can be utilized for continuous vital 
sign monitoring and telemetry applications. The data collected from 
these computational models and applications can provide information 
regarding the patient’s health status and risk profile. The collected data 
can then be used to develop personalized risk assessments. The data can 
also be used to identify areas of improvement in treatments and lifestyle 
decisions. Additionally, the collected data can be used to compare the 
effectiveness of different treatment strategies. The use of IoT-enabled 
computational models and applications can also help in the diagnosis 
and assessment of cardiovascular risks. These models can compare pa-
tient data and physiological parameters and suggest appropriate in-
terventions. The functional block diagram is shown in the following 
Fig. 2. 

The assessed risks can be monitored continuously over time, thus 
enhancing the success of treatments. In addition to using IoT-enabled 
computational models and applications for monitoring cardiovascular 
risks, research and technological advancements must go hand-in-hand. 
For example, machine learning algorithms can be used for enhanced 
accuracy and rapid development of personalized risk assessments. 
Moreover, the need to assess various combinations of risk factors and 
their effects on the occurrence of cardiovascular diseases needs to be 
explored. Furthermore, applications must be developed to track activity 
levels and promote lifestyle modifications. These developments can be 
used to enhance the collective health of the population, as well as to 
reduce cardiac diseases. The advancements in IoT technology have made 
it possible to establish efficient and cost-effective monitoring of 
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cardiovascular risks. Using IoT-enabled computational models and ap-
plications, personalized risk assessments can be developed and moni-
tored for better management of cardiovascular diseases. Additionally, 
various factors must be studied to assess and manage these risks 
appropriately. These advancements will undoubtedly revolutionize the 
healthcare industry and improve the quality of life of countless 
individuals. 

Functional working 

The world of technology is rapidly changing the way we conceptu-
alize healthcare. IoT-enabled computational models and application 
development for monitoring cardiovascular risks offer perspectives on 
improved healthcare diagnostics to provide more prompt and efficient 
diagnoses. 

IoT-enabled Computational Models: This model combines a sensor 
embedded within the patient’s device, such as an implantable device, 
with the patient’s body metrics (heart rate, blood pressure, pulse ox-
imetry, and other measurements). These metrics are analyzed and 
assessed within the computational model to allow healthcare providers 
to provide precise and prompt diagnoses of patients’ cardiovascular 
health conditions. Additionally, the device can provide feedback to the 
patient through alerts or alarms and help patients monitor their health 
metrics and respond to the data accordingly. 

Application Development: Application development for monitoring 
cardiovascular risks involves using mobile and web applications to store 
and analyze health metrics and provide patients with the necessary tools 
to take control of their cardiovascular health. In a mobile application, 
patients can access their health information and view visualizations of 
their data to identify trends in their health condition. 

Healthcare providers can use these applications to provide patients 
with personalized preventive care instructions for optimum health 

maintenance. The operational flow diagram is shown in the following 
Fig. 3. 

The combination of IoT-enabled computational models and appli-
cation development for monitoring cardiovascular risks modifies how 
healthcare providers approach screening and diagnosis for cardiovas-
cular health. These technologies help create a comprehensive model for 
patient diagnostics and reduce the need for costly visits to healthcare 
providers. Additionally, this model allows patients to take control of 
their health, making it easier to actively monitor and maintain cardio-
vascular health in the long term. The operating principle of IoT-enabled 
computational model and application development for monitoring car-
diovascular risks is to detect, monitor, and prevent cardiovascular 
events by utilizing data acquired from smartwatches and other wearable 
devices. The system collects real-time physiological data such as heart 
rate, activity, and sleep patterns. It uses machine learning algorithms to 
analyze the data to detect signs of cardiovascular disease. The system 
can also alert users when their readings are abnormal, helping them take 
preventive measures. Additionally, these models can be combined with 
existing medical research and clinical guidelines to provide personalized 
insights into the individual’s cardiovascular health. 

Analytical discussion 
The Performance analysis of an enabled Computational Model and 

Application Development for Monitoring Cardiovascular Risks refers to 
studying how well an Internet of Things (IoT) enabled computational 
model and application can detect and predict cardiovascular risks. This 
performance analysis examines the accuracy, reliability, scalability, and 
usability of the IoT-enabled computational model and system. It also has 
a detailed assessment of the performance results, including the number 
of false positives and other misclassifications. Additionally, it looks at 
the cost associated with the implementation of the system, as well as any 
other associated risks or potential issues. Performance analysis is 
essential to any system development project, mainly when dealing with 

Fig. 2. Functional block diagram.  
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sensitive health information applications. By understanding the sys-
tem’s performance, developers can plan for potential risks and develop 
solutions to minimize or mitigate them in advance. This performance 
analysis also shows areas of improvement should the system require 
further refinement. The functional, analytical diagram is shown in the 
following Fig. 4. 

Optimized performance 

The Internet of Things (IoT) has revolutionized how we interact with 
the world. We have seen almost every aspect of life become increasingly 
automated through the development of connected devices, commonly 
called ’Smart’ devices. This trend has extended into the health and 
medical realm, which has become more accessible than ever before. IoT- 
enabled computational models for monitoring cardiovascular risks 
allow users to receive tailored health recommendations while preser-
ving their data’s privacy. 

dm
dn

=
d
dn

(em ∗ sinij) (1) 

The rising popularity of intelligent consumer products combined 
with advancements in communication technologies has enabled the 
development of IoT-enabled computational models for various purposes. 
These models are built to analyze large amounts of big data, often 
collected through third-party applications such as fitness trackers. Uti-
lizing this data, the models identify and monitor trends of cardiovascular 
risk indicators, such as high blood pressure, and develop personalized 
recommendations based on the user’s risk profile.  

S = i*j                                                                                           (2) 

However, the development of IoT-enabled computational models for 
monitoring cardiovascular risks comes with its own performance chal-
lenges. Although the data collected by IoT devices is often accurate and 
helpful, the sheer amount of data can make it challenging to process 
promptly. If the model is to be used in a real-time setting, such as a 
medical emergency, optimizing its performance is imperative to avoid 
delays, which could seriously affect the user’s health. 
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To address this issue, organizations developing IoT-enabled 
computational models for monitoring cardiovascular risks must first 
assess their current infrastructure. Here, two key components must be 
identified: the hardware and the software. The former refers to the 
physical components used to collect data from the user through their 
connected device. At the same time, the latter focuses on the algorithms 
used to analyze the data and develop tailored recommendations. To 
ensure optimal performance, the hardware and software components 
must be optimized to ensure they can efficiently process data. 
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=

(
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d
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)

+

(
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)

(4) 

This can include using more powerful processors and more efficient 
algorithms or ensuring no bottlenecks in the user’s device. Additionally, 
organizations should aim to use the latest technologies available, such as 
artificial intelligence and natural language processing, to interpret the 
data collected better and generate more relevant insights and more ac-
curate risk profiles. Although the available technologies can vary 
greatly, the key to performance optimization remains the same: 

Fig. 3. Operational flow diagram.  
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understanding the data and ensuring it is being used and interpreted 
correctly. As such, organizations developing IoT-enabled computational 
models for monitoring cardiovascular risks must continuously assess 
their models to ensure that they accurately measure users’ risk without 
incurring delays. 

dn
dm

= (I ∗ emcosin) + (emsinin) (5) 

This can be done by periodically conducting tests to identify and 
rectify potential performance issues. Organizations developing IoT- 
enabled computational models for monitoring cardiovascular risks 
must take the necessary steps to optimize their models to ensure accu-
racy and performance. By assessing their infrastructure, using the latest 
technologies available, and conducting regular tests, they can ensure 
that their risk profiles and tailored recommendations are up-to-date and 
relevant to the users’ needs. 

Enhanced performance 

The performance enhancement of IoT-enabled computational 
models and applications for cardiovascular risk monitoring has revolu-
tionized the healthcare industry. IoT-enabled technologies allow phy-
sicians to transfer and receive sensor data, diagnose accurately and 
detect early health problems. The market comprises cardiovascular risk 
monitoring systems enabling medical professionals to monitor and 
manage cardiovascular diseases such as hypertension, diabetes, and 
other heart-related illnesses. 

S = e(n) = qm (6) 

Due to the increased data transmission rate of IoT-enabled systems, 
medical professionals can access and analyze data from various sensor 
systems, including wearables, calibration techniques, and more. That 

enables medical professionals to develop more sophisticated computa-
tional models and applications to diagnose and monitor cardiovascular 
risks accurately. 

n″ = lim
m→0

(o(m + n) − o(m)

n

)
(7) 

IoT-enabled systems allow medical professionals to transmit data 
securely, integrating and deploying data from multiple sources, 
including the patient’s EHR, medical imaging technologies, and wear-
able devices. Medical professionals can now use advanced algorithms to 
interpret data from wearable devices, monitor vital signs, identify pat-
terns in the data, and develop predictive models to assess cardiovascular 
disease risk accurately. 

n″ = lim
m→0

(
om+n − om

n

)

(8)  

n″ = lim
m→0

(
(om ∗ on) − om

n

)

(9)  

n″ = lim
m→0

(
om ∗ (on − 1)

n

)

(10) 

These applications and predictive models can also identify when 
lifestyle changes are needed to reduce cardiovascular risks. IoT-enabled 
technology also makes it easier for medical professionals to collect data 
from remote patients, making it easier to identify and track signs of heart 
disease from different geographical locations and in different time 
frames. IoT technologies for cardiovascular risk monitoring have proven 
invaluable assets for medical professionals. The data transmission rate of 
these systems allows medical professionals to collect and monitor more 
data than ever before, allowing them to create more accurate predictive 
models and applications for healthcare. With this technology, medical 

Fig. 4. Analytical diagram.  
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professionals can identify and monitor a patient’s risk for heart disease 
and take the necessary measures to reduce the risk. 

Comparative analysis 

The proposed IoT-enabled computational (IoT-EC) has been 
compared with the existing ensemble deep learning (EDL), Cloud-based 
IoMT framework (CIoMTF) and IoT-based computational framework 
(IoT-CF). The comparative analysis of IoT-enabled computational 
models and application development for monitoring cardiovascular 
risks is a study that compares different approaches and technologies for 
developing IoT applications that can track and monitor a person’s car-
diovascular risk. This analysis focuses on the advantages and disad-
vantages of other technologies and how they can be used in 
cardiovascular risk monitoring. The goal is to find the most cost- 
effective and efficient way to monitor cardiovascular risks among 
different people. The analysis looks at various technologies, such as 
wireless sensors, wearable devices, RFID tags, and others, to see how 
well they perform regarding accuracy, sensor range, accuracy of results, 
and cost. It also evaluates the different technologies in terms of the types 
of data they can collect, including vital signs and other biometric data. 

In our first experiment, we evaluated the performance of the 
different classifiers for the collected dataset using a feature selection 
technique. The performance is also considered for two publicly available 
datasets from the UCI repository. UCI repository contains two datasets: 
an arrhythmia dataset and a heart disease dataset. The heart disease 
dataset contains four databases to diagnose heart disease. The Cleveland 
dataset is extensively used as a standard for the classification of heart 
disease. It is used for binary classification to identify the existence and 
nonexistence of heart disease. The database contains 303 instances and 
76 attributes, but all published experiments use only 14 attributes to 
identify cardiovascular disease. The UCI arrhythmia dataset contains 
452 cases and 279 characteristics. This dataset is used to determine the 
presence or absence of arrhythmia and to classify arrhythmia disease in 
one of the 16 classes. 

A wireless sensor network is used to connect all sensors and IoT 
devices. IoT devices connect with a centralized cloud server, where all 
heart sound files are accumulated. Heart sound signals are separated 
from other noises using the blind source separation algorithm. Many of 
the gadgets connected to the Internet of Things (IoT) are created to 
monitor a person’s vital signs, such as their blood pressure, heart rate, 
blood sugar levels, and level of pain. These monitors, surgically placed 
within the patient’s body, keep track of the subject’s vital signs 
throughout the experiment. 

PASCAL data set [25] contains heart sound samples. It has 449 re-
cords and five classes. The classes are standard, noisy, normal, extra-
systole, and murmur. Heart sound signals are separated from other 
noises using the blind source separation algorithm. PASCAL data set is 
used to train and test the proposed convolutional neural network. Three 
hundred images are used to prepare the proposed model, and 149 im-
ages are used to test the CNN model. Framework was implemented in the 
Jupyter tool. It is a Python-based tool. An I5 7th-generation processor 
with 3.2 GHz and 8GB RAM was used in the experimental setup. 

The accuracy of a classification method may be evaluated based on 
the percentage of a given group of test files that have been correctly 
assigned to their respective categories. The total number of occurrences 
in which the model correctly classified the data as positive is called the 
true positive. If a number is described as a true negative, it has been 
unequivocally established as having a value in the negative range. To 
elaborate, a false positive is the occurrence of an incorrect positive 
classification when the underlying data is harmful. That is referred to as 
an erroneous positive classification. A false positive is often referred to 
as a type 1 error. A false negative is a number incorrectly labelled as 
having a negative value, regardless of how long it takes to arrive at that 
conclusion. That phenomenon is also called the type 2 error, which is 
also often referred to as the false negative. These parameters define the 

classification accuracy, precision, recall, and F1 score of deep convolu-
tional neural networks and other contemporary machine learning and 
transfer learning methodologies as shown in Fig. 5. 

The k-fold cross-validation method was used to train the proposed 
system. In this method, at each run, 1/k of the data is randomly 
considered as a test set, and the rest as a training set, and the evaluation 
criteria are calculated on the test set. This process is performed k times, 
and finally, the mean of the calculated values is reported as the result of 
each evaluation parameter. 

In stage three, the digital value corresponding to the amplified 
analogue signal is transmitted to an ESP-32 board via an I2C protocol. 
This board is responsible for receiving and transmitting the ECG data to 
the Fog device using a built-in SX1276 LoRa chip. The data structure 
with the LoRa protocol is shown in Figs. 6 and 7. 

Computation of accuracy (A) 

The accuracy of the IoT-enabled computational model for moni-
toring cardiovascular risks depends on the data accuracy of the available 
sensor data and the quality of the algorithm used. The model’s accuracy 
can be measured using a combination of validation techniques. These 
techniques include using a hold-out set, cross-validation, and accuracy 
scores like the Matthews Correlation Coefficient (MCC). The hold-out set 
technique involves splitting the dataset into training and testing data-
sets. Table 1 shows the comparison of accuracy between existing and 
proposed models. 

Fig. 8 shows the comparison of accuracy. In contrast, the proposed 
IoT-EC has reached 94.72 % accuracy. The existing EDL has obtained 
56.72 %, CIoMTF has gained 72.72 %, and IoT-CF has achieved 71.97 % 
accuracy. The training dataset is then used for model training, and the 
testing dataset is used to measure the model’s accuracy. Cross-validation 
is another method used to measure the model’s accuracy, which in-
volves partitioning the dataset into multiple subsets and using each 
subset for training and testing. The Matthews correlation coefficient 
(MCC) is an accuracy measure that requires computing the true positive, 
false positive, true negative, and false negative values to calculate the 
accuracy. The model’s accuracy can thus be measured using a combi-
nation of these techniques. 

Computation of precision (P) 

The precision of an IoT-enabled computational model for monitoring 
cardiovascular risks would depend on several factors, such as the ac-
curacy of the sensors it uses, the algorithms used to process the data, the 
number of inputs, and so on. However, it isn’t easy to calculate the 
precision of any such model without knowing all of these factors. 
Developing a precision metric for such a model would require detailed 
testing and evaluation. Table 2 shows the comparison of precision 

Fig. 5. Hardware Deployment.  

R. Rajaganapathi et al.                                                                                                                                                                                                                        



e-Prime - Advances in Electrical Engineering, Electronics and Energy 8 (2024) 100513

8

Fig. 6. The data structure employed by ESP-32 to send the signal.  

Fig. 7. IoT based CVD prediction system.  

Table 1 
Comparison of Accuracy (in%).  

Samples EDL CIoMTF IoT-CF IoT-EC 

100 59.33 74.29 74.67 95.89 
200 57.83 73.70 72.80 94.88 
300 56.72 72.72 71.97 94.72 
400 56.34 71.51 71.06 93.76 
500 55.33 70.37 70.14 94.19  

Fig. 8. Comparison of accuracy.  

Table 2 
Comparison of precision (in%).  

Samples EDL CIoMTF IoT-CF IoT-EC 

100 61.63 70.89 71.93 96.80 
200 60.13 70.30 70.06 95.76 
300 59.02 69.32 69.23 95.63 
400 58.64 68.11 68.32 94.67 
500 57.63 66.97 67.40 95.10  
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between existing and proposed models. 
Fig. 9 shows the comparison of precision. In contrast, the proposed 

IoT-EC has reached 95.63 % precision. The existing EDL has obtained 
59.02 %, CIoMTF has gained 69.32 %, and IoT-CF has achieved 69.23 % 
precision. 

Computation of recall (R) 

Recall measures how much pertinent information is correctly 
retrieved relative to all the information that should have been recov-
ered. To calculate the recall for an IoT-enabled computational model for 
monitoring cardiovascular risks, we need to divide the number of 
correctly retrieved items by the total number of items to be rescued. For 
example, if the model perfectly recovered 10 out of 15 items, the recall 
would be 10/15= 0.67 or 67 %. Table 3 shows the comparison of recall 
between existing and proposed models. Fig. 6 shows the comparison of 
precision. In contrast, the proposed IoT-EC has reached 95.63 % preci-
sion. The existing EDL has obtained 59.02 %, CIoMTF has gained 69.32 
%, and IoT-CF has achieved 69.23 % precision. 

Fig. 10 shows the comparison of recall. In contrast, the proposed IoT- 
EC has reached 93.76 % recall. The existing EDL has obtained 65.29 %, 
CIoMTF has gained 74.67 %, and IoT-CF has achieved 77.69 % recall. 

Computation of F1-Score (F1) 

The f1-score is a metric used to assess the accuracy of a model on a 
classification problem. In this case, the f1-score must be computed on 
the dataset used to train the IoT-enabled computational model for 
monitoring cardiovascular risks. The data is expected to contain labels of 
either ’high risk’ or ’low risk’, and the f1-score can then be computed 
using this data. To add the f1-score, several metrics must first be 
calculated. These include:  

• True Positive (TP): When the model correctly predicted a high-risk 
condition  

• False Positive (FP): When the model incorrectly expected a high-risk 
condition  

• True Negative (TN): When the model correctly predicted a low-risk 
condition  

• False Negative (FN): When the model incorrectly predicted a low-risk 
condition 

The f1-score can then be computed by taking the harmonic mean of 
the Precision and Recall scores, which are calculated as follows:  

Precision = TP / (TP + FP)                                                            (11)  

Recall = TP / (TP + FN)                                                                (12)  

F1-score = 2 x (Precision x Recall) / (Precision + Recall)                   (13) 

Table 4 shows the comparison of F1-score between existing and 
proposed models. 

Fig. 11 shows the comparison of the F1-score. In contrast, the pro-
posed IoT-EC has reached a 94.87 % F1 score. The existing EDL has 
obtained 62.17 %, CIoMTF has gained 75.46 %, and IoT-CF has achieved 
a 76.36 % F1 score. 

The comparative analysis also looks at the different applications that 
can be developed with these technologies. For instance, the study looks 
at applications that can track a patient’s heart rate, blood pressure, and 
other parameters over time and identify potential problems. It also 
evaluates the types of data that can be collected with each technology, 
such as environmental and behavioural information that can help pre-
dict a person’s risk of cardiovascular disease. This comparative analysis 
can provide valuable insight into the most suitable and cost-efficient 
technologies for developing and maintaining cardiovascular risk moni-
toring applications. It can also lead to improved care outcomes for 
people who are at risk for cardiovascular problems. 

Fig. 9. Comparison of precision.  

Table 3 
Comparison of recall (in%).  

Samples EDL CIoMTF IoT-CF IoT-EC 

100 69.37 78.45 80.37 96.06 
200 67.63 76.87 78.95 94.77 
300 65.29 74.67 77.69 93.76 
400 64.48 73.04 75.70 92.87 
500 62.19 71.90 73.23 92.50  
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Conclusion 

The Internet of Things (IoT) Enabled Computational Model and 
Application Development for Monitoring Cardiovascular Risks is an 
innovative approach to monitor and prevent cardiovascular disease. It is 
a comprehensive system that collects and analyzes data from multiple 
sources, such as wearable technology, electronic medical records 
(EMRs), and other sources. This information can generate a personalized 
risk profile for individuals based on age, sex, lifestyle habits, medica-
tions, and more. The IoT model can be programmed to detect changes 
over time and provide alerts when necessary. That helps healthcare 
professionals better monitor their patient’s health and make timely and 

Fig. 10. Comparison of recall.  

Table 4 
Comparison of F1-score (in%).  

Samples EDL CIoMTF IoT-CF IoT-EC 

100 65.27 78.29 79.36 96.06 
200 63.30 75.87 77.16 96.07 
300 62.17 75.46 76.36 94.87 
400 60.98 73.86 75.69 94.39 
500 60.59 71.54 74.26 92.96  

Fig. 11. Comparison of F1-score.  
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appropriate clinical decisions. The applications developed on this plat-
form can be used by healthcare professionals to monitor risk levels in 
real-time and to create customized strategies for prevention and inter-
vention. The proposed IoT-EC has reached 94.72 % accuracy. The 
existing EDL has obtained 56.72 %, CIoMTF has gained 72.72 %, and 
IoT-CF has achieved 71.97 % accuracy. The proposed IoT-EC has 
reached a 94.87 % F1 score. The existing EDL has obtained 62.17 %, 
CIoMTF has gained 75.46 %, and IoT-CF has achieved a 76.36 % F1 
score. 
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