
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316935007

Effectively minimize the overall trip distance using continuous detour query in

spatial network

Article · April 2017

CITATION

1
READS

262

2 authors:

Sasi Kumar .A

Vels University

25 PUBLICATIONS 120 CITATIONS

SEE PROFILE

Suseendran G.

VELS INSTITUTE OF SCIENCE, TECHNOLOGY & ADVANCED STUDIES (VISTAS), CHENNAI.

149 PUBLICATIONS 1,041 CITATIONS

SEE PROFILE

All content following this page was uploaded by Suseendran G. on 28 April 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/316935007_Effectively_minimize_the_overall_trip_distance_using_continuous_detour_query_in_spatial_network?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316935007_Effectively_minimize_the_overall_trip_distance_using_continuous_detour_query_in_spatial_network?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sasi-Kumar-a?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sasi-Kumar-a?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Vels_University?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sasi-Kumar-a?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Suseendran-G?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Suseendran-G?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Suseendran-G?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Suseendran-G?enrichId=rgreq-acd2148087bd870acf09095589ff014c-XXX&enrichSource=Y292ZXJQYWdlOzMxNjkzNTAwNztBUzo2MjAyNjI5ODY4OTUzNjBAMTUyNDg5MzYyODEzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2130

EFFECTIVELY MINIMIZE THE OVERALL TRIP DISTANCE USING
CONTINUOUS DETOUR QUERY IN SPATIAL NETWORK

A. Sasi Kumar and G. Suseendran

Department of Information Technology, School of Computing Sciences, Vels University, Chennai, India
E-Mail: askmca@yahoo.com

ABSTRACT

The top-k shortest path discovery is a key process on graphs to determine k-shortest paths between a two nodes
with the minimal length. This work precisely holds three processes for ranking the shortest path problem without loop by
the way of using top-k shortest path join (TKSPJ) in spatial network. First, Construct transformed graph with side cost by
using of input original graph. Second, structural encoding label is used for loop detection and third to find top k shortest
path without loop. The main advantage of this work is to reduce the cost and prune the search space. The pre computed
shortest paths translating the original graph based on the threshold value has also been introduced, to reduce the search
space in a spatial network.

Keywords: graph, shortest path, top-k shortest path, spatial network.

1. INTRODUCTION

Location based services are used mainly to find
the shortest route between the two locations. There may be
cases, where the user wishes to find a stopover that will
not introduce significant cost to the trip. A pre-computed
shortest path to each stop will not produce an overall
shortest path. Thus, in order to address this problem, a new
query type has been formulated called the detour query,
which will use the overall trip distance as the optimization
measure. Given a starting and an ending location, the
detour query will return a Minimum Detour Object
(MDO).

Graph structured data are used in a growing
number of applications. A spatial network is a labelled
graph whose nodes represent basic and complex
geographic entities such as buildings, road segments,
routes and spatial groups. The edges represent connections
between entities and the labels specify the types of the
connections. Edges with the label include an inclusion of
an entity in another entity. Directed edge graph with labels
are used mainly to identify the start and ending routes in
the road segment for spatial network. By using this spatial
network/graph as input find the top-k spatial keyword.

Top-k spatial keyword queries return the k best
spatio-textual objects ranked in terms of both spatial
proximity to the query location and textual relevance to
the query keywords. Euclidean distance [1] restricted to
processing top-k spatial keyword queries. In this paper, the
interesting and challenging problem of processing top-k
spatial keyword queries on road networks. Given a set of
spatio-textual objects (e.g., banks annotated with a text).
Spatio-textual object consists of two input parameters such
as source and destination along with spatial keyword
parameter. The output of this work results with two major
methods they are 1) shortest path to the query location,
and 2) textual relevance to the query keywords.

The top-k shortest paths problem can be
classified into two categories [2], the problem of finding
the top-k general shortest paths (allowing loops) [3], and
the problem of finding the top-k simple shortest paths
(without loops) [4, 5]. These two problems face different

complexities in graphs. In a positive-weighted graph, the
very shortest path between the given pair of nodes is
obviously loopless. However, it is possible that the k-th (k
≥ 2) shortest path has loops. The top-k simple shortest
paths problem therefore is significantly harder than the
former one due to additional cost for loop detection as
well as more search space.

Consider the graph in Figure-1 (a) which
represents the nodes along with vertices and edges. The
side cost has been assigned for each vertex to travel from
source to destination. The shortest path has to be
evaluated.

(a)

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2131

(b)

(c)

Figure-1. (a, b & c) Sample graphs.

From the Figure-1(b), the start node is A, and the
final destination is C. The nodes B and D represent an
intermediate stop. A user wishes to go from the start to the
end. If the k-shortest path is used, it would return via the
path ABC. This is because the shortest path from the
starting node A to the intermediate stop is given by AB
with a path cost of 2 units. While the other path AD results
in a path cost of 4 units and hence it will be rejected.
Now, to reach the final destination, it takes the paths BC.
The overall cost of this trip is 12 units.

Now, consider the contour detouring method in
the Figure-1 (c) that uses the overall path cost as the
optimization measure. This method would choose the path
AD instead of AB. Then from D, the path chosen will be
DC leading to the overall path cost of 9 units. Thus, the
overall path cost using contour detouring is less, compared
to the k-shortest path. Hence, this is more effective.

Support for realistic location based applications is
provided in two aspects. The first aspect is the ability to
browse and compare multiple results. Displaying the ‘k’
Minimum Detour Objects (MDO) at a time will allow the
user to browse and select the most satisfying option. The
second aspect involves the continuous monitoring of the
‘k’ MDOs. This monitoring provides users with up to date
information. The user may browse information without
any current intention to commit to a particular decision.

This may cause more time for the users browsing to take
decisions, than those who are searching for something
specific. A straightforward approach for solving the
continuous detour query (CDQ) is evaluating the ‘k’
MDOs at each intersection along the trajectory. The CDQ
solution will incrementally evaluate the ‘k’ MDOs results
at different intersections, according to the usual measure
of finding the trip distance. As a result, the repetitive
evaluation of the network distances is avoided.

2. MATERIALS AND METHODS

There are several algorithms presently available
for solving a K-shortest paths problem without loop in a
network in ascending order of their distance between two
nodes i.e. Starting and target node.

Every spatial network can be represented as a
graph, where all spatial network’s nodes and connections
are represented as the graph’s vertices and edges
respectively. Depending on the application this graph may
be weighted, directed or un-directed. Thus, any spatial
query into the original network can be executed to its
corresponding graph representation G. Evidently, the
performance of such queries is strongly related to the
number of nodes and edges lying into the region, which is
a subgraph of G.

Several query processing techniques in spatial
networks have been proposed for fundamental query types
like window and k-nearest-neighbors queries [6]. To
increase the efficiency of these queries various query
optimization techniques are used [7]. The classic method
for the top-k simple shortest paths is Yen’s algorithm [5].
This method first computes the very shortest path from the
source node to the target node as the first path. Then, it
analyzes each node in the newly discovered shortest path p
as the deviation node to generate candidates for the next
shortest path using a single-source shortest path discovery.
The other shortest path is chosen from all the candidates
with the minimal cost. The process continues until k
different shortest paths are finally determined. The total
time cost of Yen’s algorithm is thus O(kn(m+nlogn)),
which comes from O(n)single-source shortest path
discovery for each of the k shortest paths.

Several attempts have been made to improve the
performance of Yen’s algorithm. However, the drawback
of yen’s algorithm is the worst-case complexity cannot be
reduced. In order to reduce this complexity Ernesto et al
reduced the cost in candidate path generation by
discovering the shortest paths incrementally [8]. John
Hershberger et al generated the candidate paths with the
edge replacement strategy in O(m+nlogn) for each of the
k candidates paths. In his work [8], they used the fast
replacement algorithm to discover the candidate paths, and
switch to a slow but correct method when a loop in the
generated path is detected.

Top-k spatial keyword queries on road network
are related to keyword queries on relational databases [9]
and graphs with external data [10]. However, in relational
databases and data graphs, the addressed problem is
finding rooted trees of connected vertices that are relevant
for the query keywords. There is also related work in the

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2132

context of preference queries in road networks and
relational databases. Mouratidis et al [11] propose
processing top-k and skyline queries on road networks
assuming additional costs on the edges of the road
networks. The results of these queries are used to achieve
the execution of top-k queries with minimum cost.
Levandoski et al [12, 13] discussed a framework for
integrating preference queries in database systems. In the
context of spatial objects on road networks [14, 15, 16]
nearest neighbor queries and range queries was discussed
[16] to store the road network and spatial object. One
interesting result of this work is the observation that
network expansion algorithms present better performance
when compared with algorithms based on Euclidean
distance heuristics. Lee et al. [14, 15] performed using
route overlays to improve the performance of nearest
neighbor and range queries on road networks.

In the context of spatial keyword queries, Ian de
Felipe et al. [17] discussed a new data structure that
integrates signature files and R-tree. Each node of the R-
tree employs a signature to indicate the keywords present
in the node sub-tree. Zhang et al [18] performed finding
the m-closest objects to a given query location that match
the set of m query keywords. Cao et al [19] introduced
finding a group of objects that match the query keywords,
minimizing intra-group distance, and the distance among
the objects in the group and the query location. These
issues are limited to boolean keyword queries and
Euclidean distance.

Cong et al. [1] and Li et al. [20] augmented the
nodes of an R-tree with textual indexes such as inverted
files. These files are used to prune nodes that cannot
contribute with relevant objects. Recently, Rocha-Junior et
al. [21] used an indexing structure that associates each
term to a different data structure (block or aggregated R-
tree) and can process top-k spatial keyword queries more
efficiently. Finally, Wu et al [22] cover the problem of
keeping the result set of traditional spatial keyword
queries updated, while the user is moving on a road
network, current approaches for processing top-k spatial
keyword queries are restricted to Euclidean distance and
rely on R-trees to compute the distance between the
objects and the query location. Therefore, the techniques
proposed cannot be applied in the context of road
networks where the distance between the query location
and the objects of interest is the shortest path. To
overcome all these issues, in this paper proposes a Top-k
Shortest Path Join (TKSPJ) method which ranks the top-k
spatial keyword and also finds the shortest path then
minimize the overall distance in detour path for spatial
network

Yen’s algorithm [23] is a deviation algorithm that
determines only loop less paths. The order of analyzing
the nodes in Yen algorithm starts from the deviation node.
This gives several changes in the network and provides the
proper solution to find the shortest path problem. This
loop less path is characterized by its deviation node and its
parent node. This yen algorithm is used only for ranking
the distance in the spatial network. But, in the proposed
work, the distance and the keyword along with shortest

path is searched and ranked along with these two
attributes.

3. INDEXING AND QUERY PROCESSING IN
 SPATIAL NETWORKS

3.1 Indexing

In this section, it presents a Top-k Shortest Path
Join (TKSPJ) approach has been proposed that indexes the
objects lying on the edges of the spatial network based on
graph for improving the query processing performance.

3.2 Mapping component

The mapping component [24] depicts a B-tree
named map B-tree that maps an edge id to the MBR of the
edge. The mapping component also points to the polyline
of the edge. The MBR of the edge is used to find the
spatio-textual objects lying on the edge through the spatio-
textual component.

3.3 Inverted file component

The inverted file component [24] is composed by
inverted list’s file and vocabulary. The inverted file
contains inverted lists identified by a key, composed by
the edge id and term id. Each inverted list stores the
objects lying on the edge (v, v׳) that have a term ‘t’ in their
description. For each object, the inverted list stores as
follows. Firstly, the network distance between the object
and the reference vertex of the edge (e.g., |v, pi|) is stored.
Secondly, the impact of the term ‘ti’ in the description of
the object (e.g., λti,pi) are stored together in the inverted
files to improve the efficiency. The vocabulary file stores
the general information about each term t, such as the
document frequency of each term. This information is
used to compute the textual relevance of the object for a
given query.

3.4 Query processing in spatial network

The basic query processing algorithm expands the
adjacencies of a query location similarly to Dijkstra’s
algorithm [25]. The k best spatio-textual objects are
maintained in a heap in decreasing order of score. The
algorithm stops when the remaining objects cannot have a
better score than the score of the kthobject already found,
or the entire network has been expanded.

The enhanced query processing algorithm [24]
performs well when the network is populated, the query
keywords that occur frequently, or the query preference
parameter gives more weight to the network distance. In
these cases, ‘k’ objects with good scores are found rapidly,
which permits the algorithm to terminate earlier. On the
other hand, it can perform poorly if the ‘k’ objects cannot
be found rapidly, which can be common in top-k spatial
keyword queries on road networks.

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2133

4. MINIMIZATION OF OVERALL TRIP DISTANCE
 USING CONTINUOUS DETOUR QUERY IN
 SPATIAL NETWORK

4.1 System overview

The framework of the top-k shortest path join
architecture is shown in Figure-2 and it is used to
construct k- shortest paths from the source node to the
target node with the transformed graph.

Figure-2. Framework of the proposed Top-k Shortest Path
Join (TKSPJ) Technique.

The existing k-shortest path tree (KSPT) has

overlaps between Short Path Tree (SPT) branches [3].
These branches are overlapped in such a way that each
node appears in the tree exactly k-times in k-different
branches. The proposed method implements the Top-k
Shortest Path Join (TKSPJ), which constructs a
transformed graph with side cost. By using the original
input graph, where structural encoding labels are used for
loop detection. Adaptive determine threshold minimizes
the search space and reduces the terminated cost in each
candidate path to find top-k shortest path. It uses the
transformed graph in the candidate path discovery
termination earlier, to exploit a special property of the
Continuous Detour Query (CDQ), where data objects are
additively weighted based on their distances to the
destination.

The proposed work combines the top-k keyword
and the shortest path in the spatial network. Thus the main
advantage of this work is to reduce the cost and pruning
search space. Pre computed shortest paths translating the
original graph into a new graph, have also been
introduced; based on the threshold value, which reduces
the search space in a spatial network.

4.2 Graph preprocessing

To construct the shortest path tree SPT (t,G)
using Dijskstra’s algorithm [25], every node is traversed to
reach the target node. Each node is labelled with the
distance and the successor of the node in the shortest path
as given below:

a) To find the possible path from every node to
the destination in a graph with minimal length for building
the sidetrack due to candidate’s path generation earlier.

b) Constructing the transformed graph with side
cost, can be easily performed on each edge
e=(u,v)to v.cost+e.weight− u.cost

c) To encode the shortest path tree SPT(t,G) with
the structural labels to care for the discovery of
ancestor/descendant relationship between the nodes
efficiently.

The interval labels can be assigned to each node
in one time traversal of the tree. The interval label on node
u has three attributes such as u.pre, u.post and u.parent,
where u.pre and u.post are node u’s preorder and postorder
number respectively with regard to SPT(t,G). In preceding
top-k shortest path algorithm, redundant computations
amid candidate path generation is allowed. For example in
(Figure-3) the first path is 1→ 2 → 3 → 6 and the second
1→ 2 → 4 → 3 → 6. While starting from divergent
deviation nodes, they occur to end with the same path 3 →
6 to reduce the redundant computation cost with the
computed Shortest Path Tree (SPT). In order to avoid the
loops in the discovered path, it utilizes the structural labels
on each node to detect the loops.

Figure-3. Candidate path termination.

Algorithm: Construct transformed graph

Input: Graph G(v,e) Start node S, Destination node T

Output: Transformed Graph g (v’,e’) with side cost and
Structural encoding labels

1: Find SPT(T,G) every node to same destination
with cost;

2: Generate sidecost For Each edge
e= (v,e) in G do
e.sidecost=v.cost+e.weight-u.cost;

3: Loop detection with three attributes Pre, post
order and parent on SPT(t,G) each node

4: Return G;

 The advantage of using the transformed graph
(Gside) instead of the original graph G is that, the
candidate path searching can be concluded generally
earlier on the Gside, with the assistance of the encoded pre
computed paths. The output of construct transformed
graph algorithm is the transformed graph with sidecost.

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2134

The attributes of pre order, post order and parent are used
to avoid the loop path from start node to target node. The
sidecost is also called as side track on each deviation node
to avoid traversal speed for discovery of the shortest path.

4.3 Invention of the shortest path encounter
 This algorithm is used to discover the shortest
path between source and target node from the transformed
graph.

Algorithm: Shortest Path Location Encounter
Input: Transformed Graph G(v,e)adj list, Source,

Destination
Output: Shortest path from start to target node
1: Initialize: A_1 = shortest-path from source to

destination
2: Global ← Local copy of G
3: for k = 2 → K do
4: for i = 1 → [len(A_(k−1)) − 1] do
5: Current Node ← A(k−1) [i]
6: Ri ← Sub-path (root) from source till currentnode

in A_(k−1)
7: for j = 1 → k − 1 do
8: Rj ← Sub-path (root) from source till currentnode

in A_j
9: if Ri == Rj then
10: Next Node ← Aj [i+1]
11: Global (CurrentNode,NextN ode) ← infinity
12: Current Node ← unreachable
13: end if
14: end for
15: Si ← Shortest-path from current node till

destination
16: Bi ← Ri + Si
17: end for
18: A_k ← Shortest-path amongst all paths in B
19: Restore original graph: Global ← Local copy of

G
20: end for

From the given graph Figure-3, this algorithm
finds the path for every vertex with the shortest path (i.e.
minimum cost) between the source vertex and the
intermediate vertex. It can also be used for finding the
costs of the shortest paths from a single vertex to a single
destination vertex by stopping the algorithm, once the
shortest path to the destination vertex has been
determined. Dijkstra's algorithm works on the principle
that the shortest possible path from the source has to come
from one of the shortest paths already discovered. It
retrieves the possible shortest path from each vertex and
draws the path to move to the destination vertex. Dijkstra's
algorithm can be used to find the shortest route between
one vertex and all other vertices.

The shortest path encounters algorithm is to
produce the shortest path between one node and another,
using Dijkstra's algorithm. Another option is to use a heap
to keep track of which node should come next, as one
property of heaps is that, they always have the next
element at the top (either the minimum or the maximum).

Since it is possible that in the above algorithm each edge
may cause a vertex's position in the heap to change, a heap
may require O(|E|log|V|) time. Finally, Dijkstra's algorithm
takes O(|E|log|V|) time in this case, as all other terms (such
as O(|V|log|V|) for finding the nearest vertex and updating
the heap and the O(|V|) initialization) are dominated
assuming that there are at least |V| edges in the graph.
There are a variety of algorithms for solving the "single-
source shortest path" problem for finding the shortest path
from a single vertex to all the other possible vertices.
Existing algorithms work only in some special cases with
less speed. The output of the shortest path encounter
algorithm is the shortest path that lies between one node
and another node with minimal length.

4.4 K Shortest path discovery

The k shortest path discovery algorithm is to
constructs the k shortest path from the source node to the
target node in the transformed graph. The top 4 shortest
paths P4(p1….p4) from left to rightp1(S, 1, 2, 3, 4, T);
p2(S, 1, 2, 3, T); p3(S, 1, 3, 7, T); p4 (S, 1, 3, 5, 6, T) have
been shown in Figure-5.

Algorithm: K Shortest Path Location Encounter
Input: Given a preferred path P from Data set

D, Graph G (Node N, Edges E), Source,
Target

Output: K Shortest path from start to target node
1: function ksp(Graph, origin, sink, K):
2: A[0] = Dijkstra(Graph, origin, sink);
3: B = [];
4: for k from 1 to K do
5: for i from 0 to size(A[k − 1]) – 1 do
6: sconNode = A[k-1].node(i);
7: rootPath = A[k-1].nodes(0, i);
8: for each path p in A do
9: if rootPath == p.nodes(0, i) then
10: remove p.edge(i, i + 1) from Graph;
11: sconPath = Dijkstra(Graph,sconNode, sink);
12: totalPath = rootPath + sconPath;
13: B.append(totalPath);
14: restore edges to Graph;
15: B.sort();
16: A[k] = B[0];
17: return A;

In the given Figure-4 the source S and the target
T has been defined for the graph G. Initially, the graph
traversal is done from source to destination and the
sidecost value is calculated. For the same source to
destination, find the k-shortest path to reduce the sidecost.
Therefore, earlier path must be removed and the new path
should be generated to reach the destination. It is
represented in the form of a tree as shown in Figure-5.

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2135

Figure-4. Sample graph of spatial network.

Figure-5. Top-4 Shortest path join (Using Figure-4).

4.5 Proposed Top-k Shortest Path Join (TKSPJ)
 with detour

Algorithm: Top-k Shortest Path Join with Detour

Query
Input: Transformed Graph G’(v’,e’), Sidecost

and labels, Source, Target
Output: Top-k Shortest path from start to target

node
1: Initialize each node v in Gside with

v.cost;
2: Sort nodes in ignore Node in term of

their pre;
3: Initialize active Q’ and insert u

(deviation node in Active list);
4: While (Q’ is not null)
 If D is terminating node then
 Sub path 1= S to D;
 Sub path 2= D to T;
5: Ranking the sub paths from S to D and

D to T;
6: Return minimal k shortest path;

The top-k shortest path join with detour algorithm
is used to discover the ‘k’ shortest path with the help of a
detour to avoid the search space for speeding up the
extraction process from one node to any node, which

incrementally retrieves data objects and computes node
labels as the monitoring process progresses. The
computation cost of a kSPT can be greatly reduced by
exploiting the fact that the offset assigned to each object
‘p’ is the distance from ‘p’ to the destination. Hence,
objects that are far away from the destination are likely to
be involved in the computation later, than objects closer to
the target. Object retrieval is done through monitoring of
the labelling distance and incremental retrieval of data
objects.

Figure-6. Top-k(2) Shortest path with detour (3).

The Figure-6 demonstrates the shortest path with
detour; Firstly find the shortest path from the start to the
deviation node and then deviation node assigned as start
node for finding the distance between the detour to the
target node. The path from S to 3 is fixed after
encountering the shortest path and then detects the path
from the detour to the target without a loopless path. In
top-k shortest path detour algorithm, consider S as the start
node, D as the detour node and T declared as the target
node. The sub path 1 is denoted as the shortest path from S
to D and the sub path 2 from D to T. Finally, detect the
overall path from S to T through D, through a loopless
path, using structural encoding and side cost value, to
avoid traversal of the entire graph.

The output of top-k shortest path detour
algorithm is the shortest path with threshold, due to
avoiding the whole search from deviation node to target
node, for the paths in figure 6. The start to endnode in the
network i.e., 3 → 4 and 3 → 7 help in reducing the surplus
cost.

5. EXPERIMENTS AND RESULTS

5.1 Statistics of data

In this chapter, real and synthetic data sets are
evaluated to find the efficiency and scalability of the
TKSPJ method. The proposed method is implemented in
the java platform using netbeans 6.1, with the use of yen k
shortest path codes, which indicates the extra cost
compared with the shortest one. Here, initially the query is
processed in the spatial network to find the shortest path
distance. For finding the shortest path process, the three
methods chosen for comparison are the YEN, KSPT and

S 1 2

4

3

7

TT

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2136

the proposed method TKSPJ. These three approaches are
compared with various factors to process the shortest path.
The three approaches YEN, KSPT and TKSPJ are
compared. The three approaches return the same set of
top-k objects for a given query. Extensive experiments on
both real and synthetic data sets have been conducted, to
determine the efficiency and scalability of techniques
based on the Table-1 with mentioned dataset, nodes,
edges, loop percentage and loop less average.

It employs real and synthetic datasets in the
experimental evaluation. All approaches were
implemented in the java platform, using netbeans 6.1. In
the experiments, the response time (total execution time),
index construction time (time to build the index), index
size are measured. Table-2 shows the main parameters and
values used the experiments.

Table-1. Comparison of k shortest path algorithms.

Methods Nodes Edges Loop
Loop
(null)

YEN 15,000 20,000 70% 62%

KSPT 15,000 20,000 80% 74%

TKSPJ 15,000 20,000 35% 23%

Table-2. Parameters evaluated in the experiments.

Parameters Values

Number of results(k) 10,20,30,40,50

Number of keywords 1,2,3,4,5

Query preference
parameter Ω

2,4,6,8,10

Construction parameter Ψ 2,4,6,8,10

Average region cardinality 10,20,30,40,50

Number of layers 1,2,3

Real datasets India, South Africa, France

Synthetic datasets R1,R2,R3,R4,S1,S2,S3,S4

Table-3. Parameters of the spatial datasets.

Attributes India South Africa Italy

Total size 104 MB 285 MB 59 MB

Total no.of vertices 50,324 94,124 13,236

Toalno.of edges 59,697 1,32,406 16,759

Avg.no.of lines per edge 7.65 10.34 3.56

Total no.of objects 35,673 52,435 7,456

Avg.no.of objects per edge 0.16 0.07 0.19

Total no.of words 1,56,434 2,12,348 45,231

Total no.of distinct words 13,453 18,321 4,642

Avg.no. of distinct words per object 3.56 4.43 1.53

5.2 Real datasets

It takes the real data sets of three countries
namely, India, South Africa and France. In these countries,
the map employs the rectangles based on their coordinates
(latitude, longitude); Most of the regions in the map
describe buildings or a spatial area. Consider the graph
with the road network formed by the largest partition of
each dataset. Construct the graph of the spatial network
and allocate the spatial objects treated as nodes in the road
network. Table 3represents some characteristics of each
dataset.

5.3 Synthetic datasets

In this, the datasets were obtained by combining
the Indian dataset along with road network. It preserves
the spatial network structure and the location of the objects
in the Indian dataset, to create four datasets, named R1,
R2, R3 and R4. From these four datasets, it composes the

road network respectively. The synthetic datasets were
obtained from the Indian network with various objects. It
generates four datasets named S1, S2, S3 and S4 with the
values of 300k, 600k, 900k and 1200k.

5.4 Experiments on real datasets

Query processing is performed using the
approaches YEN, KSPT and TKSPJ on real datasets.

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2137

Figure-7. Response time variations with number
of keywords.

5.4.1 Varying the number of keywords

Figure-7 presents the response time, while
varying the number of keywords in the query. The large
number of keywords in the query and the number of
objects are relevant. The TKSPJ approach is much better
in response time than YEN and KSPT. The number of
edges processed by TKSPJ and KSPT is very small for
queries with few keywords and increases for queries with
more keywords. However, it is much smaller than the
number of edges processed by the YEN approach. Note
that one single edge of the road network may contain
several objects.

Figure-8. Response time varying the query
preference parameter.

5.4.2 Varying the query preference parameter (Ω)

In this study, it evaluates the impact of the query
preference parameter as illustrated in Figure-8. The query
preference parameter does not present a significant impact
on response time.

Figure-9(a). Index size varying with datasets.

Figure-9(b). Response time varying with datasets

5.4.3 Varying the datasets

In this experiment, it gives the index size and
response time for different real datasets, as shown in
Figure-9 (a) & (b) represents the index size for the
different approaches. The YEN approach retrieves 123
dataset and for KSPT technique 107 is retrieved. Compare
to these two methods, the proposed method TKSPJ
reduces the index size to 56 as shown in Figure-9(a). The
response time varying as shown in Figure-9(b).

5.5 Experiments on synthetic datasets

In this part, it employs synthetic datasets to
evaluate the impact of increasing the number of keywords
per object and the number of objects (cardinality) on the
road network.

5.5.1 Varying the number of keywords per object

Figure-10 shows the response time for varying
the number of keywords in the description of the objects
(Textual Description Length). The YEN approach is not
affected by increasing the description of the objects. The
high cost of the YEN approach is in the processing of the
edges. Since the number of objects in the datasets does not
vary, the number of edges processed is the same for all
datasets. However, increasing the description of the
objects has an impact on the response time of the KSPT
and TKSPJ approaches. The main reason is that it
becomes more costly to identify the edges that have
relevant objects, since more objects can be textually

0

20

40

60

80

100

1 2 3 4 5

R
es

p
on

se
 t

im
e

(m
ill

is
ec

on
d

s)

Number of keywords

YEN

KSPT

Proposed
TKSPJ

0

20

40

60

80

2 4 6 8 10

T
im

e
(m

il
lis

ec
on

d
s)

Query Preference Parameter (Ω)

YEN

KSPT

Proposed
TKSPJ

0
500

1000
1500
2000
2500
3000

India South
Africa

Italy

In
d

ex
 S

iz
e

(m
eg

ab
yt

e)

Data Sets

YEN

KSPT

Proposed
TKSPJ

0

50

100

150

200

250

300

India South
Africa

Italy
T

im
e

(m
ill

is
co

n
d

s)

Data Sets

YEN

KSPT

Proposed
TKSPJ

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2138

relevant for the query. Consequently, more edges have
been processed.

Figure-10. Response time for keyword datasets.

5.5.2 Varying the number of edges expanded

Basically, this work is evaluated with four
parameters namely index size, keywords, response time
and number of edges expanded (top-k keywords not
specified). Therefore, according to the number of edges
expanded, the data sets S1, S2, S3, S4 were evaluated and
the response time was measured. This is shown in the
Figure-11.

Figure-11. Time analysis for edges expanded in datasets.

Figure-11 shows the number of edges expanded
and processed for varying the cardinality of the datasets.
Increasing the number of objects has a significant impact
on this approach, since it increases the number of edges. In
the case of the KSPT and TKSPJ approaches, only the
edges considered for top-k will be processed.

Figure-12(a). Index size varying the KSPJ
construction parameter.

Figure-12(b). Response time varying the TKSPJ
construction parameter.

5.5.3 Varying the TKSPJ construction parameter (Ψ)

This work, gives the advantage of employing text
similarity in the TKSPJ construction. Figure-12 (a) & (b)
show the index size and the response time while varying
construction parameter. The textual similarity and
grouping of regions are constructed based on the higher
value of Ψ using the TKSPJ. Figure-12(a) shows the
TKSPJ index size for varying Ψ. The index sizes are
varied for small and high values of Ψ. It means
incorporating the textual similarity and distance which
reduces the index size because the regions created have
smaller number of borders. However, only the textual
similarity has a positive impact on the response time that
is shown in (Figure-12(b)). For small values of Ψ, the
index table construction gives more priority to the network
proximity instead of the textual similarity among the
objects. Therefore, the regions created when Ψis small,
containing objects whose text description is dissimilar,
also impacts the response time. This experiment
demonstrates the advantage of incorporating text similarity
during the index construction.

0

20

40

60

80

100

R1 R2 R3 R4

T
im

e
(m

il
lis

ec
on

d
s)

Data Sets

YEN

KSPT

Proposed
TKSPJ

0

50

100

150

200

S1 S2 S3 S4

T
im

e
(m

ill
is

ec
on

ds
)

Data Sets (Edges Expanded)

YEN

KSPT

Proposed
TKSPJ

0
20
40
60
80

100
120
140
160
180

2 4 6 8 10

In
d

ex
 S

iz
e

(m
eg

ab
yt

e)

TKSPJ Construction Parameter (Ψ)

Proposed
TKSPJ

0
20
40
60
80

100
120
140
160

2 4 6 8 10

T
im

e
(M

ill
is

ec
on

ds
)

TKSPJ Construction Paramenter (Ψ)

Proposed
TKSPJ

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2139

Figure-13. TKSPJ construction time during query
processing by varying the average number of

entries per region.

5.5.4 Varying the number of entries per region

Figure-13 shows the overlay index construction
time and the response time when varying the number of
entries per region. If the average number of entries per
region is 20, it means that each region at level one has
approximately 20 edges; and each region at level two has
approximately 20 other regions (around 200 edges).
Figure-13 shows that increasing the number of entries per
region has a high impact on the index construction time.
When the number of entries increases, the vertices also
increase. The number of border vertices has a direct
impact on the index construction.

5.5.5 Candidate path termination

In this section, evaluation of the output of the
proposed method that compared with yen algorithm and
KSPT in two ways i.e. loop detection and candidate path
termination is performed has been performed. Figure-14
shows the variation of the candidate path termination
which has been highlighted. Depending on the number of
candidate (intermediate) path, the termination limit
increases for the other two existing methods (YEN &
KSPT) that is more the number ‘k’ values the higher the
termination limit. In case of the proposed TKSPJ, though
the ‘k’ value increases the termination limit remains
reduced thus speeding up the process.

Figure-14. Candidate path termination.

5.5.6 Loop detection
Figure-15 illustrates the loop detection

comparison between YEN, KSPT and proposed TKSPJ.
The result of the implementation denotes fast discovery of
the top-k shortest path, compared to the yen algorithm and
KSPT.

Figure-15. Loop detection.

5.5.7 Graph travel cost

Figure-16 shows the variation of the redundant
cost with the three methods. Finally, the proposed method
is found to work efficiently to minimize the travel cost and
reduce the search time with ranking.

Figure-16. Graph travel cost.

6. CONCLUSIONS

The main goal of the proposed work is to
diminish the redundant cost and prune search space in
each candidate path generation with an adaptively
determined threshold by using the transformed
graph/spatial network in the candidate’s path discovery
termination. These processes are used to speed up the
discovery of the shortest path in the non-negative directed
graph and to find the candidate paths on the transformed
graph more efficiently and diminish the search space with

0

10

20

30

40

50

10 20 30 40 50

T
im

e
(m

ill
is

ec
on

d
s)

Average number of entries per region

Proposed
TKSPJ

0

2

4

6

8

10

1 2 3

T
er

m
in

at
io

n
li

m
it

s

k
Candidate path termination

YEN

KSPT

Propose
d TKSPJ

0
2
4
6
8

10
12
14
16

1 2 3

C
os

t

No. of Keywords

YEN

KSPT

Proposed
TKSPJ

0
10
20
30
40
50
60
70
80
90

1 2 3

T
im

e
(m

il
li

se
co

n
d

s)

No. of Keywords

YEN

KSPT

Proposed
TKSPJ

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2140

the threshold. This method provides 93.2 % improvement
for finding the shortest path.

7. FUTURE WORK

The top-k shortest path join method is used in the
spatial network. It minimizes the search time and reduces
the overall travelling cost from the source to the
destination. This proposed work is developed for a road
network. In future, according to the user specification, it
may be developed for any spatial network application.
This application can be deployed in the cloud server and
cloud will provide a service to the user.

REFERENCES

[1] Cong G., Jensen C.S. and Wu D. 2009. Efficient

retrieval of the top-kmost relevant spatial web objects,
August 24-28, VLDB Endowment, ACM.

[2] Hershberger J., Suri. S and Bhosle A. 2007. On the
difficulty of some shortest path problems, ACM
Transactions on Algorithms.

[3] Eppstein D. 1998. Finding the k Shortest Paths, SIAM
J. Computing. 28: 652-673.

[4] Hershberger J., Maxel M. and Suri S. 2007. Finding
the shortest simple paths: A new algorithm and its
implementation, ACM Transactions on Algorithms.

[5] Yen J.Y. 1971. Finding the k shortest loopless paths
in a network”, Management Science. 17: 712-716.

[6] Sankaranarayanan J., Alborzi H. and Samet H. 2005.
Efficient Query Processing on Spatial Networks,
Proceedings 13th ACM International Symposium on
Geographic Information Systems (GIS), Bremen,
Germany. pp. 200-209.

[7] Tiakas E., Papadopoulos A.N., Nanopoulos A and
Manolopoulos Y. 2008. Selectivity Estimation in
Spatial Network. Proceedings of the ACM
symposium on applied computing. 852-856.

[8] De Queiro E., Martins V and Pascoal M.M.B. 2003. A
New Implementation of Yen’s Ranking Loopless
Paths Algorithm, 4OR: A Quarterly J. Operations
Research. 1: 121-134.

[9] Park J. and Lee S. 2010. Keyword search in relational
databases, Knowledge and Information Systems. 26:
175-193.

[10] Bhavana Bharat Dalvi, MeghanaKshirsagar and
Sudarshan S. 2008. Keyword search on external

memory data graphs, August 24-30, VLDB
Endowment, ACM.

[11] Mouratidis K., Lin., Y and Yiu. M.L. 2010.
Preference queries in large multi-cost transportation
networks, ICDE, March 1-6. pp. 533-544.

[12] Levandoski J.J, Khalefa M.E and Mokbel M.F. 2011.
The CareDB context and preference-aware database
system, September 2, VLDB Endowment, ACM,
Seattle, Washington, USA.

[13] Levandoski J.J, Mokbel M.F. and Khalefa M.E. 2010.
Flexpref: A framework for extensible preference
evaluation in database systems, ICDE, March 1-6. pp.
828-839.

[14] Ken C.K. Lee., Wang-ChienLee., Baihua Zheng and
Yuan Tian. 2012. ROAD: A new spatial object search
framework for road networks, IEEE Trans. on
Knowledge and Data Engineering. 24: 547-560.

[15] Lee K.C., Lee W. and Zheng B. 2009. Fast object
search on road networks, In EDBT, March 24-26,
ACM.

[16] Papadias D., Zhang J., Mamoulis N. and Tao Y. 2003.
Query processing in spatial network databases,
VLDB.

[17] Felipe I.D., Hristidis V and Rishe N. 2008. Keyword
search on spatial databases, ICDE.

[18] Zhang D., Chee Y.M., Mondel A., Tung A.K.H. and
Kitsuregawa M. 2009 Keyword search in spatial
databases: Towards searching by document, ICDE,
March 29-April 2. pp. 688-699.

[19] Cao X., Cong G., Jensen C.S. and Ooi B.C. 2011.
Collective spatial keyword querying, SIGMOD.

[20] Li Z., Lee K.C., Zheng B., Lee. W.C., Lee D. and
Wang X. 2011. IR-tree: An efficient index for
geographic document search, IEEE Trans. on
Knowledge and Data Engineering. 23: 585-599.

[21] Rocha-Junior J.B., Gkorgkas O., Jonassen. S. and
Norvag. K. 2011. Efficient processing of top-k spatial
keyword queries, SSTD.

[22] Wu D., Yiu M.L., Jensen C.S. and Cong G. 2011.
Efficient continuously moving top-k spatial keyword
query processing, ICDE, April 11-16. pp. 541-552.

 VOL. 12, NO. 7, APRIL 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2141

[23] Ernesto Q.V., Martins and MartoPascoal. 2003. A
new Implementation of Yen’s Ranking Loopless
Paths Algorithm. pp. 121-133.

[24] Joao Rocha-Junior and KjetilNorvag. 2012. Top-k
Spatial Keyword Queries on Road Networks, Proc.
15th ACM International Conference on Extending
Database Technology. pp. 168-179.

[25] Dijkstra E.W. 1959. A note on two problems in
connexion with graphs, Numerische Mathematik.

View publication stats

https://www.researchgate.net/publication/316935007

