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e Indian subcontinent is known for its larger coastline spanning, over 8100 km and is considered the habitat for many millions
of people. e livelihood of their habitat is purely dependent upon the �shing activities. Often, the search for �sh requires more
time for catching and more resources, thus increasing the operational cost leading to low pro�tability. With the advent of arti�cial
intelligence algorithms, designing intelligent algorithms for an e�ective prediction of �shing areas has reached new heights in
terms of high accuracy (Acy) and less time. But still, predicting the location of potential �shing zones (PFZs) is always a daunting
task. To reduce these issues, this work presented the novel hybrid prediction architecture of PFZs using remote sensing images.
e proposed architecture integrates the deep convolutional layers and �itter bat optimized long short-termmemory (FB-LSTM)-
based recurrent neural networks (RNN). ese convolutional layers are utilized to remove the various color features such as
chlorophyll, sea surface temperature (SST), and GPS location from the satellite images, and FB-LTSM is utilized to predict the
potential locations for �shing. e extensive experimentations are carried out utilizing the satellite data from Indian National
Centre for Ocean Information Services (INCOIS) and implemented using TensorFlow 1.18 with Keras API. e performance
metrics such as prediction Acy, precision (Pscn), recall (Rcl) or sensitivity (Sty), speci�city (Sfy), and F1-score and compared with
other existing intelligent learning models. From our observations, the proposed architecture (99% prediction Acy) has out-
performed the other existing algorithms and �nds its best place in designing an intelligent system for better predicting of PFZs.

1. Introduction

e coastal oceanic atmosphere assumes a fundamental part
in India’s economy by excellence of their assets, useful living
spaces and wide biodiversity. India has a long coastline of
7517 km incorporating islands which is a signi�cant region
both for investigation and misuse of common assets by the
exclusive economic zone (EEZ) of 2.5 million km2. Marine
�sheries area assumes a critical part in the economy as far as
giving work to more than 14 million individuals and un-
familiar trade pro�t through export. e yearly marine
�sheries creation in India is about 2.94 million tons against
the harvestable capability of 3.93 million tons [1]. However,

there is still a problem in �nding the �shing areas that
�shermen should visit [2, 3].

Prediction of �shing zone has been done utilizing the sea
parameters derived either from satellite images or ground
truth primary data [4, 5]. However, most of the research
framework’s utilized ocean graphic parameters such as
chlorophyll and sea surface temperature (SST) feature for
the prediction [6–8].e prediction of �shing zones has now
reached to new dimensions by the usage of machine and
deep learning algorithms. Several algorithms such as long
short-term memory (LSTM) [9], Markov models [10, 11],
Näıve Bayes (NB) classi�ers [12], support vector machines
(SVM) [13, 14], and deep neural networks (DNN) [15–17]

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 5081541, 10 pages
https://doi.org/10.1155/2022/5081541

mailto:sivasankari21@gmail.com
mailto:fekadu.ashine@aastu.edu.et
mailto:fekadu.ashine@aastu.edu.et
https://orcid.org/0000-0001-9444-3408
https://orcid.org/0000-0002-6475-7075
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5081541
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2022%2F5081541&domain=pdf&date_stamp=2022-06-28


are used for prediction of fishery area based on different
oceanographic parameters. However, an accurate prediction
for PFZs still remains on the darker side of the research. To
solve the aforementioned problem, this study proposes the
novel hybrid model HE-DFNETS (hybrid ensemble
DEEPFISHNETS) which integrates the double tier con-
volutional neural layers (DTCN) and flitter bat optimized
LSTM (FOLSTM) for an efficient prediction of PFZs (PEZ)
using remote sensing images. To the best of our knowledge,
this work is the first of its kind utilized for the prediction of
PEZ. *e main contribution of the paper is as follows:

(1) *e ensembled convolutional layers are imple-
mented to handle the different remote sensing im-
ages which comprise of sea surface temperature
maps and sea surface chlorophyll (SSC) maps

(2) Traditional training network is replaced with opti-
mized long short-term memory (LSTM) for better
performance.

(3) *erefore, flitter bats are implemented to optimize
the hyperparameters of the LSTM for a higher
prediction rate.

2. Related Works

Rahul et al. introduced fishery information revelation de-
pendent on help vector machines and fluffy principles to
recognize fish stock, and the utilization of undersea inno-
vation and GPS to develop programmed fishery examination
frameworks are probably the most recent patterns being
embraced around the world to improve, investigate, and
grow the monetary fishing zones over the seas. *is system
helps for long-term forecast of the PFZ [18].

Su et al. utilized random forest (RF) and gradient
boosting decision tree (GBDT) AI techniques to precisely
infer saltiness inconsistency data in the worldwide sub-
surface and more profound sea (0–2000m). As indicated by
the outcomes, the RF model can well recover the SSA and
beat the GBDT model. Besides, the exactness of the two
models for the most part decline with profundity under
500m [19].

Chacko et al. exhibit the helpful use of satellite infor-
mation in the assessment of OHC (ocean heat content) with
better spatial and temporal inclusion. *is structure has
assessed OHC700 in the Indian Ocean utilizing satellite-
determined SST, (sea surface height anomalies) SSHA and
OHC700 clim by utilizing the ANN procedure. *e out-
comes recommend the utility of the ANN strategy in
assessing OHC700 with sensible exactness on a close con-
tinuous premise [20].

Wang et al. proposed an AI forecast strategy joined with
wavelet change. *is interaction utilizes information from
upper sea perception floats put in the Arctic Ocean (AO.) to
anticipate the sensor simple of chlorophyll-A (C.A.) in the
upper expanse of the AO. Amodel joining SAE (stacked auto
encoder) Bi (bidirectional) LSTM and wavelet change is
proposed. From the experiment, these frameworks provide
better results in regards to root mean square error (RMSE)
and mean absolute error (MAE) [21].

Heyn et al. present a procedure to screen the ice con-
dition continuously through assessment of boundaries that
describe the appropriation of frame speed increases. It is
shown how a Kullback–Leibler disparity measure can ar-
range ice condition among a bunch of pretrained conditions.
*e examination shows that the factual order techniques,
planned by measure information, give steadier and more
solid outcomes [22].

3. Proposed Framework: System Overview

Figure 1 presents the architectural diagram for the proposed
framework HE-DFNETS. *e proposed HE-DFNETS ar-
chitecture works on three different phases. *e data col-
lection unit collects from the satellites, image preprocessing
and augmentation, segmentation with feature maps ex-
tractions using convolutional layers and finally flitter bat
optimized LSTM networks.

3.1.Materials andMethods (DataCollectionUnit). A variable
environmental database was accumulated consisting of SST,
SSC, and GPS co-ordinates (latitudes and longitudes). Given
their importance as environmental predictors of fishing
zones [23], three variables are mostly used in modelling the
proposed architecture. As mentioned in [24–26], SSC in-
formation gives data on sea’s usefulness and are significant
for recognizing fronts and vortexes that are not generally
obvious in SST maps. Table 1 shows the source of the dif-
ferent environmental satellite image data along with their
characteristics and specification.

Nearly 10 years of image data (Jan 1 2011 to April 2021)
has been downloaded to train the proposed architecture.
Figure 2 shows the sample remote sensing images which
represents the SSL and SSC parameters, respectively.

3.2. Image Preprocessing and Augmentation. *e pre-
processing technique is used to remove noise pixels, low-
quality pixels which affects the prediction ratio. Image
histogram methods are employed for enhancing the image
quality even though the resolutions of obtained images are
high resolutions.

3.3. Image Augmentation. To overcome the problem of
overfitting, the image augmentation process is incorpo-
rated in the proposed framework. *ough we have
downloaded the ten years of remote sensing images, these
image data are considered to be a limited quantity to train
the network. Hence, data augmentation is adopted to tackle
this problem. To perform the data augmentation, offline
transformations [27] is applied on the series of each image
which produces the large amount of newly corrected
training image samples. *e obtained augmented samples
have the same correlations with original images, and this
step is most widely used for preventing the overfitting
problems as shown in Figure 1.
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3.4. Proposed Network Training. *is section details about
the working mechanism of the proposed double-tier con-
volutional layers and flitter bat optimized LSTM.

3.4.1. Proposed Ensemble Convolutional Layers. As men-
tioned in [28], the ensemble convolutional neural networks
are used for an effective segmentation and feature extraction
which is presented in Figure 3. *e first-tier convolutional
layers (Table 2) are used to segment the SSL remote sensing
images in which the features are extracted and stored as
separate feature maps. *e similar fashion of convolutional
layers (Table 2) are employed to extract the feature maps
from the SSC maps.

Kim et al. [9] mainly focus on the assumption on
temperature rise in the water by using the latest methods
like “LSTM and deep learning” approach along with the

“HWT” approach. So, the loss of all sea species can be
prevented.

3.5. Optimized LSTM Training for Prediction. *en, the
feature maps are extracted and ensembled for training the
network. *e proposed system replaces the traditional
neural network training network with the flitter bat opti-
mized long short-term memory. *e proposed LSTM
training network’s working mechanism is presented in the
preceding section.

3.5.1. Hyperparameter Optimized LSTM Network. As
mentioned in [17], though LSTM plays an important role in
the prediction, performance of the network degrades when it
handles larger datasets [27]. In the existing frameworks,
there is computational complexity when the dataset scale

CL-CONVOLUTIONAL
LAYERS

PL-POOLING LAYERS

ENSEMBLED FEATURE MAPS

OPTIMIZED LSTM NETWORK

PREDICTION OF FISHING ZONES

IMAGE PRE-PROCESSING

IMAGE AUGUMENTATION

CL-1

PL-1

CL-2

PL-2

CL-1

PL-1

CL-2

PL-2

IMAGE PRE-PROCESSING

IMAGE AUGUMENTATION

Figure 1: Proposed framework for the HE-DFNETS.

Table 1: Characteristics and specifications of satellite images collected with its source.

Environmental parameters Source of data Satellites Resolutions (K) Sensors
SSL parameters https://incois.gov.in/portal/

remotesensing/TERA_display.html
NOAA-17 METOP-1 METOP-2 4 AVHR MODIS

SSC parameters MODIS AQUA TERRA

Computational Intelligence and Neuroscience 3
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gets increased. Motivated by this drawback, the proposed
LSTM training must be aware of the computational com-
plexity whose hyperparameters such as epochs, learning rate,
and hidden layers are optimized by the bio-inspired flitter
bat algorithms [29]. *is approach will yield a better pre-
diction rate compared to traditional network.

3.5.2. Flitter Bat Optimized LSTM. Flitter bat algorithm is
used to optimize the hyperparameters of the LSTM. *e
low complexity and less computational time of flitter bats
than other bio-heuristic algorithms such as PSO and GA

[30, 31] has inspired us to implement the flitter bats to
optimize the hyperparameters of LSTM. In this case, no of
epochs, learning rate, and hidden nodes are taken as the
input bat population whereas the fitness function is cal-
culated by

fitness functionF(A)> A(n) − A(n + 1){ } , (1)

where A(n) is the Acy at initial stage, A(n+ 1) is the Acy at
preceding section, and n is the number of iterations. *e
working mechanism of optimized LSTM is presented in
Algorithm 1.

(a) (b)

Figure 2: Sample image data used for training the network. (a) SSC maps. (b) SST maps.

INPUT 
IMAGE-

SST MAPS

INPUT 
IMAGE-2
SSC MAPS

ENSEMBLED 
FEATURE 
MAPS FOR 
TRAINING

Figure 3: Double-tier ensembled CNN layers for an effective segmentation and feature extraction.

Table 2: Parameters of CNN (Tier-1) used for segmentation and feature extraction OF SST maps and SSC maps.

Sl. no. Layers used Output size Parameters
1 Convolution layer (CL-1) 256× 256× 32 564
2 Pooling layer (PL-1) 128×128× 32 2
3 Convolution layer (CL-2) 128×128× 64 2784
4 Pooling layer (PL-2) 64× 64×128 0
5 Convolution layer (CL-3) 64× 64×128 9673
6 Pooling layer (PL-3) 32× 32× 256 0
7 Convolution layer (CL-4) 32× 32×128 167653
8 Pooling layer (PL-5) 16×16× 256 0
9 Convolution layer (CL-4) 16×16× 256 208960
10 Pooling layer (PL-5) 4× 4× 512 0

4 Computational Intelligence and Neuroscience
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Finally, the fine-tuned hyperparameters in LSTM are
used to predict the different PFZs effectively.

4. Experimental Setup

*e proposed HE-DFNETS are implemented in TensorFlow
3.18 with Keras API which runs on “Windows PC10 with i7
CPU, 4GB NVIDIA Geo-force GPU, 16GB RAM and 2.5
GHZ”.

5. Performance Metrics and Evaluation

For the better classification, the images are resized to
256× 256× 3. Nearly 1, 06,700 image datasets were used for
training. Table 3 depicts the partitioned datasets utilized for
both training and testing the network.

*e hybrid combination of the CNN–FO-LSTM net-
work is used in the proposed architecture whose hyper-
parameters are optimized by flitter bat algorithms. *e
sample images were used for training the proposed network.
As the next step, the proposed architecture is tested with the
images in which the ensembled convolutional layers extracts
the image features and O-LSTM training networks classifies
the appropriate categories. To prove the outstanding per-
formance of proposed architecture, metrics such as “Acy, Sty,
Sfy, and F1-score” are calculated. Table 4 shows proposed
framework’s validation parameters.

5.1. Results and Discussion. *is section presents the sig-
nificance of the proposed architecture over the other existing
learning models in terms of various performance evalua-
tions. *e evaluation is carried out in tri-folded scenario. In
the first scenario, prediction of PFZs for different areas are
validated. Additionally, validation loss characteristics and
receiver operating characteristics (ROC) are evaluated for

the proposed architectures. In the next scenario, perfor-
mance of the proposed architecture is compared with the
other state-of-the-art learning models such as SVM [14],
BILSTM [9], NB [12], gradient-boosted decision trees
(GBDT) [21], artificial neural networks [17], and KNN-RF
[32]. To overcome the imbalance problem, the proposed
learning architecture is tested with random images.

5.1.1. Scenario-I. In this evaluation, prediction Acy of the
proposed architecture is calculated for the Indian East
Coastal Areas from the random dates from Jan 1 2021 toMay
1 2021 along with the other performance metrics.

Table 5 shows the prediction performance of the pro-
posed architecture. *e validation of the proposed archi-
tecture is done by random data sets in order to avoid the
imbalance problems [33, 34]. From Table 5, it is found that
the proposed architecture has predicted the PFZs accurately.
*e prediction Acy of proposed architecture is shown in
Figure 4. *e integration of ensembled convolutional fea-
tures and optimized LSTM training has yielded the 99%
prediction Acy which was observed from the month of
January to May 2021. Table 6 presents the average perfor-
mance metrics such as “sensitivity, Pscn, Sfy, and F1-score”.

(1) Inputs: hidden layers, learning rate, and number of epochs
(2) Outputs: Acy of prediction
(3) Initialize the bat populations as hidden layers, learning rate and number of epochs
(4) Initialize initial velocity, loudness, frequency, and distance using equation (7) and (8)
(5) While n� 1 to max_iteration
(6) Calculate the F(A) using equation (1)
(7) If F(A)� � threshold (equation (1))
(8) Go to step 12
(9) Else
(10) Update the velocity, loudness, frequency, and distance
(11) Go to step 6
(12) End
(13) End
(14) End

ALGORITHM 1: Optimized LSTM networks.

Table 3: Proposed framework’s testing and training using image datasets.

Sl. no. Total no. of images (after augmentation) Training data (%) Testing data (%)
01 1,06,700 70 30

Table 4: Mathematical expressions for the performance metrics’
calculation.

Sl.
no.

Validation
parameters Formulae

01 Acy TPV + TNV/TPV + TNV + FPV + FNV
02 Sty or recall (TPV/TPV + FNV) × 100
03 Sfy TNV/TNV + FPV
04 Pscn TNV/TPV + FPV
05 F1-score 2.(Precison∗Recall/Precision + Recall)
TPV is true positive values, TNV is true negative values, FPV is false positive
values, and FNV is false negative values.

Computational Intelligence and Neuroscience 5

 8483, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2022/5081541, W

iley O
nline L

ibrary on [20/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



*e similar fashion of the performances (99% Sty, 99% Pscn,
99% Sfy, and 99% F1-score) has been found from Jan 2021 to
May 2021.

5.1.2. Scenario-II. Tables 7 and 8 give the comparative
analysis of proposed framework vs. other existing
frameworks.

Tables 7 and 8 show the comparative analysis between
the proposed architecture and other learning models. It is
found that integration of optimized LSTM with ensembled

Table 5: Predicted values of the different fishing zones by using proposed DEEPFISHNETS.

Date Actual PFZ to be determined Predicted PFZ by proposed architecture
Jan 2, 2021 North Tamil Nadu PF-zones North Tamil Nadu PF-zones
Jan 15, 2021 West Bengal PF-zones West Bengal PF-zones
Jan 25, 2021 Andaman and Nicobar PF-zones Andaman and Nicobar PF-zones
Jan 31, 2021 Orissa PF-zones Orissa PF-zones
Feb 4, 2021 North Tamil Nadu PF-zones South Tamil Nadu PF-zones
Feb 14, 2021 North Andhra Pradesh PF-zones North Andhra Pradesh PF-zones
Feb 28, 2021 South Andhra Pradesh PF-zones South Andhra Pradesh PF-zones
March 1, 2021 North Tamil Nadu PF-zones North Tamil Nadu PF-zones
March 10, 2021 West Bengal PF-zones West Bengal PF-zones
March 23, 2021 Andaman and Nicobar PF-zones Andaman and Nicobar PF-zones
March 31, 2021 South Tamil Nadu PF-zones South Tamil Nadu PF-zones
April 7, 2021 Gujarat PF-zones Gujarat PF-zones
April 14, 2021 West Bengal PF-zones West Bengal PF-zones
April 20, 2021 Andaman and Nicobar PF-zones Andaman and Nicobar PF-zones
April 23, 2021 Goa PF-zones Goa PF-zones
April 30, 2021 North Tamil Nadu PF-zones North Tamil Nadu PF-zones
May 2, 2021 Karnataka PF-zones Karnataka PF-zones
May 15, 2021 South Tamil Nadu PF-zones South Tamil Nadu PF-zones
May 20,2021 Orissa PF-zones Orissa PF-zones

Table 6: Validation parameters (average) for the proposed ar-
chitecture in predicting the PFZs.

Date
Performance metrics

Sty (%) Sfy (%) Pscn (%) F1-score (%)
Jan 2021 99.5 99 99 99
Feb 2021 99.5 99 99 99
March 2021 99.5 99 99 99
April 2021 99.5 99 99 99
May 2021 99.5 99 99 99

Table 7: Comparative analysis: proposed architecture vs. other
state-of-the-art learning models in the months of Jan 2021-March
2021.

Algorithms
Performance metrics (%)

Acy (%) Sty (%) Sfy (%) Pscn (%) F1-score
(%)

ANN 56 54.5 55 54% 55
NB 61 62 63 61.5% 62
KNN 63 62.4 62 61% 63
RF 64 62 64 61% 63
GBDT 67 66 65 62% 64
SVM 69 68.4 67.4 66.8% 66.30
BILSTM 78 75 76 775 76.5
DEEPFISHNETS 99 98.5 99 99% 99
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Figure 4: Average prediction Acy of the proposed architecture in predicting the different fishing zones of the coastal parts of India.
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convolutional layers has maintained the average performance of 99% from the month of Jan 2021 to May
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Figure 5: Continued.

Table 8: Comparative analysis between the performances of the proposed architecture and other state-of-the-art learning models in the
months of April 2021-May 2021.

Algorithms
Performance metrics (%)

Acy (%) Sty (%) Sfy (%) Pscn (%) F1-score (%)
ANN 55 54.5 55 53 55
NB 60 62 64 60.5 62
KNN 62 63.4 64 61 63
RF 63.5 63 65 61 63
GBDT 68.5 67 64 62 64
SVM 70 69.4 66.4 66.8 66.30
BILSTM 78 75 75.6 77 76.5
DEEPFISHNETS 99 98.5 99 99 99

Computational Intelligence and Neuroscience 7
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Figure 5: ROC characteristics. (a) ROC curve in predicting the PFZs based on South Tamil Nadu. (b) ROC curve in predicting the PFZs
based onNorth Tamil Nadu. (c) ROC curve in predicting the PFZs in North Andhra Pradesh. (d) ROC curve in predicting the PFZs in Orissa
region.
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Figure 6: Average validation-loss characteristics of the proposed architecture. (a) Jan 2021. (b) Feb 2021. (c) March 2021. (d) April 2021. (e)
May 2021.
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2021 and also it outperformed the other learning models
such as ANN (55%), NB (60%), KNN (62%), RF (63.5%),
GBDT (68.5%), SVM (70%), and BILSTM (78%),
respectively.

Figure 5 shows the ROC characteristics of the proposed
architecture for randomly chosen prediction zones. Figure 6
shows the characteristics of validation loss of the proposed
architecture. It is found in Figure 6 that loss is very less than
0.001 which is considered to be more suitable for the pre-
diction of PFZs.

6. Conclusion

In this paper, a novel HE-DFNETS is proposed for the
prediction of PFZs areas which can be used by the fisherman
community. *e proposed algorithm works on the principle
of ensembled convolutional layers and replaces the tradi-
tional neural network training with the optimized LSTM
network. In the proposed framework, the hyperparameters
are optimized by the flitter bat optimization technique. *e
datasets include the satellite images which comprise SSTand
SSC along with GPS coordinates. *e datasets were
downloaded from https://incois.gov.in/portal/
remotesensing/TERA_display.html. Extensive experimen-
tations were accomplished using the above datasets, and
validation metrics were calculated for different scenarios of
the environment. *e performance of the proposed archi-
tecture is validated randomly from the month of Jan 2021 to
May 2021. It is found that the prediction Acy is maintained
uniformly to 99% for every month, and it outperforms the
other state-of-the-art learning models. *e above results
show the promising performance of the proposed archi-
tecture in predicting the PFZs and can be utilized for the
betterment of the fisherman’s community.

6.1. Future Enhancement. Hence, the proposed architecture
requires further enhancement in terms of reduced com-
putational complexity.

Data Availability

*e datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
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