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Abstract: The continuous monitoring of respiratory rate (RR) and oxygen saturation (SpO2) is
crucial for patients with cardiac, pulmonary, and surgical conditions. RR and SpO2 are used to
assess the effectiveness of lung medications and ventilator support. In recent studies, the use of a
photoplethysmogram (PPG) has been recommended for evaluating RR and SpO2. This research
presents a novel method of estimating RR and SpO2 using machine learning models that incorporate
PPG signal features. A number of established methods are used to extract meaningful features
from PPG. A feature selection approach was used to reduce the computational complexity and the
possibility of overfitting. There were 19 models trained for both RR and SpO2 separately, from
which the most appropriate regression model was selected. The Gaussian process regression model
outperformed all the other models for both RR and SpO2 estimation. The mean absolute error (MAE)
for RR was 0.89, while the root-mean-squared error (RMSE) was 1.41. For SpO2, the model had an
RMSE of 0.98 and an MAE of 0.57. The proposed system is a state-of-the-art approach for estimating
RR and SpO2 reliably from PPG. If RR and SpO2 can be consistently and effectively derived from the
PPG signal, patients can monitor their RR and SpO2 at a cheaper cost and with less hassle.

Keywords: respiration rate (RR); oxygen saturation (SpO2); photoplethysmogram (PPG); feature
selection algorithm; Machine Learning

1. Introduction

Due to the recent outbreak of a novel coronavirus known as severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), the world has experienced one of its most
challenging periods in history. The disease has had a significant impact on all aspects of
human existence, particularly, on the economic infrastructure and medical facilities of the
world. The World Health Organization (WHO) officially recognized this condition as a
pandemic on 11 March 2020. Until 7 January 2023, WHO statistics indicated that there
were 662,757,682 confirmed cases of COVID-19 worldwide, with 6,702,115 fatalities [1].
There is an unprecedented pressure on society due to the current healthcare system, putting
strain on the ability of healthcare institutions to provide adequate care. The easy spread
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of COVID-19 makes the isolation of patients essential for controlling the outbreak. Fur-
thermore, the interaction between healthcare personnel and COVID-19 patients should be
limited. Temperature, blood pressure, pulse, and respiration rate are the four most critical
vital signs [2] used to assess a patient’s health. The continuous monitoring of vital signs
is essential for ensuring that patients with COVID-19 receive the correct treatment and
medication. By utilizing remote vital sign measurement devices, the frequency of hospital
visits for patients with COVID-19 and the likelihood that a patient will be exposed to the
coronavirus at home can be reduced. As a result, healthcare professionals will be able to
obtain vital signs information about the patient at home.

The Food and Drug Administration (FDA) has released a comprehensive policy requir-
ing healthcare providers to use non-invasive and remotely operated devices that measure
vital signs, such as body temperature, respiratory rate, heart rate, and blood pressure [2].
Remote monitoring devices can be used by healthcare providers to monitor the vital signs of
patients who are staying at home. Wearables as well as associated data loggers and graphi-
cal user interfaces (GUIs) to remotely monitor a patient’s vital signs would be extremely
beneficial in such a situation. In addition to monitoring low- and medium-risk COVID-19
patients in home isolation, this system can also assist those patients in need of medical
assistance but who were unable to obtain it as a result of this public health emergency.

Respiration rate (RR) is one of the most significant physiological indicators that can be
used to detect abnormalities in the human body. It is one of the four primary vital signs,
along with blood pressure, body temperature, and heart rate. Several recent advancements
in RR estimation techniques are summarized in this section [3–5]. Over the past few
decades, pulse oximetry has been exploited as an influential health indicator to determine
the percentage of blood that is oxygenated by hemoglobin (SpO2). The pulse oximetry
method is used to measure the amount of oxygen in the blood (oxygen saturation). The
procedure is non-invasive, does not cause pain, and evaluates the efficiency with which
oxygen is transported from the heart to other parts of the body, such as the limbs. In
addition to determining whether there is sufficient oxygen in the blood, it can also be used
to track the health of a person who suffers from a condition that causes low levels of oxygen
in the blood. Healthy individuals have a level of oxygen saturation between 96% and 100%.
Hypoxia refers to a condition in which there is a decrease in the amount of oxygen, with a
blood saturation level below 90%.

A variety of techniques have been used to assess the efficacy of RR algorithms utilizing
ECG and photoplethysmogram (PPG) waveforms, with the majority of them being based
on PPG data. There are several issues that make it difficult to reinvestigate the performance
of the described algorithms. According to [3,4], more than one hundred different methods
can be utilized to determine the RR from ECG and PPG. Different strategies are developed
by using new iterations of time domain RR estimation and modulation fusion methods.
An algorithm presented in [6] allows PPG segments that are contaminated by movement
artifacts to be automatically eliminated. This makes the method a viable option for measur-
ing child respiration rates in a hospital emergency department. In children between the
ages of 5 and 12 years, they were able to reduce the MAE to 5.2 beats per minute. A novel
approach was introduced to calculate the RR of the PPG signal by combining joint sparse
signal reconstruction with spectral fusion [7].

To enhance RR extraction from PPG, a smart fusion strategy based on “ensemble
empirical mode decomposition (EEMD)” was presented in [8]. Using two separate datasets,
EEMD was applied and evaluated to achieve an accurate RR estimate [9]. To verify the
algorithm, retroactive PPG-RR computations were conducted on PPG waveforms obtained
from the data warehouse and compared to the RR reference values reported [10]. A
study [11] compared four “time–frequency (TF)” signal representation algorithms cascaded
with a particle filter to determine which was most effective in estimating RR using variations
in amplitude in the transmittance mode of PPG signals collected from the fingers. An
investigation of ten individuals was described [12], which found that PPG signals generated
lower RR values than accelerometers. A study [13] examined the accuracy of PPG-derived
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respiratory frequency measurements in different body locations during normal and deep
breathing. The frequency demodulation approach was used to extract respiratory signals
from the PPG data of 36 healthy participants to determine the respiration frequency by
analyzing the spectral power density. In [14], Charlton’s techniques [3,4] were combined
with remote PPG-based data to improve the accuracy of respiration rate estimations. A few
modifications were carried out to make it suitable for remote PPG (rPPG) waveforms. By
utilizing contact PPG techniques, distant PPG data can be used to estimate the respiratory
rate with a mean absolute error of less than 3 bpm. According to the report, the MAE and
RMSE were 3.03 and 3.69 bpm, respectively.

In [15], the authors presented their findings and the analyses of a machine learning
model for SpO2 calculation based on reflectance PPG signals obtained from the finger using
a customized data collection device. Using these signals, the model was able to determine
SpO2. They converted the regression problem into a 20-class classification problem (1 class
for each discrete value between 81% and 100%). The MAE was calculated based on the
predictions of the classifier. The recommended model had an MAE of 0.5 and an accuracy
of 96% with a 2% error range for SpO2 values ranging from 81% to 100%. A deep neural
network (DNN) was trained using data collected during the clinical testing of a wrist-
worn reflectance pulse oximeter [16]. They were aiming to achieve the requisite clinical
accuracy of RMSE, which is 3.5 for SpO2 levels between 70% and 100% [17]. They also
showed that the DNN using regression could not achieve the required performance with
supervised learning on its own (RMSE = 4.4). DNNs trained using unsupervised methods
using a collection of unlabeled PPG signals were able to achieve clinical-grade accuracy
(RMSE = 2.91) after being pretrained using contrastive representation learning strategies.
As a result, the DNN was able to use the signals.

A unique method was developed to estimate SpO2 using reflectance pulse oximetry,
with SpO2 that was generated from transmittance PPG signals with the least amount of
calibration possible. A description of this method can be found in [18]. The recommended
procedure yielded an MAE of 1.81%, which is significantly less than the 2% error margin
considered acceptable in clinical practice. Nevertheless, subsequent statistical research
indicated that the model could be improved by adding more data and increasing the
selectivity of the variables. The authors published the findings of a study of reflectance PPG
signals recorded in a clinical setting from 28 patients suffering from a wide range of lung
diseases. In [19], the authors developed a portable continuous Blood Oxygen Saturation
Monitor (SpO2) and, for the first time, examined significant design considerations with
respect to commonplace applications. According to the experimental findings, the fact that
the root-mean-square error of the SpO2 estimation was only 1.8 indicated that the system
was functioning properly.

Few research groups analyzed RR and SpO2 from the publicly available PPG database
and used machine learning models to estimate them. Therefore, there is a potential for
using machine learning models to improve RR and SpO2 estimation algorithms. Moreover,
no research group has estimated RR and SpO2 simultaneously using the ML model from
the publicly available PPG dataset, to the best of the authors’ knowledge.

The major contributions of this work are as follows:

• A unified ML system is proposed to estimate RR and SpO2 from PPG.
• Separate ML models are trained as RR, and SpO2 gives importance to different features.
• Analysis of the most important features to showcase which features predict RR or

SpO2 the best.

This research is divided into four main sections. In Section 1, we present an introduc-
tion to PPG and its application for RR and SpO2 estimation, as well as a brief survey of
the existing literature in this area. In Section 2, we detail the dataset, preprocessing stages,
feature extraction, feature selection, evaluation matrices, and ML models. The experiment
results and their significance are presented and discussed in Section 3. In the same section,
the results of this work are compared to those of state-of-the-art approaches. The entire
study is summarized in Section 4.
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2. Materials and Methods

In this section, we summarize a description of the dataset and the preprocessing
techniques, the different features that were extracted, the different algorithms for selecting
features, and the different machine learning models that were used in this study to estimate
RR and SpO2.

As shown in Figure 1, the PPG signal from the publicly available BIDMC dataset [20]
was first segmented into 32 s. For 5-fold cross-validation, the PPG signals were divided
into 60% training, 20% validation, and 20% test sets. A filtering process was conducted on
the segmented PPG signals, followed by the removal of motion artifacts. Then, significant
features were identified, and feature selection methods were employed to minimize the
features’ dimensions to prevent overfitting and reduce the computation time. The chosen
characteristics were employed for training, validating, and testing machine learning models.
Based on the properties of PPG, the RR and SpO2 values were estimated from an unseen
20% test set per fold using the PPG properties.
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Figure 1. Overview of the machine learning system development.

2.1. Dataset Descriptor

The BIDMC dataset used in this study was taken from the MIMIC-II dataset [19],
which is publicly available. The BIDMC dataset is a collection of electrocardiograms
(ECG), photoplethysmograms (PPG), and impedance pneumography (Imp) breathing
signals collected from ICU patients. The dataset includes 53 recordings of ECG, PPG,
and impedance pneumography signals. Each is 8 min (total 424 min) long (sampling
frequency, fs = 125 Hz), obtained from adult patients (age 19–90+ years, 32 females, RR
range, 5–25 bpm, SpO2, range 84–100%) [20]. The RR values varied from 5 to 25 bpm, and
the SpO2 values from 84 to 100% for different patients, as shown in Figure 2. We segmented
the signals into 32 s frames with 50% overlap to ensure a sufficient number of breaths
occurred so that RR and SpO2 could be computed accurately [3–5,20]. The breathing rate
would be hampered by a shorter window, while a longer window would be impractical.
We collected 32 s-long 1400 PPG segments.
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2.2. Preprocessing

This dataset contained high-frequency noise and a limited number of motion-corrupted
components in the PPG waveform. The presence of these factors can impede the process of
identifying features. We filtered the PPG waveforms with a Butterworth Infinite Impulse
Response (IIR) Zero Phase Filter to remove high-frequency noises. Figure 3 illustrates both
the raw and the filtered PPG data, as well as the raw PPG signals without motion artifacts
(MA) and high-frequency noise. A sixth-order IIR filter with a cutoff frequency of 25 Hz
was created in MATLAB.

The major problem with PPG signals in real-world data acquisition is that they are fre-
quently distorted by motion artifacts. There have been several signal-processing approaches
used to eliminate motion artifacts from one-dimensional data. Recently, Variational Mode
Decomposition (VMD) was utilized to remove motion artifacts from PPG waveforms. Our
recent studies [21] demonstrated the effectiveness of this method. This algorithm was
included in our signal processing steps in order to make the signals robust, since this
dataset contained some motion-corrupted signals.
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2.3. Feature Extraction

Several meaningful features can be extracted from a PPG signal. The features can be
divided into time domain, frequency domain, and statistical domains. The systolic peak,
dominant frequency, and kurtosis of the signals are examples of the time-domain, frequency-
domain, and statistical features, respectively. We extracted the features in accordance with
the work described in [21,22]. A better understanding of the variation within a segment
can be obtained by calculating the standard deviation and variance along with the mean,
as stated in [21]. This is crucial when modeling for RR, since breathing creates distortion,
and modulation. Thus, these features allow for an accurate estimation of RR. A total
of 107 features were extracted from the PPG waveforms. Supplementary Tables S1–S4
summarize several types of features retrieved in this study.

2.4. Feature Selection

As a result of the application of feature selection algorithms (FSA), the dimensionality
of the feature set can be reduced by limiting the number of predictors to a subset, based
on a score. This is helpful in a number of ways. In the first place, a feature selection
algorithm reduces the amount of training time and computational complexity required,
since it minimizes the number of features. Secondly, it reduces the likelihood of overfitting.
Additionally, it simplifies the deployment of the model by making it lighter. Our feature
selection was based on the Feature Ranking Library (FSLib) [23], a popular MATLAB library
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that uses adaptive weighting and selects features based on discrimination power. Nine
FSAs were used in this study. Based on empirical results, the best algorithm was selected.

“FIT A Gaussian Process Regression Model (FITRGP)”: a Gaussian regression process
model is trained, which returns the predictor weights that it used. The relevance of a
feature is established by computing the exponential of the negative length scales that have
been learned [24,25].

“Least Absolute Shrinkage and Selection Operator (LASSO)”: a lasso model is trained
which provides the best features according to its algorithm. In lasso, the variance of infer-
ence is reduced by keeping the sum of absolute model weight values below a predetermined
threshold [26].

“Relief Feature Selection (ReliefF)”: ReliefF is good at estimating the importance of
the function for supervised models that are distance-based and use pairwise differences
between the observations to predict [27,28].

“Feature Selection with Adaptive Structure Learning (FSASL)”: FSASL is centered
on linear regression. Its main limitation is the large computational cost, which increases
further when dealing with high-dimension data [29].

“Unsupervised Feature Selection with Ordinal Locality (UFSOL)”: In UFSOL, a triplet-
based loss function is used to ensure the ordinal localization of the actual data. This results
in clustering focused on distance. By imposing an orthogonal restriction on the function
projection matrix, the orthogonal base clustering is simplified. Therefore, the algorithm
concurrently gathers and groups features [30].

“Laplacian Method (LM)”: LM is an unsupervised algorithm where the worth of a
predictor is based on its ability to conserve the locality. This method aims to model the
local geometric structure by building a closest-neighbor graph. The algorithm looks for
features that respect the structure of the graph [31].

“Multi Cluster Feature Selection (mCFS)”: mCFS works well when there is a sparse
eigen problem, and an L1 regularized least-square function is used to solve the optimization
problem [32].

“Correlation-Based Feature Selection (CFS)”: CFS selects features in a sequential
backward exclusion fashion to obtain the top features. It is an embedded process that uses
Support Vector Machine (SVM) [33].

“Feature Selection Via Concave Minimization (FSV)”: in FSV, the feature selection
process is included within the training of an SVM by a linear programming technique [34].

2.5. Machine Learning

Five distinct machine learning models with 19 variants were trained, validated, and
tested using five-fold cross-validation. In each case, 60% of the 1400 recordings were used
for training, 20% for validation, and 20% for testing. Once the features were extracted and
selected (where applicable), the machine learning models were trained. There are five best
algorithms: “Support Vector Regression (SVR),” “Gaussian Process Regression (GPR),”
“Ensemble Trees,” “Linear regression,” and Decision Trees.”

Gaussian Process Regression (GPR): GPR employs the Bayesian theory to train its
models. The method is most suitable for small datasets. In contrast to other supervised
machine learning methods, GPRs learn a probability distribution over the full range of
possibilities, rather than specific values for the parameters [24].

Ensemble Trees (ET): the ET method combines many decision trees to provide a single,
unified prediction. This algorithm’s value lies in its ability to combine several weak learners
into a single robust learning algorithm [35].

Support Vector Regression (SVR): the SVR method is used here to solve a regression
problem using support vector machines. The SVR is trained with a symmetrical loss
function, which penalizes both higher and lower mispredictions [36].

Decision Trees (DT): DT is a type of supervised learning that falls under the broad
category of tree-based models. By utilizing the simple rules that were learned from the
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features of the data, it is able to predict the value. In this context, a tree can be viewed as a
piecewise constant approximation [37].

Linear Regression (LR): the LR method involves the learning of a model with linear
coefficients. To determine the optimal coefficients, the model reduces the residual sum of
the squares of errors [38].

2.6. Evaluation Criteria

In this study, we used five different performance matrices. We will refer to Xp as the
projected data, X as the actual data, and n as the total number of samples or recordings.

Mean Absolute Error (MAE): the Mean Absolute Error (MAE) is the average of the
absolute errors anticipated.

MAE =
1
n ∑

n

∣∣Xp − X
∣∣ (1)

RMSE (Root-Mean-Squared Error): the RMSE computes the standard deviation of the
prediction error or residuals, where the residuals are the distance between the data points
and the regression line. Consequently, the RMSE quantifies the spread of the residuals, and
the better the model, the narrower the spread.

RMSE =

√
∑
∣∣Xp − X

∣∣2
n

(2)

Correlation Coefficient (R): R is used to calculate the degree to which two variables
(prediction and ground truth) are linked. It is a statistical approach that also informs us
how near the forecast is to the truth.

R =

√
1− MSE(Model)

MSE(Baseline)
(3)

where MSE (Baseline) = ∑|X−mean(X)|2
n .

2SD: Standard deviation (SD) is a statistical technique that measures the spread of
data relative to its mean. It is calculated by computing the square root of the variance. 2SD
is the double of SD. 2SD is important because it represents the 95% confidence interval.

2SD = 2 × SD = 2

√
∑ error−mean(error)2

n
(4)

where error = Xp − X.
Limit of Agreement (LOA): the range within which a fraction of the discrepancies

between two measurements (ground truth and forecast) are determined to lie. Both random
(precise) and systematic occurrences are included in the LOA (bias). As a result, it is a
useful technique for evaluating the effectiveness of ML models. We considered 95% of LOA
for this investigation.

3. Results and Discussion

This section summarizes the performance of the machine learning algorithms and the
feature selection algorithms. GPR performed the best as a machine learning algorithm for
both RR and SpO2. In addition, it was shown that the use of feature selection algorithms
improvds the results in Tables 1 and 2. Fitrgp and ReliefF exhibited the best performance for
RR and SpO2, respectively. Tables 1 and 2 present the results of the experiments regarding
the estimation of RR and SpO2, respectively. A total of nine FSAs were used to reduce the
number of features. In the tables, the results are shown for the top n features, where n is
the number of features that produced the best results. A machine learning model was also
trained using all the features for comparison purposes. Five different machine learning
models were trained for each feature set.



Bioengineering 2023, 10, 167 8 of 15

Table 1. Evaluation of the best-performing algorithm for RR.

Selection
Criteria Top Features Performance

Criteria GPR Ensemble
Tree SVR Decision

Tree
Linear

Regression

All Features All RMSE
MAE

1.45
1.00

1.61
1.00

2.04
1.27

2.09
1.27

3.04
1.86

CFS Top 28 Features RMSE
MAE

1.60
1.02

1.74
1.15

7.66
2.30

2.18
1.36

6.58
2.27

FSV Top 30 Features RMSE
MAE

1.47
0.91

1.61
0.98

3.58
2.40

2.06
1.23

3.45
2.09

LASSO Top 22 Features RMSE
MAE

1.43
0.90

1.69
1.06

1.98
1.19

1.98
1.23

2.63
1.99

Fitrgp Top 8 Features RMSE
MAE

1.41
0.89

1.72
1.11

1.62
0.97

2.06
1.22

2.89
2.08

ReliefF Top 30 Features RMSE
MAE

1.51
0.99

1.66
1.04

2.10
1.26

1.94
1.19

2.71
2.04

Ufsol Top 19
Features

RMSE
MAE

1.50
0.94

1.76
1.10

1.90
1.12

2.16
1.33

2.74
2.03

Llcfs Top 23
Features

RMSE
MAE

1.57
1.04

1.82
1.14

2.00
1.20

2.27
1.40

2.86
2.15

Laplacian Top 29
Features

RMSE
MAE

1.72
1.14

1.88
1.23

2.08
1.35

2.13
1.13

10.08
2.76

Fsasl Top 30
Features

RMSE
MAE

1.80
1.09

1.96
1.29

2.19
1.44

2.24
1.21

3.80
2.05

Table 2. Evaluation of the best-performing algorithm for SpO2.

Selection
Criteria Top Features Performance

Criteria GPR Ensemble
Tree SVR Decision

Tree
Linear

Regression

All Features All RMSE
MAE

1.23
0.73

1.41
0.80

1.91
1.27

1.83
0.92

3.51
1.80

CFS Top 28 Features RMSE
MAE

1.43
0.96

1.64
1.11

5.66
2.19

2.03
1.21

5.58
2.04

FSV Top 30 Features RMSE
MAE

1.38
0.87

1.50
0.82

3.40
2.28

1.98
1.12

3.25
2.00

LASSO Top 22 Features RMSE
MAE

1.33
0.88

1.57
0.98

1.90
1.10

1.84
1.16

2.53
1.90

Fitrgp Top 18 Features RMSE
MAE

1.00
0.59

1.51
0.88

1.76
0.96

1.76
0.79

2.36
1.61

ReliefF Top 11 Features RMSE
MAE

0.98
0.57

1.49
1.87

1.68
0.86

1.19
0.81

3.02
2.41

Ufsol Top 19
Features

RMSE
MAE

1.39
0.90

1.61
0.99

1.77
1.01

2.06
1.21

2.62
1.97

Llcfs Top 23
Features

RMSE
MAE

1.47
0.98

1.72
1.04

1.92
1.08

2.17
1.33

2.66
2.01

Laplacian Top 29
Features

RMSE
MAE

1.62
1.08

1.78
1.11

1.97
1.25

2.03
1.05

6.80
1.67

Fsasl Top 30
Features

RMSE
MAE

1.63
0.96

1.76
1.07

2.11
1.24

2.11
1.13

3.03
1.95
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Table 1 illustrates that GPR was the most effective machine learning algorithm for all
types of feature sets. It produced an RMSE of 1.45 and an MAE of 1.00 when all features
were considered. There were only a few FSA and machine learning algorithms that could
beat this combination. Fitrgp and GPR outperformed all other combinations. with RMSE
and MAE of 1.41 and 0.89, respectively. It is important to note that only eight out of
107 features were utilized in this combination. This will simplify the deployment of the
entire system.

Figure 4 illustrates the relative importance of the features selected by the Fitrgp
algorithm. The algorithm selected a good blend of frequency-domain, time-domain (both
PPG and derivatives of PPG), and statistical features. As a result, the maximum frequency
appeared as the most important characteristic.

Bioengineering 2023, 10, x FOR PEER REVIEW 9 of 16 
 

and derivatives of PPG), and statistical features. As a result, the maximum frequency ap-
peared as the most important characteristic. 

 
Figure 4. Relative importance of the top eight features selected by the Fitrgp algorithm for RR esti-
mation. 

Table 2. Evaluation of the best-performing algorithm for SpO2. 

Selection 
Criteria 

Top Features Performance Criteria GPR Ensemble Tree SVR Decision Tree Linear Regression 

All Features All RMSE 
MAE 

1.23 
0.73 

1.41 
0.80 

1.91 
1.27 

1.83 
0.92 

3.51 
1.80 

CFS Top 28 Features RMSE 
MAE 

1.43 
0.96 

1.64 
1.11 

5.66 
2.19 

2.03 
1.21 

5.58 
2.04 

FSV Top 30 Features RMSE 
MAE 

1.38 
0.87 

1.50 
0.82 

3.40 
2.28 

1.98 
1.12 

3.25 
2.00 

LASSO Top 22 Features RMSE 
MAE 

1.33 
0.88 

1.57 
0.98 

1.90 
1.10 

1.84 
1.16 

2.53 
1.90 

Fitrgp Top 18 Features RMSE 
MAE 

1.00 
0.59 

1.51 
0.88 

1.76 
0.96 

1.76 
0.79 

2.36 
1.61 

ReliefF Top 11 Features RMSE 
MAE 

0.98 
0.57 

1.49 
1.87 

1.68 
0.86 

1.19 
0.81 

3.02 
2.41 

Ufsol Top 19 
Features 

RMSE 
MAE 

1.39 
0.90 

1.61 
0.99 

1.77 
1.01 

2.06 
1.21 

2.62 
1.97 

Llcfs Top 23 
Features 

RMSE 
MAE 

1.47 
0.98 

1.72 
1.04 

1.92 
1.08 

2.17 
1.33 

2.66 
2.01 

Laplacian Top 29 
Features 

RMSE 
MAE 

1.62 
1.08 

1.78 
1.11 

1.97 
1.25 

2.03 
1.05 

6.80 
1.67 

Fsasl 
Top 30 

Features 
RMSE 
MAE 

1.63 
0.96 

1.76 
1.07 

2.11 
1.24 

2.11 
1.13 

3.03 
1.95 

According to Table 2, GPR was the best machine learning algorithm for all types of 
feature sets. A combination of all features produced an RMSE of 1.23 and an MAE of 0.73. 

Figure 4. Relative importance of the top eight features selected by the Fitrgp algorithm for RR
estimation.

According to Table 2, GPR was the best machine learning algorithm for all types of
feature sets. A combination of all features produced an RMSE of 1.23 and an MAE of
0.73. This combination was only surpassed by a few FSA algorithms and machine learning
algorithms. ReliefF and GPR outperformed all other combinations, with RMSE and MAE
values of 0.98 and 0.57, respectively. It is important to note that only 11 of 107 features were
used in this combination. As a result, the deployment of the entire system will be easier.

A comparison of the relative importance of the features selected by the Relief algorithm
is shown in Figure 5. The algorithm selected a good combination of frequency-domain
and time-domain (PPG and derivative of PPG), as well as statistical features, similar to
Fitrgp for RR. It is found that the mean of the ratio of the systolic peak time (t1) to the pulse
interval (tpi) is the most important features.

Figures 6 and 7 illustrate the results of the most accurate model for RR and SpO2,
respectively. A regression plot and a Bland–Altman plot were used to visualize the data.
The predictions were plotted against the ground truth (target) in a regression plot. In this
example, two lines were drawn: one represented the ideal result in which all the targets
were accurately predicted; the other represented the realistic result. A trendline of the data
was also plotted. Generally speaking, the closer the trendline is to the y = x line, the better
the model will be.



Bioengineering 2023, 10, 167 10 of 15

Bioengineering 2023, 10, x FOR PEER REVIEW 10 of 16 
 

This combination was only surpassed by a few FSA algorithms and machine learning al-
gorithms. ReliefF and GPR outperformed all other combinations, with RMSE and MAE 
values of 0.98 and 0.57, respectively. It is important to note that only 11 of 107 features 
were used in this combination. As a result, the deployment of the entire system will be 
easier. 

A comparison of the relative importance of the features selected by the Relief algo-
rithm is shown in Figure 5. The algorithm selected a good combination of frequency-do-
main and time-domain (PPG and derivative of PPG), as well as statistical features, similar 
to Fitrgp for RR. It is found that the mean of the ratio of the systolic peak time (t1) to the 
pulse interval (tpi) is the most important features. 

 
Figure 5. Relative importance of the top 11 features selected by the ReliefF algorithm for SpO2 esti-
mation. 

Figure 6 and Figure 7 illustrate the results of the most accurate model for RR and 
SpO2, respectively. A regression plot and a Bland–Altman plot were used to visualize the 
data. The predictions were plotted against the ground truth (target) in a regression plot. 
In this example, two lines were drawn: one represented the ideal result in which all the 
targets were accurately predicted; the other represented the realistic result. A trendline of 
the data was also plotted. Generally speaking, the closer the trendline is to the y = x line, 
the better the model will be. 

Figure 5. Relative importance of the top 11 features selected by the ReliefF algorithm for SpO2
estimation.

Bioengineering 2023, 10, x FOR PEER REVIEW 11 of 16 
 

 
Figure 6. Visualization of the results for RR with (a) a regression plot (b) a Bland–Altman plot. 

 
Figure 7. Visualization of the results for SpO2 with (a) a regression plot (b) a Bland–Altman plot. 

Using a Bland–Altman plot, the difference between the prediction and the target was 
plotted against the mean of the prediction and target. Using this type of visualization, it 
was possible to examine the spread of the data. Additionally, the 95% limit of agreement 
(LOA) could be detected. The smaller the LOA, the better the model, since it indicates a 
smaller difference between predictions and targets. 

The regression plot for RR is shown in Figure 6. The R-value of the model was 0.876, 
which explained the distribution of the plot, as most of data were located close to the trend 
line. In the Bland–Altman plot, the LOA ranged from −2.795 to 2.796. Therefore, 95% of 
the data fell within that range. The regression plot for SpO2 is shown in Figure 7. We 
found an R-value of 0.951 for the model, which explained the distribution of the plot since 
most data were close to the trend line. The Bland–Altman plot showed an LOA from 
−2.036 to 2.028. This means that 95% of the data were within that range. 

Studies in the literature, have several limitations, including the use of different sta-
tistical tests, the collection of data from several subject groups, and the lack of uniform 
implementations of algorithms, which makes it difficult to compare the stated perfor-
mance of the algorithms used by the different research groups. Thus, it is impossible to 
determine which algorithm performs better based on the literature. In Table 3 and Table 
4, RR and SpO2 estimations were compared with data from the most recent literature. 
Pirhonen et al. [11] proposed amplitude variations of PPG signals as a method for esti-
mating RR. The Vortal database was used in that investigation. In this study, wavelet syn-
chro-squeezing transformed provided the best results, with MAE and RMSE of 2.33 and 
3.68 bpm, respectively. According to Jarchi et al. [12], an MAE of 2.56 bpm was obtained 
in a case study with ten participants in order to estimate RR from PPG signals relative to 

Figure 6. Visualization of the results for RR with (a) a regression plot (b) a Bland–Altman plot.

Bioengineering 2023, 10, x FOR PEER REVIEW 11 of 16 
 

 
Figure 6. Visualization of the results for RR with (a) a regression plot (b) a Bland–Altman plot. 

 
Figure 7. Visualization of the results for SpO2 with (a) a regression plot (b) a Bland–Altman plot. 

Using a Bland–Altman plot, the difference between the prediction and the target was 
plotted against the mean of the prediction and target. Using this type of visualization, it 
was possible to examine the spread of the data. Additionally, the 95% limit of agreement 
(LOA) could be detected. The smaller the LOA, the better the model, since it indicates a 
smaller difference between predictions and targets. 

The regression plot for RR is shown in Figure 6. The R-value of the model was 0.876, 
which explained the distribution of the plot, as most of data were located close to the trend 
line. In the Bland–Altman plot, the LOA ranged from −2.795 to 2.796. Therefore, 95% of 
the data fell within that range. The regression plot for SpO2 is shown in Figure 7. We 
found an R-value of 0.951 for the model, which explained the distribution of the plot since 
most data were close to the trend line. The Bland–Altman plot showed an LOA from 
−2.036 to 2.028. This means that 95% of the data were within that range. 

Studies in the literature, have several limitations, including the use of different sta-
tistical tests, the collection of data from several subject groups, and the lack of uniform 
implementations of algorithms, which makes it difficult to compare the stated perfor-
mance of the algorithms used by the different research groups. Thus, it is impossible to 
determine which algorithm performs better based on the literature. In Table 3 and Table 
4, RR and SpO2 estimations were compared with data from the most recent literature. 
Pirhonen et al. [11] proposed amplitude variations of PPG signals as a method for esti-
mating RR. The Vortal database was used in that investigation. In this study, wavelet syn-
chro-squeezing transformed provided the best results, with MAE and RMSE of 2.33 and 
3.68 bpm, respectively. According to Jarchi et al. [12], an MAE of 2.56 bpm was obtained 
in a case study with ten participants in order to estimate RR from PPG signals relative to 

Figure 7. Visualization of the results for SpO2 with (a) a regression plot (b) a Bland–Altman plot.



Bioengineering 2023, 10, 167 11 of 15

Using a Bland–Altman plot, the difference between the prediction and the target was
plotted against the mean of the prediction and target. Using this type of visualization, it
was possible to examine the spread of the data. Additionally, the 95% limit of agreement
(LOA) could be detected. The smaller the LOA, the better the model, since it indicates a
smaller difference between predictions and targets.

The regression plot for RR is shown in Figure 6. The R-value of the model was 0.876,
which explained the distribution of the plot, as most of data were located close to the trend
line. In the Bland–Altman plot, the LOA ranged from −2.795 to 2.796. Therefore, 95% of
the data fell within that range. The regression plot for SpO2 is shown in Figure 7. We found
an R-value of 0.951 for the model, which explained the distribution of the plot since most
data were close to the trend line. The Bland–Altman plot showed an LOA from −2.036 to
2.028. This means that 95% of the data were within that range.

Studies in the literature, have several limitations, including the use of different
statistical tests, the collection of data from several subject groups, and the lack of uniform
implementations of algorithms, which makes it difficult to compare the stated perfor-
mance of the algorithms used by the different research groups. Thus, it is impossible to
determine which algorithm performs better based on the literature. In Tables 3 and 4, RR
and SpO2 estimations were compared with data from the most recent literature. Pirho-
nen et al. [11] proposed amplitude variations of PPG signals as a method for estimating
RR. The Vortal database was used in that investigation. In this study, wavelet synchro-
squeezing transformed provided the best results, with MAE and RMSE of 2.33 and
3.68 bpm, respectively. According to Jarchi et al. [12], an MAE of 2.56 bpm was obtained
in a case study with ten participants in order to estimate RR from PPG signals relative to
the accelerometer. Among the most effective techniques are those proposed by Motin
et al. [8,9], using a smart fusion strategy based on the EEMD technology to continuously
control PPG-based RR estimates. The RR estimation in daily living conditions is difficult
due to motion artifacts in the PPG signal. According to their results, the MAE for MIMIC
II was from 0 to 5.03, while the MAE for their own dataset was 3.05. In a recent study,
L’Her et al. [10] examined the accuracy of respiratory rate measurements using a newly
developed reflex-mode photoplethysmography pathological signal analysis (PPG-RR).
Analyzing 30 patients in the intensive care unit (ICU), they found that the correlation
coefficient for the RR was 0.78. A new method for RR estimation including motion
artifact correction and machine learning models based on PPG signal characteristics was
proposed by Shuzan et al. [21]. In this study, GPR and Fitrgp were found to outperform
all other combinations, with RMSE, MAE, and two-standard deviation (2SD) values of
2.63, 1.97, and 5.25 breaths per minute, respectively.

In [15], an ML model was developed to calculate SpO2 values from reflectance PPG
signals obtained from the finger. The SpO2 range was from 81 to 100%. A correlation
coefficient of 0.95 was achieved with an LOA ranging from –2.12 to 2.12. During the signal
quality index (SQI) check, approximately 30% of the total samples were lost. In [16], the
authors utilized PPG datasets collected during clinical testing of a wrist-worn reflectance
pulse oximeter to train a deep neural network (DNN) to achieve the requisite clinical
accuracy for RMSE of 3.5%, for SpO2 levels ranging from 70% to 100% [17]. According
to [39], a portable continuous Blood Oxygen Saturation (SpO2) monitor was developed,
and important design concepts were examined. The RMSE of the SpO2 estimation was
1.8, which is a good estimate. The portable real-time blood oxygen saturation monitoring
device reported in that study was only assessed in healthy patients with a specific SpO2
range (95–100%), which is a limitation of this study.
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Table 3. Comparison between the suggested approach and other current relevant strategies in terms
of database, technique, and RR estimate error.

Author Year Database Subject Method Metric Result

Pirhonen et al. [11] 2018 Vortal 39 Subjects Wavelet Synchro—squeezing
Transform

MAE
RMSE

R
2SD

2.33
3.68

-
-

Jarchi et al. [12] 2018 BIDMC 10 Subjects Accelerometer

MAE
RMSE

R
2SD

2.56
-
-
-

Motin et al. [8] 2019 MIMIC II 53 Subjects Empirical Mode
Decomposition

MAE
RMSE

R
2SD

0–5.03
-
-
-

L’Her et al. [10] 2019 Own 30 Subjects Own Approach

MAE
RMSE

R
2SD

-
-

0.78
-

Motin et al. [9] 2020 Own 10 Subjects Empirical Mode
Decomposition

MAE
RMSE

R
2SD

3.05
-
-
-

Shuzan et al. [21] 2021 Vortal 39 Subjects Machine Learning

MAE
RMSE

R
2SD

1.97
2.63
0.88
5.25

This Work 2021 BIDMC 53 Subjects Machine Learning

MAE
RMSE

R
2SD

0.89
1.41
0.87
2.83

Table 4. Comparison between the suggested approach and other current relevant stragtegies in terms
of database, technique, and RR estimate error.

Author Year Database Subject SpO2 Range Method Metric Result

Venkat et al. [15] 2019 Own 95 subjects 81–100% Machine
Learning

MAE
RMSE

R
2SD
LOA

-
-

0.95
-

−2.12 to 2.12

Priem et al. [16] 2020 Own 10 subjects 70–100% Deep Neural
Network

MAE
RMSE

R
2SD
LOA

-
2.91

-
-
-

Zhang et al. [39] 2020 Own 11 subjects 95–100% Own
Approach

MAE
RMSE

R
2SD
LOA

-
1.80

-
-
-

Our Work 2021 BIDMC 53 subjects 85–100% Machine
Learning

MAE
RMSE

R
2SD
LOA

0.57
0.98
0.95
2.06

−2.04 to 2.03
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There is no established medical standard for estimating RR. Nonetheless, in a review
study [3], over 196 conventional techniques for RR extraction were examined. They claimed
that an MAE of less than 2 bpm should be considered a solid signal by a competent
estimator. In Table 4, it can be seen that the machine learning model proposed in this study
achieved a significantly greater degree of accuracy and precision.

Furthermore, the performance of the model proposed in this study was compared
with that of a reference [17] (Table 5). According to standard proposed, the MAE and RMSE
of the SpO2 estimation must not exceed 2% and 3.5%, respectively. In terms of MAE and
RMSE, the values obtained with the proposed model fell within the acceptable range of
0.57% and 0.98%, respectively.

Table 5. Comparison of this paper’s SpO2 results with those from BiOSency Bora Band.

MAE (%) RMSE (%) SpO2

Standard [17] SpO2 ≤2 ≤3.5 70–100%

This paper SpO2 0.57 0.98 84–100%

This study has limitations in terms of the size of the dataset. In the BIDMC dataset,
there are recordings from 53 ICU patients, which is a small sample that does not adequately
represent different age groups. To train a more accurate model, eliminating this problem,
a larger sample size should be considered in a future study. In addition, deep neural
networks should be considered, since they learn features from signals rather than relying
on handcrafted features. The performance of deep neural networks is also superior to that
of classical machine learning models when the data volume is increased substantially.

4. Conclusions

This study proposes a novel method for estimating the respiration rate (RR) and
oxygen saturation (SpO2) from photoplethysmogram (PPG) signals. In the present system,
features were extracted from PPG signals, and machine learning models were used to map
these features to RR and SpO2. The authors demonstrated successfully that the proposed
system could estimate the RR and SpO2 values accurately compared with ground truth.
For the purpose of ensuring that meaningful features were fed to the model, the authors
performed pre-processing as well as feature extraction steps that had been established in
previous studies. A total of 107 features were extracted, which were then reduced by using
feature selection algorithms to reduce the complexity of the computations. As RR and
SpO2 often have different important predictors, separate models were trained for each. A
total of thirty-eight models were trained for both RR and SpO2, among which Gaussian
process regression performed best. Based on the Fitrgp and ReliefF algorithms, the best
features for RR and SpO2 were selected. Using the Fitrgp features, GPR provided an RMSE
of 1.41 and an MAE of 0.89 when predicting RR. A GPR based on features selected by
ReliefF showed an RMSE of 0.98 and an MAE of 0.57 when predicting SpO2. These models
outperformed those reported in the literature and are state-of-the-art models that may be
useful for developing wearable non-invasive real-time RR and SpO2 estimation devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10020167/s1, Table S1: Statistical Features (11 Features);
Table S2: Frequency Domain Features (27 Features); Table S3: Time Domain Features. Each features have
their mean, std and variance calculated. (45 Features); Table S4: Derivative Features. Each features have
their mean, std and variance calculated. (48 Features).
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