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Abstract: The watery cerebrospinal fluid that flows in the subarachnoid space (SAS) surrounds the
entire central nervous system via symmetrical thermo-solute flow. The significance of this study was
to present a flexible simulation based on theoretical vivo inputs onto a mathematical framework to
describe the interaction of cerebrospinal fluid circulation restricted to a pathological disorder. The
pathophysiology disorder hydrocephalus is caused by an enormous excess of asymmetric fluid flow
in the ventricular region. This fluid imposition increases the void space of its boundary wall (Pia
mater). As a result, the dumping effect affects an inertial force in brain tissues. A mathematical
model was developed to impose the thermal dynamics of hydrocephalus, in which solute transport
constitutes the excess watery CSF fluid caused by hydrocephalus, in order to demonstrate perspective
changes in ventricular spaces. This paper investigated brain porous spaces in order to strengthen the
acceleration and thermal requirements in the CNS mechanism. To characterize neurological activities,
a unique mathematical model that includes hydrodynamics and nutrient transport diffusivity was
used. We present the analytical results based on physical experiments that use the novel Laplace
method to determine the nutrients transported through permeable pia (brain) parenchyma with
suitable pulsatile boundary conditions. This causes high CSF pressure and brain damage due to
heat flux over the SAS boundary wall. As a result of the increased Schmidt number, the analysis of
the hydrocephalus problem revealed an increase in permeability and drop in solute transport. A
high-velocity profile caused a rise in thermal buoyancy (Grashof number). When the CSF velocity
reached an extreme level, it indicated a higher Womersley number. Additionally, the present study
compared a number of clinical studies for CSF amplitude and pressure. We validated the results by
providing a decent justification with the clinical studies by appropriate field references.

Keywords: cerebrospinal fluid disorder; hydrocephalus; heat transfer; inlet pulsatile flow velocity;
pia mater; intracranial pressure (ICP); Laplace transform

1. Introduction

The brain and spinal cord as well as cerebrospinal fluid are part of the central nervous
system (CNS). CSF is a watery fluid secreted by ventricles of the choroid plexus and flows
around the cranium. It acts as a conduit for the transfer of nutrients and neuroendocrine
substances that remove waste from the brain. It protects the brain from shock absorbers
and external injury damage. Hydrocephalus is an abnormal syndrome in which excess CSF
accumulates in the ventricular regions. Hydrocephalus disrupts the flow of fluid in the
ventricular regions, causing disruptions in production and circulation. These changes in hy-
drocephalic CSF cause a significant change in intracranial pressure, resulting in shunting in
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the central nervous system. The objective of this research was to focus on diffusive transport
due to temperature variations with appropriate pulsatile outlet boundary conditions. The
mathematical modeling of this accumulation results in the geometrical pathophysiological
syndrome hydrocephalus.

There are many research articles in CSF relating pulsatile flow with appropriate bound-
ary conditions. According to the mechanics of the cranial system, it is not easy to solve the
computational method without proper governing equations. In individuals with hydro-
cephalus of diverse etiologies, Hirashima et al. [1] documented the cerebral temperature
estimated at various heights beneath the pia mater. For all instances, they noticed that
the temperature grew progressively and thoroughly, along with the ventricles exhibiting
the maximum temperature. Rajasekaran et al. [2] evaluated the CSF flow frequency in
hydrocephalus bypasses using an improved shunt tubular structure with a layer on top.
In addition to performing a FEM simulation of the shunt system’s fluid and thermal be-
havior, they determined the acceleration and its flow rate by segregating the performance
of temperature acquired in various periods with two sampling locations. Using meninges
temperature monitoring from a CSF layer, Madsen [3] developed a novel quasi-technique
to simulate CSF fluid flow in a hollow tube in hydrocephalic patients (ShuntCheck). A
statistical examination of 100 suspected shunt malfunctions was also conducted, and only
a very few of these required more surgical examination. By monitoring non-invasive
endovascular heat convection CSF shunted flow, Neff [4] improved neuroimaging tech-
niques and radioactivity shunt research. Leszek Herbowsk [5] provided a thermodynamic
method for cerebrospinal fluid circulation by using Brownian motion and gravity force for
cerebrospinal fluid bulk flow that was oriented upward and downward, respectively.

Linninger, A. et al. [6] illustrated a bulk flow in the intracranial CSF flow dynamics
related to vascular pulsations. They provided a comprehensive discussion of CSF con-
ditions such as type-1 Chiari malformation, syringomyelia, hydrocephalus, and cerebri
pseudotumor. The mechanics of the CSF and blood were extensively examined by using a
mathematical model for CSF dynamics that had been constructed.

The cerebrum in different heat flux changes with high tissue metabolic rate and
thermally protected cranium, according to Donnelly, Joseph, and Marek Czosnyka [7],
identified no high-volume bloodstream to cool and settle the higher-than-normal cerebrum
temperature. The temperature of brain tissue is usually cooler than that of penetrating
blood vessels, and the temperature of upwelling blood veins is cooler compared to that of
the blood vessels. Thus, cerebral blood pressure might be regarded as a conscious factor.
Gholampour et al. [8] provided 3-dimensional hydro elastic computational modeling of an
interface between CSF and the brain tissue of subjects with hydrocephalus during shunting.
Hydrocephalus patients were found to have significantly increased CSF average pressure
and mean fluid velocity compared with healthy people, at least in non-communicating
hydrocephalus. A quasi-second law (stochastic) thermodynamic model has been developed
by Zakharov and Sadovsky [9] to explain how circulating blood helps thermoregulation
organisms balance physiological body temperatures. Their simulation showed a clear
correlation between skin temperature and environmental temperatures.

Diffusion tensor imaging was used by Keong et al. [10] to assess the surface features
and reproducibility of white deeper vessels found in the brain, which are damaged during
atmospheric pressure before and immediately after the shunt. According to James et al. [11],
the development of a training session for people with hydrocephalus should be carefully
planned with potential consequences in mind. The current position of hydrocephalus
inquiry and therapy was formed as a result of an excessive CSF influence. Hydrocephalus
was researched by Smillie [12], who described a pathological situation that seems to be
comparable to clinical observations.

In order to simulate and monitor CSF hydro-dynamics for healthy individuals as well
as hydrocephalic patients, Zhu [13] developed quantitative MRI techniques. Reconstructed
geometric models were demonstrated by Ying Hsu et al. [14] to calculate the nanoparticles’
impacts on CSF flow mechanics and the rate of flow throughout CNS. They demonstrated
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how nerve roots and trabeculae produce intricate domains with microvasculature along
the spine and how pulsatile flow surrounding microanatomy-induced vortices enhances
medication dispersion. In order to replicate the kinematic interface in quasi hydrocephalus
(NCH) geometries, Gholampour [15] developed ADINA computational geometry software
to demonstrate the assessment process of the ventricular space and pressure of CSF, where
the one that controls the hydro-dynamic features that characterize circulation and increases
the CSF pressure is the most serious parameter in neurological symptoms. Additionally, it
can determine the degree of the CSF pulsate and the sequence lag between both the flow
rate and pressure gradient functions. The brain tissue in people with hydrocephalus and in
healthy participants was described in [16]. By specifying inlet boundary conditions with
different constant pressures for healthy and diseased humans, they went ahead. Medical
imaging is used to determine the absolute value of intracranial pressure without using MRI
analysis. Even though computing CSF pressure using a CFD model is uncertain and cannot
be carried out without error, they used an analytical method to obtain the precise value.
The pressure is unknown in the model’s biphasic approach simulation.

Most researchers in a variety of disciplines, particularly engineering and biology, have
developed a model that connects the momentum and transport diffusivity of various fluids
in disorder with various methods (Table 1). Neurologists have described pathological con-
ditions of the brain and central nervous system both theoretically and practically. Biofluid
scientists have investigated the unusual event of CSF thermos-dynamic behavior. For the
disorder of congenital hydrocephalus, Balasundaram et al. [17] developed a mathematical
simulation of ventricular elasticity. Hetnarski [18] provided an illustration of the conven-
tional Laplace and inverse transform together with its error and its error complementary
function. Gholampour [19,20] examined the changes in the disease’s numerous physio-
logical and physical characteristics before the therapeutic procedure for individuals with
communicating and non-communicating hydrocephalus. Lininger et al. [21] illustrated a
bulk flow in the intracranial CSF flow dynamics that related to vascular pulsations. They
provided a comprehensive discussion of CSF conditions such as type-1 Chiari malformation,
syringomyelia, hydrocephalus, and cerebral pseudotumor. The mechanics of the CSF and
blood were extensively examined using a mathematical model for CSF dynamics that had
been constructed. Sweetman et al. [22] simulated the fluid–structure interaction between
the brain tissues and CSF hydrodynamical flow across non-communicating hydrocephalus
and healthy patients, while Lininger et al. [23] demonstrated that the aqueduct CSF volume
is accessible when simulating hydrocephalus patients. They used available clinical study
reports to provide the treatment process, which will act as a shunt-responder to predict the
patients from the shunt. Taylor et al. [24] generated a two-dimensional cranial model for
patients suffering from hydrocephalus malignancy. Cheng, Shaokoon, et al. [25] suggested
using a numerical analysis like the finite-element method with the pressure of CSF as the
boundary conditions. The geometry of the ventricular system with brain tissue is extremely
complicated, which has a significant impact on problem-solving scenarios. To fulfill the
requirements of geometrical complexity, three-dimensional simulation was used to explore
the kinematics of hydrocephalus. Hochstetler et al. [26] proposed a genetic explanation for
hydrocephalic CSF flow to account for the putative prediction of ventricular deformation by
pulsatile potential vanilloid 4 receptors. These have been supported by the osmotic balance,
mediator parenchyma, change in pressure, and skin temperature of the CSF flow boundary.

Due to the pressure–volume fluctuations in patients with hydrocephalus syndrome
and non-patients, Eide and Brean [27] built a model and demonstrated that the model
they constructed revealed a reasonable shift in the records of patients experiencing hy-
drocephalus. Gholampour [28] looked beyond the inlet or outlet boundary conditions
and found that the interface between fluid and solid models is an important boundary
condition parameter in various solution techniques such as CFD and FSI. [29] Lefever
et al. studied a biphasic model that was used to represent the brain tissue of a patient
with non-communicating hydrocephalus. According to Taher and Gholampour [30], the
interface between the interior and exterior layers of the sub-arachnoid layer (SAS) is a
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boundary of the FSI and the boundary of SAS with the no-slip boundary condition. The
fluid flow momentum was computed using coupled governing equations. Safaei et al. [31]
discussed how temperature-induced turbulent flow affects nanoparticle solute transport.
They also included nanoparticle molecules in the Reynolds number effects. Wilkie et al. [32]
demonstrated the physiology of brain tissue in individuals with healthy and hydrocephalus
patients influenced by gender and age, which had a significant impact on the outcomes of
the biomechanical simulations. As a result, the current study’s selection of healthy indi-
viduals and patients had significant limitations. Miller et al. [33] conducted an empirical
study on a complicated and significant model based on the FSI border that distinguished
the brain parenchyma from the ventricular circulation and the cranium.

Table 1. Various solution methods used by some research publications.

Authors Model Used Source

Sweetman, Brian, and Andreas A. Linninger Modeled using Fourier series and used
finite element method (FEM) [22]

Eide, Per K., and Are Brean Clinical and radiology simulation [27]

Taher, Mehran, and Seifollah Gholampour FSI method [30]

Gholampour, Seifollah Statistical and FSI method [16]

Wilkie, K. P., C. S. Drapaca, and S. Sivaloganathan Fractional Zener model (FZM) [32]

Taylor, Zeike, and Karol Miller Finite element method (FEM) [24]

Lefever, Joel A., José Jaime García, and Joshua H. Smith Finite element method (FEM) [29]

Gholampour, Seifollah, and Nasser Fatouraee Fluid–structure interaction (FSI) and CFD
with three boundary conditions. [15]

As a result of the interplay between the thermal solid model and the motion of the
CSF caused by the hydrocephalus flowing within the spinal canal, we included an elastic
effect in the current work. In other words, using an analytical method, we developed
a novel model on CSF flow considering the effects of wall temperature in the presence
of transport diffusivity, which resulted in enormous pressure change leading to severe
medication therapy. To demonstrate CSF flow, many researchers have evaluated the system
with numerous compartments and developed the geometry as a cylindrical tube due to
the complexity of the flow in the cranial system. We defined the physical flow in Figure 1
as a closed cylindrical model through which the flow was generated by considering these
compartments.
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2. Formulation of the Problem

CSF, typically a translucent fluid that runs through the brain stem and central nervous
system, protects the brain. Henceforth, CSF acts as a buoyancy force for the brain in which
the fluid varies with respect to its density. The maximum volume of CSF is secreted by the
foremost ventricle layer next to the pia mater. The CSF syndrome hydrocephalus produces
excess fluid than that required and flows enormously in subarachnoid space, so we assumed
that the flow of CSF is a Newtonian iso-thermal and in-compressible fluid. Despite the
general dynamical model, we developed a fluid dynamical model for cerebrospinal fluid
pulsatile flow with oscillating pressure variation with respect to time.

As the CSF acts as a buoyancy force for the brain, the Boussinesq approximation was
used with the brain parenchyma. In this paper, we proposed a model based on the theory
illustrated in [32], considering the boundary as the outer surface of the brain pia mater and
inner layer, as the subarachnoid space was CSF flows and no slip in the inlet boundary
flowing in a pulsatile nature. Taking the cartesian coordinate system (x, y), where x lies
along the center of the channel, y is the distance measured in the normal section. The fluid
continues to maintain negligible on the surface of the sub-arachnoid space, fixed at the
temperature Tw

∗ and concentration Cw
∗ higher than that of the room temperature and

concentration as T∞, C0. Other properties of the CSF fluid mechanics were assumed to be
constant. To simplify the examination of various parameters, certain assumptions were
made:

i. The forces exerted in the fluid layer internally were taken as consistent excluding
the density fluctuation in the buoyancy terminals;

ii. The pressure expelled in CSF flow due to hydrocephalus therefore flowed steadily;
iii. The subarachnoid space was bounded by a porous medium known as brain parenchyma;
iv. The porous medium for the pia mater was isotropic and homogeneous;
v. Steady-state circulation with hydrodynamic temperature and mass dispersion in

the porous parenchyma was taken into consideration;
vi. Limiting the magnitude of the brain fluid’s electro-magnetic account of the above

presumptions, the governing equations for fluid movement, assuming a boundary
layer and the Boussinesq approximation, the CSF flow can be depicted as below.

∂uh
∗

∂x∗
+

∂vh
∗

∂y∗
= 0 (1)

∂uh
∗

∂t∗
= −1

ρ

∂Ph
∗

∂x∗
pk + ν

(
∂2uh

∗

∂y∗2

)
+ gβT(Th

∗ − T∞
∗)− ν

km∗
uh
∗ (2)(

∂Th
∗

∂t∗

)
=

kT
ρCp

(
∂2Th

∗

∂y∗2

)
− J(Th

∗ − T∞
∗) (3)

(
∂Ch

∗

∂t∗

)
= D

(
∂2Ch

∗

∂y∗2

)
− KCh

∗ (4)

uh
∗ = 0 , Ch

∗ = C∞
∗ and Th

∗ = T∞
∗ f or y∗ ≥ 0, x∗ > 0, t∗ ≤ 0

uh
∗ = u0(1 + cosωt∗) , Ch

∗ = Cw
∗, Th

∗ = Tw
∗ at y∗ = 0

uh
∗ = 0, Ch

∗ → C∞
∗ and Th

∗ = T∞
∗ at y∗ → ∞ , t∗ > 0

(5)

Introducing dimensionless quantities, which are defined as follows:

uh =
uh
∗

U0
, x =

x∗

l
, y =

y∗U0

ν
, θh

∗ =
Th
∗ − T∞

∗

Tw∗ − T∞∗
C∗ =

Ch
∗ − C∞

∗

Cw∗ − C∞∗
, P =

Ph
∗

ρU0 2 t =
t∗U0

2

ν
(6)

where uh
∗, Th

∗, Ch
∗, Ph

∗ denote the components that are dimensions of the cerebrospinal
fluid flow velocity, energy, concentration, and pressure, respectively. x∗, y∗, t∗ denote the
dimensional coordinates and time variation; g depicts the fluid acceleration due to gravity;
βh and βT denote the concentration coefficient and heat expansion; Cw

∗ and Tw
∗ represent
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the wall concentration and wall temperature; T∞
∗ denotes the prevailing temperature; t is

the dimensionless time taken for CSF circulation; Cp represents the specific heat of fluid.
D indicates the diffusivity coefficient. uh, Ch, θh depict the dimensionless velocity

of the fluid flow, solute concentration, and temperature, respectively. U0 denotes the
characteristic velocity of the CSF fluid. Ph and pk are the dimensionless pressure and
permeability of brain parenchyma. ω∗ represents the dimensionless angular velocity.
∝2 represents the Womersley number, which quantifies the transient flow of the CSF.
Furthermore, the flow rate of CSF will exceptionally increase the pressure, which varies
exceptionally, so we assumed the pressure increases exponentially with respect to time.
Henceforth, we developed a model relating the oscillating pressure variation for the CSF
fluid flow.

∂uh
∂t

= −∂Ph
∂x

pk +

(
∂2uh
∂y2

)
− σ2uh +

Gpv

Re2 uh + Gr θh + Gc Ch (7)

The pressure of the fluid flows as exponentially decaying transverse pressure gradient
was assumed, and the dimensionless governing equations are expressed as follows.

Assuming pressure gradient by using [22]:

∂Ph
∂x

= −e−λt (8)

The equation of momentum using [34] with constant pressure coefficient, as in [32]:

∂uh
∂t

= pke−λt +

(
∂2uh
∂y2

)
− σ2uh + Gr θh + Gc Ch (9)

The equation of energy using [2] with the heat conduction parameter:

∂θh
∂t

=
1
Pr

∂2θh
∂y2 − Jθh (10)

The equation of momentum using [34] with the concentration parameter:

∂φh
∂t

=
1
Sc

∂2φh
∂y2 + kφh (11)

where
Gr = gβT(Tw

∗−T∞
∗)ν

U0
3 [Grashof number];

Gc = gβTC(Cw
∗−C∞

∗)ν
U0

3 [Mass Grashof number];

σ2 = ν2

U0
2K

[Porosity parameter];

Re = huh
ν [Reynolds number];

∝2= ω∗ l2

ν [Womersely number]

Pr = µCp
kT

[Prandtl number];

k = hk
U0

[concentration parameter];
The substitution of limit conditions are:

uh = 0 as y→ ∞
uh = 1 + Cos ∝2 t as y→ 0

θh = 0 at y ≥ 0, φh = 0 at y ≥ 0
θh = 0 , φh = 0 as y→ ∞
θh = 1 , φh = 1 as y = 0

(12)
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3. Method of Solution

The above set of nonlinear partial differential Equations (7)–(11) are not possible to
solve in a closed form. Hence, these equations were solved analytically by using the
Laplace transform method after modifying the equations as ordinary differential equations.
Let us consider that the solution of CSF flow velocity as uc, temperature as θc, and fluid
concentration as Cc holds various parameters such as the Reynolds number, Grashof
numbers for mass and heat transfer, Prandtl number, Schmidt number for mass transfer,
Porosity parameter, and heat conduction parameter.

We considered the sagittal sinus and spinal cord as the outlets of CSF in this process
of simulation. In reality, given that a lower amount of CSF is drained through SAS and
the ventricular system, the outlets were neglected due to their low impact according to the
previous studies in [16].

L(θh) =
e−y
√

(J+s)Pr

s
(13)

L(Ch) =
e−y
√

(K+s)Sc

s
(14)

L(uh) = e−y
√

(k+s)
[

s
s2 + β2 − 1

k + λ

[
1

s − k −
1

s + λ

]
+ Gr

R

[
1
s +

1−Pr
R − s(Pr − 1)s

]]
−Gm

k

[
1
s +

Sc − 1
k − (Sc − 1)s

]
+ 1

k + λ

[
1

s−k −
1

s + λ

]
−Gr

R

[
e−y
√

Pr(s+J)

s − (1 − Pr)e−y
√

Pr(s+J)

R + s(Pr − 1)

]
+Gm

k

[
e−y
√

(K+s)Sc

s − (1 − Sc)e−y
√

Sc(K+s)

R + (Sc − 1)s

]
After solving the above Laplace equations, we obtain the velocity and the concentration

equation as follows:

θh =
1
2

{[
e−y Pr

√
J
[
er f c

(
η
√

Pr
)
−
√

JPrt
]
+ ey Pr

√
J [er f c

(
η
√

Pr
)
+
√

JPrt
]}

(15)

Ch =
1
2

{[
e−y Sc

√
k
[
er f c

(
η
√

Sc
)
−
√

KSct
]
+ ey Sc

√
k [er f c

(
η
√

Sc
)
+
√

KSct
]}

(16)

uh(y) = Cosβ
(

t−
√

s + k
)
− 1

λ+k ek(t−
√

s+k) + 1
k+λ e−λ(t−

√
s+k)

+
[

Gr
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2k
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e−y
√

ker f c
(

η −
√

kt
)
+ ey

√
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(
η +
√

kt
)]

−GreQt

2

[
e−y
√

Q+ker f c
(
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√
(Q + k)t

)
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√
Q+ker f c

(
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√
(Q + k)t

)]
−Gme−Dt

2k

[
e−y
√

k−Der f c
(

η −
√
(k− D)t

)
+ ey

√
k−Der f c

(
η +

√
(k− D)t

)]
+ 1

k+λ

(
ekt − e−λt

)
−Gr

2R

[
e−ypr

√
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η
√
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)
−
√
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]
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√
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η
√
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)
+
√

JPrt
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[
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√
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η
√

Pr
)
−
√
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√
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η
√
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)
+
√
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]
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√
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√
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√
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]
+eySc

√
K+Der f c
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η
√
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)
+
√
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(17)

Q =
R

pr− 1
, D =

k
Sc− 1

, β = α2, R = (J Pr− k), k = σ2, η =
y

2
√

t
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Pressure of Fluid

The pressure of fluid can be depicted by using the following relation:

Ph =
∫ 1+Cos∝2t

0
uhdt

The data chosen to depict the CSF disorder hydrocephalus symptoms, the method of
solution by various biologist by using material properties, and other parameters, as listed
in Tables 1 and 2, were used in the computations in MATLAB in the following section.

Table 2. Parameters used in the paper from various researchers.

Reynolds number ≥468.3 [15]

Darcy number 0.33 [17]

Womersley number 6.3–7.8 [16]

Grashof number for heat transfer 0.39

Grashof number for mass transfer 0.075

CSF Pressure (Hydrocephalus) ≥ 2700 [15]

Thermal Conductivity 0.63 [5]

Specific Heat Capacity 4.19 [2]

Prandtl number 0.54

Schmidt number 0.2

4. Results and Discussion

The objective of the paper was to assess the effects of the thermo-solute non-Newtonian
CSF fluid, as depicted in Figures 2–13. Based on some of the data in Table 2, the analytical
solutions for velocity, temperature, and concentration computed using the standard Laplace
and inverse transform methods were validated by MATLAB and displayed graphically.
To comprehend how the hydrocephalus model’s pulsatile flow features behaved from the
following graphs, plots of velocity (uh), temperature (θh), and concentration (Ch) against
time (t) are shown for various values of several parameters including the heat conduction
parameter, Darcy permeability number, and Schmidt number. As per the MRI reports cited
in [21], we used the range of CSF velocity from − 0.005 to 0.005 (m/s) for normal subjects
and for the hydrocephalus case varying from − 0.015 to 0.015 (m/s). Furthermore, the
range of concentration diffusivity was taken from the range between 0.1 and 1 (µm/s ).

The fluid concentration fluctuation through time was illustrated. As seen in Figures 2
and 3, an increase in the Schmidt number caused a significant decrease in the concentration
of solutes in the CSF. Higher Schmidt numbers imply that the solute particles diffuse
more slowly in the CSF-saturated porous media since the Schmidt number correlates the
relative rates of momentum and mass (molecular) diffusivity in the regime. Furthermore,
in Figure 3, the concentration parameter decreases with an increase in time.

Figures 4 and 5 depict the fluctuation in CSF temperature with different Prandtl
numbers throughout time. The temperature was shown to rise significantly with increasing
time in different Prandtl numbers, suggesting that the hydrocephalus’s thermal effects
become more pronounced over time. It clarifies that changing the Prandtl number causes
the thermal conduction to rise while decreasing the mass transfer. As one moves up in the
pia mater space, the temperature drops off with an increase in the vertical coordinate. A
strongly periodic (oscillatory) profile of the CSF flow was recorded, as seen in Figure 4.
As the heat conduction parameter increased in Figure 5, a significant decrease in CSF
temperature was seen (J). Furthermore, the CSF temperature increased over time. Stronger
heat conduction in the temperature of the CSF domain caused the flow to slow.
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In Figure 6, the inertial force increased relative to the viscous (damping) force as the
Womersley number rose. For a normal subject, the Womersley number is less than 5 and
for hydrocephalic patients, it ranges from 6 to 12, as discussed statistically in [8]. The
magnitudes normally stay the same, but the CSF velocity peaks and troughs (minimum
values) moved as a result. Due to the periodic character of the flow, time passing seems to
have had the effect of dispersing pulsatile waves. The permeability of the fluid medium
increased as it retained the elasticity with respect to its length. Hence, the Darcy number
decreases as the velocity of the fluid increases.

In Figure 7, it can be seen that the Darcy permeability parameter decreased the
CSF velocity. The negative (drag) force that perhaps the rigid filaments in the pia mater
generate on the CSF is described by the Darcian body force, −σ2uh, in the dimensionless
conservation of momentum equation. However, this force is inversely proportionate to the
permeability, since σ2 = ν2

U0
2km∗

The permeability clearly decreases as σ2 rises, suggesting
that the percolating CSF flow faces a higher resistance as a result. This is due to the fact
that the interference in the fluid motion slows down as the size of the porous permeability
increases (brain parenchyma). Hence, the fluid velocity increases in the subarachnoid
space boundary layer. This change expels abnormality in the flow of CSF that affects the
circulatory system.

Figures 8 and 9 show how the Grashof number affects the heat transmission and solute
mass transfer, respectively. Figure 8 shows how the fluid flow significantly increases as the
Grashof numbers rise, but the CSF velocities fall. On the other hand, an increase in the
thermal Grashof number was used in Figure 9 to calculate the considerable reduction in
CSF flow velocity. The velocity and temperature fields are coupled by Gr, which appears
in the momentum equation. Higher values of Gr cause a rise in thermal buoyancy, which
dampens the CSF flow regime.

The effect of the Sc parameter on the asymmetric CSF flow variations displayed with
time is depicted in Figure 10. Peak displacement with time progression is evident, however,
the Schmidt number has no discernible effect on the peak magnitudes.

Figure 11 depicts the variation in the Reynolds number with the time variation. The
value of Re varies from 150 to 450 for hydrocephalus patients. Here, it was shown that
the velocity increases when the Reynolds number escalates with time taken for the cardiac
cycle.

In Figure 12, we show the influence of the Prandtl number on the time-varying CSF
velocity profiles. It is known that a rise in the heat conduction parameter causes a rise in
the heat diffusivity. As a result, it has been found that a rise in the Prandtl number causes
a decrease in the thickness of the SAS layer due to a change in temperature. The Prandtl
numbers employed in this simulation were 7.0 (water), 0.54 (CSF), and 0.71 (air), which
correspond to the CSF, respectively. This is reasonable in the case where there are greater
values of Pr response to the weaker thermal diffusion and thinner SAS layer.

Figure 13 demonstrates the estimated CSF pressure with a drastic elevation in normal
pressure with an increase in time, which results in risk. An excess amount of fluid passes
through the brain parenchyma when there is an increase in CSF pressure. As a result,
the temperature, solute ions, and velocity variations in the pulsing CSF flow for the
hydrocephalus subjects have been the subject of interesting observations. Strong ion
diffusion in the extra fluid also contributes to the extra molecules in this pathological
disease. As per the clinical reports, the CSF pressure for healthy subjects ranges up to
1015 Pa, but the hydrocephalus patient increases up to 2697 Pa [35]. Hence, the analytical
methods of hydrocephalus patients in our findings resulted in more than 2500 Pa, which
proved the accuracy of the clinical proof. As a result, the interaction mechanism of the
intracranial fluid pressure and brain tissue is one of the controversial challenges in CNS
disorders that varies with parameters such as the Reynolds number, Darcy permeability
parameter, Schmidt number, Grashof number for mass and heat transfer, etc.
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5. Conclusions

We evaluated the analytical method to ensure its validity before establishing the prac-
tical calculation. There is no related literature in the development of CSF mathematically
to compare the numerical results with their results. As mathematicians, we developed
unique rare rigorous mechanics behind CSF disorder, and justified the results with the CSF
kinetics with various authors. Hence, the results of the analytical method indicate that
we should pursue some recent theoretical methods by means of neurological papers. The
oscillatory pressure drop with pulsatile inlet velocity was used to compare the solutions.
These findings could be useful for medical researchers studying the pathological disorder
of hydrocephalus. As a result, increasing the amplitude of the oscillatory velocity has no
effect on improving the heat transfer of oscillating flow in a CSF heat sink. The Schmidt
number parameter represents the diffusivity of the CSF flow and demonstrates that any
drug injected via lumbar puncture and passed through a porous medium aid in the investi-
gation of the current state of the human subject. As a result, every parameter exhibits some
physical nature.

When there is a thermodynamical behavior regarding CSF, pulsatile inlet velocity
exerts various temperature differences due to parameters such as the heat conduction
parameter, and the peaks and troughs of CSF velocity are displaced as the Womersley
number escalates, because the inertial force increases with relative to the dissipative force,
but the magnitudes frequently remain constant. CSF pressure is essentially invariant with
smaller time variations; however, after a certain time, the determined pressure signifi-
cantly increases. Because of hydrocephalus dysfunction and ventricular enlargement, the
subarachnoid area places a substantial amount of fluid that is passed through the brain
parenchyma under intense pressure. The current study uncovered some intriguing thermo-
solute transport characteristics that are relevant to neurological therapy in an idealized
model of hydrocephalus. The following are the findings of the current identification.

• The fluid flow velocity decreases when there are increases in the Prandtl (Pr) number,
heat conduction (J) parameter, and Schmidt (Sc) number;

• As the porosity parameter, the Grashof number of heat and mass movement rises with
respect to time, as does the CSF velocity;

• The temperature drops significantly when the Prandtl number and heat conduction
parameter are improved;

• When the Schmidt number is increased, the fluid concentration decreases significantly;
• An upsurge in fluid velocity suggests major alterations in the flow regime’s high

intracranial pressure.

In order to prevent certain consequences, the patient is given suppressive therapy
ahead of time. This article can be enhanced to include additional types of hydrocephalus,
which would also improve the quick forecasting for real-world evaluations. The variation
in the attributes of CSF amplitude as well as pressure were compared between a healthy
subject approximately not more than 66.2, but in the case of the hydrocephalus patient,
it was nearly twice as great as the normal subjects, as cited in Gholampour, Seifollah,
et al. [34]. This paper may be helpful to approach a deep discussion into the controversial
and less-known points in the brain dynamics and physio pathological kinetics. Hence, for
practical use of this investigation for clinical testing enhancement, we need to expand this
paper for future studies for findings with various samples.
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Nomenclature

CSF Cerebrospinal f luid
uh, vh Dimensionless velocity o f CSF f low in x and y direction
u∗h , v∗h Dimensional velocity o f CSF f low in x∗ and y∗ direction
CNS Central nervous system
ICP Intracranial pressure
SAS Subarachnoid space
ρ Fluid density
ν Kinematic viscosity
pk Permeabilty o f porous layer(pia mater)
w0 Characteristic velocity
α2 Womersely number
λ Oscillating exponential parameter
cp Speci f ic Heat capacity at constant pressure
Tw Pia mater wall temperature
Cw CSF wall concentration
T0 CSF steam temperature
C0 CSF steam concentration
Re Reynolds number
J Heat conduction parameter
k′ Thermal conductivity
KT Thermal di f f usion ratio
t Dimensionless time taken
σ2 Darcy number
g Acceleration due to gravity
Gc Grasho f number f or mass trans f er
Gr Grasho f number f or heat trans f er
Pr Prandtl number
Sc Schmidt number f or mass trans f er
θh Temperature o f f luid f low in brain
Ch Transport di f f usivity o f the f luid
x and y Coordinate system
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