
Polymer Nanocomposite-Based Smart Materials. http://dx.doi.org/10.1016/B978-0-08-103013-4.00008-X
Copyright © 2020 Elsevier Ltd. All rights reserved.

Electroactive polymer composites 
and applications
R. Kumara, P. Senthamaraikannanb, S.S. Saravanakumarb, Anish Khanc, 
K. Ganesha, S. Vijay Ananthd

aDepartment of Mechanical Engineering, Eritrea Institute of Technology, Mai-Nefhi, 
Asmara, Eritrea; bDepartment of Mechanical Engineering, Kamaraj College of Engineering 
and Technology, Virudhunagar, Tamil Nadu, India; cCenter of Excellence for Advanced 
Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; dDepartment of 
Mechanical Engineering, Vels Institute of Science, Technology & Advanced Studies, 
Chennai, India

1 Introduction

In recent decades, polymers have emerged as one of the most remarkable materials in 
biomedical applications because of their high biocompatibility and degradation. An 
alternative specific feature of polymers is their flexibility and functionalities, allowing 
their growth from bioactive hydrogels to recyclable polymers. It also includes a wide 
range of manufacturing techniques, such as electro-spinning, 3D printing, extrusion, 
casting, and microfluidity. By reinforcing nanoparticles into a polymer matrix, novel 
nanocomposites can be developed to extend their functionalities and range of proper-
ties of polymers.

Due to that, polymer composites are studied widely today for applications such as 
drug delivery, tissue engineering, and wound healing. In this background, electroactive 
smart polymer materials are developed due to their ability to transfer electrons under 
a specific electric field leads to offer more applications in various engineering fields 
such as sensors and robots. The merits of using electric field as an external stimulus, 
compared to others, which allow to precise control in terms of the duration of electric 
pulses, the current magnitude, and intervals between pulses. However, compared to 
other smart polymer systems, electroactive smart polymers have been less studied for 
aerospace, biomedical, space, and automotive applications.

Recently, investigators have attracted due to the electro mechanical properties of 
electroactive polymers. Since, the merits of this type of actuators are not only utilized 
for actuation, lightweight, and easy fabrication, but some dielectric polymers could 
offer larger rate of strain. This strain rate is particularly used for medical applications 
like micro values and pumps.

Fig. 8.1 shows the plot of maximum strain rate for the respective maximum applied 
electric field. The reducing and convergence of the strain rate could be demonstrated 
clearly.

Fig. 8.2 shows the biomedical applications of the potential electroactive polymer. 
This acts as a new development of smart systems capable to respond to the electric 
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field specifically in the field of biomedical. It ranges from polymers delivering an elec-
trical signal in order to altering some required properties under an electric stimulus.

2 Mechanism

Several active polymers are available along with different properties due to the differ-
ent activation mechanism [3,4]. Depending upon the fabrication of smart materials, 
both one-way as well as reversible activation are perceived [5–8]. To develop the smart 
materials, the selection of materials is based on the ability of shape control and self-
sensing characteristics [9].

The different mechanisms are available to create an actuation in electric active poly-
mers. They are: (1) polarization, (2) molecular shape and phase change, and (3) mass/
ion transportation [10,11]. Polarization mechanism is used to produce actuation by 
dielectric elastomers and piezoelectric polymers. Molecular phase change mechanism 

Figure 8.2 General overview of electroactive polymer [2].

Figure 8.1 Maximum strain rate versus maximum applied electric field [1].
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is followed by shape memory polymer and liquid crystal elastomers to produce acti-
vation. Basically mass/ion transportation mechanism is used in the materials such as 
gel and conducting polymer to generate activation. Different stimuli sources such as 
electrical, light, and magnetic are used in electroactive polymers for manufacturing 
various smart materials according to the required applications. In that most significant 
and available source is electrical simulation and also it can be controlled by advanced 
control systems [12]. More research work is being reported on the manufacturing 
of electroactive polymers based on electrical simulation; however, other stimulation 
source has their own applications. Therefore various electric active polymers have dif-
ferent mechanism for activation based on the stimuli and response [13].

Classification of electroactive polymers based on activation mechanism is divided 
into different types. They are: (1) ionic electroactive polymers which includes ionic 
polymer–metal composites and conducting polymer actuators, (2) field activated elec-
troactive polymers which includes dielectric elastomers, and ferroelectric polymers 
[14]. The migration of ions is activated by the resultant force from the electric field in 
the ionic electroactive polymers [15,16]. This method need low voltage (10 V) for acti-
vation operation; however, it suffered from the low frequency and energy efficiency 
[17]. Second activation mechanism of field initiated electroactive polymers has larger 
electromechanical coupling efficiency, which specifically uses electric power. Hence 
it gives good response to the every strain leads to short response time duration. But it 
required higher voltage to activate the material [18].

3 Applications of electroactive polymers

3.1 Used in aerospace applications

Due to the actuation capability of electroactive polymers, investigators have given due 
consideration to this field of interest. Generally, this type of polymer has the electro-
mechanical properties, which endow the capacity to function as both sensors and actu-
ators [19–21]. Electric current induced the electroactive polymer to deform in required 
size and shape, which leads to attain the strain rate up to 300 % [22]. The advantages 
of electroactive polymer when it used as an actuator are low weight, flexible, lower 
electric power consumption, quick response, and low actuation voltage [23,24].

Nowadays, Nafion- and Flemion-based electroactive polymers are developed from 
this research area, and these materials have greater attention to as an actuator and 
sensor purpose [25–27]. Wang et al. [27] reported the flexible tactile sensors, and 
it was developed based on Flemion ionic polymer material to produce composites. 
The actuators made with this material for getting the performance of large strain and 
low voltage, which is used for the applications of smart materials and microelectro-
mechanical systems [28–30]. Recently, research work in electroactive polymers is 
enhanced to produce improved actuation properties for advanced applications. The 
beneficial properties such as damping of vibration and shock, aesthetics, and flexible 
actuator designs are could be provided by visco-elastic based electroactive polymer 
materials [31].
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3.2 Used in biomedical applications

Recent development in polymer science is the innovation of creating smart materials 
with the behavior of stimulus response. The usage of electroactive polymers is very 
high, as it has a capacity of transfer ions under a condition of specific electric field 
which has multiple applications such as sensors and soft robots [32,33]. This electro-
active polymer can be used as biomaterials to achieve proliferation and adhesion of 
human cells [34–37].

Wu et al. [38] manufactured the optimal electroactive polymer for a medical endo-
scope application. For modeling of medical endoscopes, the port Hamiltonian frame-
work is suitable. Fig. 8.3 shows the actuators being coated outside of the medical 
endoscope. A compliant endoscope applicable for medical examination is shown in 
Fig. 8.4. The flexible structure of the inner tube of the endoscope can be represented 
by a Timoshenko beam. The left end of the beam is fixed and right end is free. The 
electroactive polymer actuators and beam are linked through the power conjugated 
variables. In their study, they were proposed a Hamiltonian model of the medical 
endoscope.

Figure 8.3 Electroactive polymer actuated endoscope [38].

Figure 8.4 Simplified actuators endoscope [38].
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3.3 Used in space applications

Various robotic systems and tests are developed by many researchers for space opera-
tions. The main requirement for space applications is that it should be controllable and 
deployable without any serious issues. Bulk shape and size materials are limits the 
capability of space mission system in which use low weight and high strength, com-
pact materials to achieve the more time in space [39–41]. The superior quality of elec-
troactive polymers such as dielectric and ionic are recommended in space-affiliated 
industry. The ionic-based electroactive polymer material is most suitable material for 
attaining all the requirements [42–44].

3.4 Used in automotive applications

The electroactive polymer material is widely used in automotive industry to develop 
the haptic technology. This technology is utilized to induce the mechanical feedback 
for getting the information keeping focus on the driving of automobile in road [45]. 
The vibration sensation can be generated by the unimorph effect, which permits an 
out-off plane displacement. The piezoelectric actuator material as electroactive poly-
mer is used for producing this effect. Poncet et al. [46] developed the haptic circular 
buttons to provide the sensations of vibration while touching it by the person.

The electroactive actuators manufactured with polycarbonate substrates as shown 
in Fig. 8.5. This polymer stack is built by screen printing technology. After manufac-
turing, the stack is annealed at a temperature of 60°C for the durations of 3 minutes 
and then allows it to dry at a temperature of 120°C for 5 minutes. Fig. 8.6 shows 
the printed polymer actuators for haptic feedback applications. Also they developed 

Figure 8.5 Schematic diagram of the piezoelectric electroactive polymer stack [46].

Figure 8.6 (A) Photograph of developed electroactive actuator and (B) clamped foil for 
characterization [46].
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the finite element model for this application to forecast the frequency and amplitude 
at resonant modes during activation of electroactive polymer. This study proved the 
simulation result as well as analytical model result both is in good agreement to deter-
mine the haptic effect.

4 Conclusions

Electroactive polymer materials belong to a new class of materials that can be effec-
tively used to attain innovative smart materials which is highly dominant research 
areas in the manufacturing of such materials. It plays a major role in the manufac-
turing of aircraft products in which enhancing the actuation proficiency in different 
systems. The flexibility of electroactive polymer is to make possibility of the develop-
ment for aircraft and biomedical applications.
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