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A B S T R A C T

Measurements always associate a certain degree of uncertainty. In order to achieve high precision measurement in
presence of uncertainty an efficient computation is desired. Statistical definition of precision of any measurement
is defined as one standard deviation divided by the square root of the sample size taken for measurements.
Accordingly, tolerance limits are statistical in nature. Therefore, measurements are required to repeat large
number of times to obtain better precision. Hence, the target is to establish the tolerance limits in presence of
uncertainty in computer and communication systems. Nonparametric method is applied to establish the tolerance
limits when uncertainty is present in measurements. The basic aim of the present paper is to explore order sta-
tistics based nonparametric method to estimate the appropriate number of samples required to generate the re-
alizations of the uncertain random parameters which further will facilitate user to establish the tolerance limits. A
case study of solute transport model is experimented where tolerance limits of solute concentration at any spatial
location at any temporal moment is shown. Results obtained based on the nonparametric simulation are compared
with the results obtained by executing traditional method of setting tolerance limits using Monte Carlo simula-
tions using computer and communication systems.
1. Introduction

The usage of tolerance limit to characterize uncertainty of power
plant engineering system, for example nuclear power plant and corre-
sponding allied systems gains popularity due to presence of complex
models and computational cost. Uncertainty modeling of engineering
system such as peak clad temperature of nuclear fuel system, to test the
dynamic load of wing of an aircraft, material processing, etc. is very
important to formulate a regulatory protocol or to design a standard
technical specification of the system. There are two types of uncertainty
generally we come across, viz., (1) Aleatory uncertainty, where uncertain
variables are simulated using their random distribution and aleatory
uncertainty is irreducible and (2) Epistemic uncertainty, where uncertain
variables are subjective in nature due to their lack of measurements.
Hence uncertain variables in case of modeling epistemic uncertainty are
characterized by their fuzziness. The objective of this article is to propose
a nonparametric technique to estimate tolerance limits to achieve high
precision of engineering measurements where uncertainty is addressed
due to randomness of the model of interest. Sample size of any such
atta), sngtmsr77@gmail.com (S. M

rm 2 May 2020; Accepted 4 May
lsevier B.V. on behalf of KeAi Co
random variable required to characterize its actual random behavior is
generally large in number. Uncertainty being random is categorized as
aleatory uncertainty which is not possible to reduce by increasing the
sample size of measurements. So, obvious question here is that how one
should select the appropriate sample size. This is because if one considers
a very large sample size, say 106 for example, computational load will
unnecessarily be a burden of the total problem. On the contrary, if sample
size is too small then important information one may miss due to igno-
rance of actual sampling zone. Moreover measured parameters may be
correlated and therefore existence of correlation will increase sample
size. Representative uncertainty of the measured parameters may not
provide any sort of statistical distribution other than they are a contin-
uous function. Uncertainty due to randomness is basically termed as
aleatory uncertainty which is not reducible [1].

A substantial huge number of samples (~> 10000) are required to
execute traditional Monte Carlo simulation for quantification of aleatory
uncertainty. However, traditional Monte Carlo simulation is not at all
practical simulation method for achieving high precision in any engi-
neering measurement. Moreover, confidence interval of the
ishra), sumanrajest414@gmail.com (S.S. Rajest).
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measurements for quoted percentiles of the target may not be possible to
locate exactly due to presence of local and global variations of the pa-
rameters of the model. With a view to this issue, a non-parametric
method for deciding the appropriate sample size proves to be a prac-
tical approach. Tolerance limits here provides the sample size or exper-
imental runs and when experiments are performed for obtaining that
many values of the uncertain parameters, model uncertainties can be
easily calculated or estimated using these results of uncertainties of the
parameters. Tolerance limits are the extreme bounds of the model value,
so that any value within those bounds can be acceptable with specified
level of confidence with specified percentiles [2].

Proposed method of setting tolerance limits is demonstrated with a
case study of migration of contaminants through water bodies (subsur-
face or groundwater). Contaminant as solute is discharged or poured into
a river and the samples are collected at any downstream location at a
certain instant of time. Concentrations of contaminant present in the
collected samples are measured and decisions of accepting these samples
are made based on tolerance limits.

Paper is presented in the following ways. Section II describes the
mathematical details of tolerance limits. Section III presents the appli-
cation of the concept of tolerance limits in high precision measurement
via uncertainty modeling. Section IV presents some example problems for
handling uncertainty issues in measurements. Section V presents a case
study and section VI concludes the impact of setting tolerance limits for
achieving high precision measurements in any engineering problems.

2. Derivation of tolerance limits

Lower and upper bound of tolerance [LB, UB] is expressed as an in-
terval that contains probability (or confidence) β at a fraction γ of the
system under observation [3]. On the basis of desired confidence, the
probability beta (β) and percentile (fraction) gamma (γ) are the selected
preference of an analyst towards setting tolerance limits of the system
[3]. The problem of fixing tolerance limits can be formulated as follows
[3]: For some given positive values β< 1 and γ< 1 one can construct two
functions LB(x1, x2, .., xn) and UB(x1, x2, .., xn) called tolerance limits for n
independent observations x1, x2, .., xn on x such that the probability (Eq.
(1))

Z UB

LB
f ðtÞdt � γ (1)

holds good and is equal to β. According to Wilks [3,4] following solution
of the problem is proposed.

Let x1, x2, ..,.., xn be the observed values of vector x arranged in
increasing order. Then LB¼ xr and UB¼ xn-rþ1 where r denotes a positive

integer. The exact sampling distribution of the statistic
Z UB

LB
f ðtÞdt is

derived by Wilks and this provides the solution for the problem of setting
tolerance limits. The very important feature of Wilks’ solution is the fact

that the distribution of
Z UB

LB
f ðtÞdt is entirely independent of the un-

known density function f(x), i.e., the distribution of
Z UB

LB
f ðtÞdt is the

same for any arbitrary continuous density function f(x). If we have p
random variables, tolerance limits setting for these p variables can be
made by extending Wilks’ method for multivariate case. Under this
umbrella, for a given positive values β < 1 and γ < 1 construction of p
pairs of functions of the observations LBi(x11, …, xpn) and UBi(x11, ….,
xpn) (i ¼ 1, …, p) such that the probability that

Z UBp

LBp

::::

Z UB1

LB1

f
�
t1; ::::::; tp

�
dt1; ::::; dtp � γ (2)

holds is equal to β. The other symbols (LBp and UBp,…) shown in Eq. (2)
have the usual significances (lower and upper tolerance limits of xi).
2

Tolerance limits are of two kinds, nonparametric and parametric. We do
not have any information of the probability distribution of random var-
iable for nonparametric tolerance limits. In case of parametric tolerance
limit, the probability distribution of the random variable of interest is
known but knowledge on the distribution parameters is unknown.
Equations (1) and (2) can be further interpreted mathematically as
follows:

If γ is tolerance limit for [LB, UB] and if β be the level of the proba-
bility for sample size N of a limited sample S1 then probability β with γ
proportion (at least) of the random variable x’s in another set of sample
S2 (larger in size compared to sample S1) will lie between LB and UB can
be written as [3–6].

p

0
@Z UB

LB
f ðxÞdx� γ

1
A¼ β (3)

where f(x) is the probability density function of the random variable x.
Equation (3) implies that the probability that a single experiment will fail
to fall in S1 is γ. Therefore, the probability that number of experiments, N
will fail to fall in S1 is γN. Hence the probability that at least one exper-
iment will fail to fall in the domain S1 can be written as

β ¼ 1- γN (4)

Thus by simple algebra, we can rewrite equation (4) as

N¼ lnð1� βÞ
lnðγÞ (5)

Sample values of size N are generated using equation (5), sorted in an
ascending order and finally the maximum value, XN th value is quoted as
the upper tolerance limit. Extending to this derivation it can be put for-
ward a case in which the probability β1 of exactly one experiment in S1
and which can be represented mathematically as

β1 ¼ðNC1 Þ
�
γN�1

�ð1� γÞ¼Nð1� γÞγN�1 (6)

Having more conservative estimate one can have a requirement in
which the probability β2 [3] of at least 2 experiments in the same region
can be written as

β2 ¼ 1� γN � Nð1� γÞγN�1 (7)

In a similar way, one can evaluate the probability β3 of obtaining at
least 3 experiments in the domain of interest as (1 – probability that none
of the experiment will fell in the domain of interest þ exactly one
experiment was in the domain of interestþ exactly two experiments were
in the domain of interests). Therefore, β3 [3] can be mathematically
written as

β3 ¼ 1� γN �Nð1� γÞγðN�1Þ � C2

�
1� γ2

�
γðN�2Þ (8)

So, in general, the probability βm for obtaining ‘m’ values in the
domain of interest [7–9] is given by

βm ¼ 1�
XN

i¼N�mþ1

N!
i!ðN � iÞ! γi ð1� γÞN�i (9)

For our present study, lower tolerance limits is obtained by quoting
the minimum of {xi, i ¼ 1, … N} and the upper tolerance limit is quoted
by the maximum of {xi, i ¼ 1, … N}.

3. Uncertainty quantification using tolerance limits

Measurements are always associated with a specific uncertainty in the
sense that measured values are expressed always mean value � error
(uncertainty). In this paper we have addressed error as mean square error
or root mean square error (standard deviation). Therefore, high precision
measurement means mean value of the item of interest � accuracy. This



Table 2
Minimum Sample Size (Two-Sided) [3,4].

γ β

0.90 0.95 0.99

0.50 17 34 163
0.80 29 59 299
0.90 38 77 388
0.95 46 93 473
0.99 64 130 663

Table 3
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accuracy is basically defined as sum of the bias, i.e. error and precision.
Tolerance limits addresses this precision because sample size is possible
to determine accurately using these tolerance limits. In order to reduce
the number of samples from large (few ten thousands) to substantially
small (100 or further) is challenging which can be achieved by Wilks’
method (an efficient method for setting tolerance limits) [4,5]. It is
known that sample size is independent of the number of uncertain pa-
rameters of the model is [5]. The problem of setting tolerance limits in
parametric and nonparametric domain is to compute a closed interval
[LB, UB] for a random variable X ¼ { x1, …..., xn }.

Equations (5) and (9) can be used for estimation of sample size
required for high precision measurement during an experiment. In order
to implement methodology based on Wilks’ tolerance limits [5,6], let us
consider (i) one sided and (ii) two sided tolerance limits.

Tolerance limits (one sided): Consider a model in which we are
interested in either shear stress or temperature at any spatial point of the
structure as outcome. Our target is say, estimation of tolerance limits of
this outcome surface of a structure. In this case, suppose we are interested
in setting tolerance limit TU with the 95% confidence (probability, β) and
95th percentile (fraction γ) of the temperatures from an infinite popu-
lation. Sample size N based for the desired values of β and γ is shown in
Table 1 [7–9]. For example, if β ¼ 0.95, γ ¼ 0.95, then N ¼ 59 (see,
equation (5)) samples taken from the model or 59 experiments are
required to perform to have a high precision measurements of the tem-
peratures and will alert that the maximum temperature THighest in the
sample space represents 95th percentile of all the possible temperature
falls with 95% upper confidence limit.

Tolerance limits (two sided): If we consider the two-sided tolerance
limits not much popular in the domain of interest [10], sample size will
be different. Table 2 shows the sample size for a combination of (prob-
ability β and percentile, γ).

With γ and β both equal to 95%, we will get sample size N ¼ 93. That
means if 93 experiments of the model under study are carried out, we can
say that TL and TU of this experiment represent the 95the percentile of all
possible temperature will fall within that bound with 95% confidence.
So, uncertainty of the model output will be expressed in terms of the
bounds TL and TU. Degree of uncertainty (Dou) with a 95% confidence
will be calculated using

DOU¼ TU � TL

TU þ TL
(10)

4. Examples (numerical) for illustration

A few examples are demonstrated to convince the potential capability
or efficiency of Wilks’ tolerance limits for high precision measurements.

Example 1. Cartoons for shipping the steel bars are required to order
by the manufacturer of steel bars. In that order, company wants to have
length of the cartoon with 90% confidence so that at least 95% of the
cartoon will not exceed the specified length. It is exactly a high precision
measurement. Question is the selection of number of samples by the
manufacturer. Accurate measure of the length of cartoon is categorized as
high precision measurement.

Solution: On the basis of the order format, Table 1 shows that the
value of sample size, N ¼ 29 for γ ¼ 95% and β ¼ 90%. That means
manufacturer should order length of the cartoon as 29th outcome of the
Table 1
Minimum Sample Size (One-Sided) [3,4].

γ β

0.90 0.95 0.99

0.90 22 45 239
0.95 29 59 299
0.99 44 90 459

3

population of 29 samples as length of the box. One can also tag this sort of
high precision as best estimate [10].

Example 2. A metallic cantilever is loaded with a specific load. It is
required to perform an uncertainty analysis of the deflection of cantilever
based on Wilks tolerance limits and two-sided with γ ¼ 95% and β ¼
95%. Uncertainties of parameters of interest of the model are specified as
normal distribution. Specification of the uncertainty of the parameters of
interest for estimating or measuring the deflection of the cantilever is as
shown in Table 3. The deflection of the cantilever is given by δ ¼ 4PL3

EBt3 .

Solution: Same range and distribution (Table 3) is assumed for pa-
rameters and with two-sided (95%, 95%) criteria, we design simple
sampling with N ¼ 93. A lognormal distribution is fitted to generated
data of deflection model for more illustration and shown in Fig. 1. Results
of propagation and (95%, 95%) tolerance limits of the deflection of
cantilever are shown in Fig. 2 and Fig. 3.

Lower and upper bounds of tolerance limits of deflection of the
cantilever (best estimate) [10] from Figs. 2 and 3 can be easily notified as
LB ¼ 5.45 and UB ¼ 31.11. Therefore, degree of uncertainty from
equation (10) is computed as (31.11–5.45)/(31.11 þ 5.45) ¼ 0.7.

5. Case study-contaminant transport model

Transport of contaminants (two dimensions) in surface water body
(river) [11] is taken into account to quantify the uncertainty of concen-
tration of contaminant in river water using Wilks’ tolerance limit. The
model estimates the density variation of contaminants dissolved in water
body (river) at any temporal and spatial coordinate from the point of
release of the chemical. Velocity of flow of the river water (ν m/day),
longitudinal dispersivity (αL m) and transverse dispersivity (αT m) of the
contaminants are measured parameters of the present model. Since the
measurement of the parameters in the field are not possible large in
number and always provides only the minimum and maximum value,
uncertainty distribution of measured parameters is considered as uniform
distribution. The governing equation describing the transport of
contaminant in water body (river) due to advection and diffusion can be
written as [11].

∂C
∂t ¼DL

∂2C
∂x2 þ DT

∂2C
∂y2 � ν

∂C
∂x � C’W

2 b
(11)

where C(x, y, t) is the concentration of the dissolved contaminant (solute)
in mg/l, ν signifies the velocity of flow of the surface water (river) in
Uncertainty of input parameters.

Parameter Symbol Distribution Mean
Value

Std.
Deviation

Concentrated
Load

P Normal 200 10

Length of beam L Normal 250 5
Young’s
Modulus

E Normal 1 x 107 1 x 106

Width of beam B Normal 4 0.4
Thickness of Beam T Normal 3.0 0.3



Fig. 1. Probability density of deflection of cantilever.

Fig. 2. Probability plot of cantilever deflection.
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downstream direction (m/day), DL and DT represent the longitudinal and
transverse dispersion coefficients (m2/day) respectively, W is the volume
flux per unit area (m/day), C’ is the concentration of the dissolved
chemical species in a source or sink fluid (mg/l), b is the saturated
thickness of the aquifer (m); 2 is the effective porosity of the aquifer
(dimensionless) and (x, y) is the spatial coordinates that signifies the
downstream and cross-stream distance (m) and t is the time of observa-
tion (days). Initial and boundary conditions of the solute transport
4

problem are C(x, y, 0) ¼ 0, x � 0, y � 0, C(0,t) ¼ C0, t � 0, and C(∞, t) ¼
0, t � 0. Longitudinal and transverse dispersion coefficients by definition
are given by DL ¼ αLν, DT ¼ αTν respectively, where αL and αT are lon-
gitudinal and transverse dispersivity of the aquifer [12]. We have
explained the said target using analytical solution of Eq. (11) given by
Ref. [13] as.

Cðx; y; tÞ ¼ M
2bν

1
4
ffiffiffiffiffiffi
παT

p exp
�

x�r
2αL

�
1ffiffi
r

p erfcðζÞ, where ζ ¼ r�νt
2
ffiffiffiffiffiffiffi
αLνt

p with



Fig. 3. Cumulative Probability plot of deflection of cantilever.

Table 4
Uncertainty distribution of Input parameters.

Parameters Dist Lower limit Upper
Limit

Velocity (m/day) U 0.3 1.0
Longitudinal dispersivity (m) U 100 300
Transverse dispersivity (m) U 20 60

Table 5
Fixed Input parameters used in model [15].

Parameters Value

Thickness of flow, b 50 m
Source strength, M 120 kg/day
Effective porosity, 2 0.17
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r2 ¼ x2 þ ðαL =αTÞy2 where, M signifies a point source of constant rate.
To simplify the analysis, density variation of the contaminant along the
longitudinal section is only considered. Thus, when y ¼ 0, r ¼ x. Hence
the concentration expression becomes,

Cðx;y ¼ 0; tÞ ¼ M
2bν

1
4
ffiffiffiffiffiffi
παT

p 1ffiffi
x

p erfcðζÞ, ζ ¼ x�νt
2
ffiffiffiffiffiffiffi
αLνt

p and the complementary

error function is given by erfc (ζ) ¼ 1-
ffiffi
2
π

q Zζ

∞

expð � t2= 2
�
dt.

Sample values of uncertain parameters are generated on the basis of
Wilks’ tolerance limits and two-sided with γ ¼ 95% and β ¼ 95%.
Simulation of this problem has been carried out in two sets [14]. In one
set, we vary downstream distances at a fixed time of observation and in
the second case we vary time of observation for a fixed downstream
distance. Table 4 presents the uncertainty distribution of input parame-
ters of the contaminant transport model. Input values of the deterministic
parameters and uncertainty of the input parameters are quoted from
Ref. [14,15].

Table 5 presents the fixed input parameters of the solute transport
model.

Number of simulations computed for two sided Wilks’ tolerance limit
from Table 2 are 93. With these number of simulations the concentration
values of solute at locations (downstream distance) x ¼ 50, 100, 150,
200, 250, 300, 350 and 400 m at time, t¼ 400 days are computed. A plot
of cumulative probability of concentration at t ¼ 400 days is as shown in
Fig. 4. Two sided tolerance limits of solute concentrations at t¼ 400 days
for each locations are estimated as. Lower sided tolerance limits is the
minimum value of the solute concentration for a specified location and at
specified time and upper sided tolerance limits is the maximum value of
the solute concentration at time t ¼ 400 days and for the specified
location. Profile of these two-sided tolerance limits of the solute con-
centration at time t ¼ 400 days is shown in Fig. 5. It can be stated from
Fig. 5 that solute concentration limits (lower and upper) decreases if one
collects the sample from farthest downstream distance. Another inter-
pretation from these profiles is that one can have surety with a 95%
confidence level that 95th percentile value of the solute concentration at
x ¼ 150 m and at time, t ¼ 400 days will not fall beyond either of the
values 0.03 kg/day (lower sided tolerance limit) and 0.0979 kg/day
(upper sided tolerance limit).
5

Computations of lower and upper sided tolerance limits of solute
concentration are further carried out with a specified downstream loca-
tion, x ¼ 400 m and at different times, t ¼ 100, 200, 400, 600 and 800
days respectively. It is to be noted here that for two-sided tolerance limits
93 simulations (sample size) of input parameters (input parameters have
random uncertainty) of the contaminant transport model are generated.
Cumulative probability plot for each time of observations at downstream
distance, x ¼ 400 m is as shown in Fig. 6. Two sided tolerance limits of
the solute concentrations at x ¼ 400 m (fixed) and at different times of
observations are computed and the corresponding profiles are shown in
Fig. 7. It can be seen from Fig. 7 that for this situation concentration value
increases with time of observations and gets saturated at some time. It
can be noted from this profile that time of observation for saturated
values of the contaminant concentration (minimum and maximum)
provide the analyst the knowledge about the time of sampling for
analyzing the sample. In practice such type of profiles are called break-
through curves.

Lower and upper sided limiting value of the solute concentrations will
further help in estimating the corresponding limiting values of the lon-
gitudinal and transverse dispersion coefficients of the water body
through which solute transportation takes place. Measurement of the



Fig. 4. Cumulative Probability plot of concentration at t ¼ 400 days for various distance.

Fig. 5. Lower and Upper tolerance limits of concentration at t ¼ 400 days for various distance.
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parameters important for transport of the contaminant after discharged
into the surface or groundwater (river, canal, etc.) from any industry will
be of high precision with a tag mark that “95th percentile values of the
measured parameters will not go beyond the lower and upper sided
tolerance limits with a 95% confidence level”.
6

6. Conclusion

Settings of tolerance limits for high precision in measurement un-
certainty in engineering problems are discussed. Wilks’ agent network
method being nonparametric can be applied to any engineering mea-
surements to achieve a specified degree of confidence with a specified
percentile value of the measured quantity. Setting of tolerance limits



Fig. 6. Cumulative Probability plot of concentration. at x ¼ 400 m for various time.

Fig. 7. Lower and Upper tolerance limits of concentration at x ¼ 400 m for various time.
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basically provides the knowledge of sample size or experimental runs.
Wherever simulation is required for uncertainty quantification with a
high precision, sample size can be best estimated by using this concept.
Wilks’ method also provides the best estimates. Tolerance intervals
7

calculate a confidence interval that contains a fixed percentage (or pro-
portion) of the data. This is related to the confidence interval for the
mean. There are two numbers for the tolerance interval: (1) the coverage
probability, which represents the fixed percentage of the data to be
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covered, and (2) the confidence level at which decision is taken. The
methodology has been demonstrated with some simple examples in
section IV and a case study of setting tolerance limits for concentration of
dissolved chemical species is presented in section V. Case study of the
similar type can be extended to set the tolerance limits of the radioactive
effluent discharge during the routine operation of any nuclear plant.
Since tolerance limits can be accepted as regulatory limits, we can say
that Wilks’ method can be applied as a safety tool for regulators. It can
also play a major role of best estimate plus uncertainty methods in major
nuclear power plant modifications.
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