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Abstract— The presence of many zero values – is a pervasive 
property of modern deep neural networks, as it is inherently 
induced by state-of-the-art algorithmic optimizations. Recent 
efforts in hardware design for acceleration of neural networks 
have targeted the structure of computation of these workloads. 
However, when run on these value-agnostic accelerators, value 
sparsity is not exploited to provide performance or efficiency 
benefits, and instead results in wasted computation. This paper 
presents the architectural optimizations that efficiently leverage 
value sparsity in network weights in order to achieve significant 
performance benefits, with minimal hardware overhead. The 
culmination of this work is a hardware front-end (data fetching 
and staging unit) which, when paired with our novel, co-designed 
software scheduling algorithm, achieves more than a 2× speedup 
on average for the networks studied, with just an 8.2% overhead 
in compute area.  

Keywords— Software hardware codesign, Deep neural 
network, CNN, Sparsity.  

I. INTRODUCTION 

Deep learning is a machine learning (ML) technique that 
has enjoyed widespread attention from industry and academia 
in recent years. Deep neural network (DNN) models have 
emerged as powerful tools in a wide range of fields in which 
traditional algorithms have struggled to achieve satisfactory 
proficiency. Perhaps the most widely deployed type of DNN
model is the convolutional neural network (CNN), which is 
dominant in computer vision tasks [1, 2, 3, 4], but has also seen 
success in fields as varied as speech recognition [5], 
reinforcement learning [6], and text translation [7]. 

From a hardware perspective, the deep neural network 
models that are used to implement deep learning represent a 
compelling workload for acceleration due to their widespread 
deployment in consumer and commercial settings, along with 
their unique computational structure and dataflow. The vast 
amount of computation required to run modern DNNs during 

inference (often on the order of tens of giga-operations (GOPs) 
[8]), along with their large memory footprint (commonly 
hundreds of MBs [8]) also make them a prime target for 
custom hardware. Indeed, many recent works have tackled the 
design and evaluation of hardware architectures for the 
acceleration of CNN inference processing. Some seminal 
works have investigated architectural techniques for efficiently 
exploiting the structure and forms of parallelism present in 
CNNs, with many highly influential application-specific 
integrated circuit (ASIC) architectures as well as field-
programmable gate array (FPGA) implementations targeting 
CNNs, multi-layer perceptrons (MLPs), recurrent neural 
networks (RNNs), and other DNN types. 

Alongside their basic computational structure, neural 
networks exhibit unique and interesting value properties – the 
unique distribution of values that appear during runtime for 
these workloads. Certain value properties can offer further 
opportunities for optimizing the hardware architectures 
designed to run these networks. Reminiscent of classical 
architectural approaches for exploiting workload characteristics 
such as cache hierarchies, which leverage the spatio-temporal 
locality of memory accesses, much investigation has been put 
into leveraging the implicit value properties of neural networks 
in hardware. This is an attractive prospect for several reasons, 
not least of which is that the massive computational complexity 
of neural network inference poses problems in terms of latency, 
energy, and power constraints, meaning techniques that can 
reduce this computational complexity are highly valuable. 
Additionally, the excessive memory footprint of modern CNNs 
is problematic for a multitude of reasons, including high 
memory transfer latency and energy, and large on-chip 
memory requirements. This makes model compression 
methods commonplace, many of which introduce even more 
opportunities for value-aware computation engines.   
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II. BACKGROUND  

A. Neural Networks 
Machine learning (ML) is a field of artificial intelligence 

(AI) research that utilizes data-driven algorithms which 
iteratively improve their performance on some task, without 
explicit programming on how to complete that task. A popular 
machine learning technique that claims state-of-the-art results 
across a wide range of application areas is the neural network.  

Neural networks are loosely inspired by the operation of 
biological neurons in the brain, in that the artificial neurons in 
a neural network produce a positive output only if the sum of 
its weighted inputs exceed some threshold, as modelled by the 
McCulloch-Pitts neuron in Figure 1 [19]. Neural networks are 
built up of layers of artificial neurons, with each layer 
containing many neurons. Neurons in adjacent layers are 
connected to one another by synaptic weights, with the output 
of one layer becoming the input of the next layer, and so on. In 
a fully connected (FC) layer, all output activations are 
connected by synapses to every neuron of the proceeding 
layer. Other forms of inter-layer connectivity are possible. By 
building up many layers, a deep neural network is created. 
Neural network computation has two phases: training and 
inference. During training, the synaptic weights are ‘learned’ 

by a training algorithm which attempts to maximize the 
accuracy of the network in completing some task.  

 

Figure 1: The McCulloch-Pitts model of a neuron 

B. Value Sparsity in Neural Networks  
Value sparsity is a specific value property in which a 

significant proportion of values in a given tensor are equal to 
zero. Pruning is a common optimization step during neural 
network training during which a significant fraction of the 
network weights are set to zero, as in Figure 2. This results in 
a sparse neural network, as the weight tensors are sparse 
objects containing many zero-valued elements. Weight 
pruning was originally introduced by LeCun et al. in their 
Optimal Brain Damage algorithm [14] as a way of reducing 
overfitting/increasing generalization, but it has seen increased 
favour in the ML community for its secondary benefit of 
acting as a network compression scheme. Pruning has been 
studied thoroughly due to its surprising efficacy, and 
numerous hypotheses have attempted to explain why pruning 
doesn’t seem to affect model accuracy much until very high 
sparsity levels are reached [28, 29]. Other works have 
explored the trade-off between pruning, network size, and 
relative accuracy. Zhu & Gupta [10] argue that it is better in 
terms of memory footprint to train a large neural network and 
prune it, than it is to train a smaller neural network with a 

similar number of final non-zero parameters. The intuition 
behind the findings of Frankle & Carbin [28] is that there is 
exists a small ‘subnetwork’ within any large DNN that has 

been initialized in such a way that it is amenable to training to 
convergence successfully – called a ‘winning ticket’ 

subnetwork – and that is responsible for most of the accuracy 
of the network. Pruning reveals these subnetworks without 
affecting accuracy by removing redundant weights. Training a 
larger dense network increases the likelihood of there being a 
winning ticket subnetwork, thus it will always be easier to 
train a large network and prune away dense connections than 
it is to train a compact, dense network from scratch. This 
corroborates the findings of Zhu & Gupta [10], and suggests 
that weight sparsity is a value property that will likely 
continue to pervade neural networks in the future.  

Modern pruning algorithms are implemented either as a 
post-processing step after the unpruned network has 
converged (with retraining to recover any lost accuracy), or as 
a part of the training process [10, 9]. A number of heuristics 
can be used to decide which weights to eliminate, the most 
common being the magnitude of the weight’s value [10]. 

Others remove weights to which the output has the least 
sensitivity first [14, 15], however computing complex metrics 
like this is too costly for modern DNNs. In part because 
weights are randomly initialized at the start of training, the 
heuristics used in pruning result in sparsity that is relatively 
uniformly randomly distributed throughout the weight tensors 
[10]. This leads to irregularities in the network computation, 
which some works have tried to address by imposing 
constraints on how weights can be pruned, forcing them to be 
eliminated in groups [30, 31, 32]. These algorithms lead to 
structured sparsity, where either an entire contiguous group of 
weights (e.g., an entire filter channel) are zero, or none of 
them are. However, though designed to be more hardware-
friendly, in practice these structured pruning techniques are 
rarely used as they make training a network to convergence 
without accuracy loss much more difficult. Mao et al. find that 
unstructured sparsity can reach much higher sparsity levels 
whilst maintaining model accuracy when compared to pruning 
at the granularity of filter-rows, filter-channels, or entire filters 
[33, 34]. 

  

Figure 2: Example of weight pruning, which deletes 
weights using an heuristic algorithm 

Algorithm1: Purne 

1: Train and Mask ones W.shape, Prune (W, X, Y, LR, Epochs, S) 
                 2:  ← ( ) 
                 3:   do 
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                4:  

 

Algorithm 1 gives a high-level, generic description of (one 
class of) pruning algorithms which prune iteratively during 
training. The procedure will operate on the network as defined 
by its weight tensors, W, the training data inputs X and labels 
Y , the learning rate LR, the number of training epochs, and 
the target sparsity, S. Before each forward pass, a binary mask 
is applied to the weights to zero-out pruned weights. The 
weights are updated using whatever learning algorithm is 
desired (vanilla gradient descent is shown in the algorithm). 
Finally, a new mask is generated (i.e., more weights are 
pruned) as a function of the current epoch and the final target 
sparsity, as the sparsity level is gradually increased during 
training. The GenerateMask() function is one of the key 
defining factors of a pruning algorithm, and its operation is 
what differentiates different pruning approaches. A simple 
function might simply sort all elements of W by magnitude, 
and prune the smallest ) weights, meaning sparsity scales 
linearly as training progresses through epochs. 

Another form of value sparsity present in modern neural 
networks is activation sparsity, where a significant fraction of 
activation values are equal to zero. Activation sparsity 
primarily occurs due to the rectified linear unit (ReLU) 
activation function, which is applied element-wise to the 
output of a convolutional or fully connected layer of a CNN, 
and clamps all negative values to zero, whilst letting positive 
values pass through unaffected, as shown in Figure 3. 
Activation sparsity is typically between 40% − 50% per-layer 
in a modern CNN [35]. 

 

Figure 3: Activation sparsity of a 2D activation plane due 
to the ReLU element-wise non-linearity. 

C. Hardware Acceleration for Convolutional Neural 
Networks 

Convolutional neural networks have seen adoption and 

deployment across a range of industries and consumer 
applications. They are an attractive candidate workload for 
hardware acceleration as they are often employed in 

applications that where they have the following 
characteristics: 
• Widespread deployment 

• Computationally intensive 
• Latency constrained 
• Energy and/or power constrained 

As such, a large amount of research and development activity 
has taken place in the CNN accelerator space in the last few 

years. 

 
Figure 4: An abstract view of hardware architectures for CNN 

acceleration. 

The majority of these designs are inference accelerators, 
though some more recent works also target the training phase 
of CNNs. Seminal works in this space explored how best to 

exploit the structure of CNN computation and leverage the 
large amount of parallelism in the workloads efficiently [42, 
43, 44], however many more recent designs target the unique 

value properties of CNNs in order to increase the performance 
potential and efficiency of the hardware [17, 18, 35, 45, 46, 
47, 48]. Thus, most hardware in the accelerator space can be 

classified as either value-aware or value-agnostic. 
Accelerators of both types share many basic traits. The 
primary operation in a CNN is the MAC, of which there are 

potentially billions per inference – see Table 1. All CNN 
accelerators will therefore support a large amount of parallel 
multiply and accumulate throughput in hardware. Figure 4 

shows the basic structure of most modern CNN accelerators, 
the organization of which contains an array of processing 
elements to exploit the abundant data parallelism, on-chip 

buffers and scratchpads to exploit data reuse, and a high-
bandwidth interface to main memory to load inputs and 
weights without causing a bottleneck. 

 
Table 1: Image Classification CNNs 

Network  

Number of Layers MAC Operations (mils.) 

CO NV FC  CO NV FC  

AlexNet [36] 5 3 665.8 58.6 

GoogleNet [37] 57 1 1233.0 1.0 

VGG-M [38] 5 3 1141.8 85.9 

VGG-S [38] 5 3 1901.5 96.4 

VGG-19 [38] 16 3 14999.8 123.6 

MobileNet [13] 27 1 567.7 1.0 

DenseNet-121 [39] 120 1 3062.0 1.0 

DPNet-92 [40] 95 1 7384.5 2.7 

ResNet-50 [41] 53 1 3855.9 2.0 

 

Exact specification of the PEs and their specific architecture 
and organization can vary widely, and is at least partially a 
function of the desired dataflow – of which there are many 

possible. As in Figure 5, PEs may be simple MAC units, or 
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even just multipliers as is the case in some systolic array-
based designs [20], or may contain internal buffers or 

scratchpads with broadcas t/multicast connectivity from 
memory [43], or multiple multipliers with accumulation 
capability, as in coarse-grained reconfigurable array (CGRA) 

style architectures [49]. PEs may also contain additional 
functional units to apply activation functions or pooling 
operations. 

 
Figure 5: Hardware architectures for accelerating CNNs vary 
in their organization and in the complexity of their processing 

elements.  
 
Dataflow and memory hierarchy are important aspects of the 

accelerator design, as together they define the memory access 
energy associated with inference, which can be a major 
contributor to energy efficiency. Table 2 shows the relative 

energy costs of arithmetic and memory access operations. 
Nearly all recent works in this space target 16-bit or 8-bit 
fixed point arithmetic as a baseline, due to the fact that 

modern neural networks suffer little-to-no accuracy loss at this 
data width compared to their native 32-bit floating point 
format [47], whilst integer multipliers and adders are many 

times more area efficient Table 2: Relative energy cost of 
various operations in 45nm 0.9V CMOS technology [50]. 
 

Table 2 shows the relative energy costs of arithmetic and 
memory access operations. 

Bit width  Energy (pJ) Relative Cost 

32-bit  int ADD 0.1 1 

32-bit  float ADD 0.9 9 

32-bit Reg File access 1 10 

32-bit  int MULT  3.1 31 

32-bit float MULT  3.7 37 

32-bit  32KB SRAM access 5 50 

32-bit DRAM access 640 6400 

 

III. BASELINE ARCHITECTURE 

Due to its popularity, scalability, and the efficiency of its 
adder-tree based design, a DaDianNao like design is used as 
the baseline architecture on top of which significant 
modifications are made to accommodate the weight sparsity.  

DaDianNao (DaDN) is a wide vector-like machine, with 
separate, moderately sized on-chip buffers for weights and 
activations. DaDianNao is an extensible tile-based architecture, 
in which multiple tiles can be chained together to scale up the 
design. Figure 6 shows an overview of a DaDianNao tile. Each 
tile has a heavily banked weight memory (WM) which feeds k 

PEs – also called filter lanes, as each PE is assigned an entire 
filter at a time. Every tile also contains a slice of activation 
memory (AM), from which activations are broadcast to every 
PE within a tile. Each PE contains N multipliers, meaning it 
processes the inner product of N weights and N activations per 
cycle. The multipliers feed an N-input adder tree, which 
amortizes the cost of accumulation of an output activation.4.  

 

 

 

 

 

Figure 6: Baseline Architecture based on DaDianNao.  

DaDianNao uses a channel-first dataflow, in which 
activations and weights are processed in contiguous chunks of 
N values from the same X−Y and R−S dimensions, 
respectively. That is, a slice of 1×1×N weights and activations 
are processed in each PE each cycle, with the N values being 
contiguous in the channel dimension, as shown in Figure 7. If 
the number of channels in a filter is not a multiple of N, zeros 
will be inserted in the weight tensor as ‘padding’ to ensure 
values are aligned correctly, as dictated by the dataflow. 

 

 

 

 

Figure 7: Data flow used by DaDianNao 

Though DaDianNao was originally conceived as a multi-
node accelerator with enough on-chip eDRAM to store all 
weights and activations per-layer on-chip during inference, this 
design choice is inefficient and over-provisioned. Instead, we 
size the activation memory to be large enough to keep input 
and output activations on-chip at all times using double 
buffering, but size our weight memory to store only one 
working set of filters at a time, and hide off-chip latency using 
double buffering, using our previously proposed heuristics 
[55]. We refer to this modified baseline design as 
DaDianNao++. 

heuristic weight scheduling algorithm is described in 
Algorithm 2. The algorithm is shown for a single ‘warp’ of 
filters. A warp is defined as a set of K filters assigned to a K 
PEs simultaneously, before the next K filters are processed, 
i.e., PEs are synchronized on a warp boundary. Inputs to the 
algorithm include N, which is the number of multipliers per 
PE, the matrix of weights W, which is assumed to already be in 
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in-memory layout and has dimensionality R × L, where R is the 
number of ‘rows’ of weights are to be processed, and is 
equivalent to the number of cycles the filter would take to 
process on DaDianNao++, and where L is  the total number of 
multiplier lanes available in the accelerator, which for a single 
tile is equal to k × N. The interconnect is described by a list, I, 
of (lookahead, lookaside) 

Algorithm 2 Scheduling Algorithm 

1: Input 
2: W  ZR×L weight matrix in memory layout 

3: I list of interconnect connection coordinates, stored as (ahead, aside) pairs  

4: N 

5: Output 

number of multiplier lanes per PE 

6: W  ZR×L modified weight matrix 

7: WS 
 ZR×L weight select signal matrix 

8: procedure schedule (W, I, N) 

9: WS ← 0 

10: for r = 0: R − 1 do 

11: if containsNonZero (W[r,0: L − 1]) then 

12: numCandidates ← countCandidates(W, I, N, r) 

13: while containsNonZero(numCandidates) do 

14: W,WS ← promote (W, WS, I, N, r, numCandidates) 

15: numCandidates ← countCandidates(W, I, N, r) 

16: else 

17: deleteRow(W,r) 
18: deleteRow(WS,r) 
19: return W, WS 

20: procedure countCandidates(W, I, N, r) 

21: numCandidates[0,...,L − 1] ← 0 

22: for l = 0 : L − 1 do 

23: if W[r,l] == 0 then 

24: for (ahead,aside)  I do 

25: if W[r + ahead,(l + aside)%N)]!= 0 then 

26: Candidates[l] + + 

27: return numCandidates 

28: procedure promote (W, WS, I, N, r, numCandidates) 

29: Candidatesmin ← min(nonZeros(numCandidates)) 

30: for l = 0: L − 1 do 

31: if W[r,c] == 0 && Candidates[c] == Candidatesmin then 

32: for (ahead,aside)  I do 

33: if W[r + ahead, (l + aside)%N] != 0 then 

34: W[r, l] ← W[r + ahead,(l + aside)%N] 

35: W[r + ahead,(l + aside)%N] ← 0 

36: WS[l] ← getIndexOf((ahead, aside),I) 
37: Break 

38: return W,WS 

IV. METHODOLOGY AND RESULTS 

The performance of Bit-Tactical is evaluated using a custom 
cycle-accurate simulator which models the performance of the 
front-end and allows the exploration of various interconnect 

designs and scheduling algorithms. The simulator also 
provides detailed performance counters that allow analysis of 
the results. 

 
Table 3: Baseline DaDianNao++ and TCT configurations. 

 
The hardware configuration for the baseline design and TCT is 
outlined in Table 3. Area and energy measurements are 

performed post-layout using representative circuit activity. 
Layouts are generated for a TMSC 65nm technology using 
Cadence Innovus after synthesis using Synopsys Design 

Compiler. SRAMs are modeled via CACTI [58]. Off-chip 
memory energy consumption is modeled using Micron’s 

DDR4 power calculator [59] along with access counts from 

the cycle-accurate simulations. All designs operate at 1GHz, 
with pipelining of the Datapath as needed to reach this target 
frequency. Both TCT and DaDianNao++ use k = 16 PEs per 

tile, with N = 16 multipliers per PE, all operating on 16-bit 
fixed point inputs. We initially show results assuming 
sufficient off-chip bandwidth so that no off-chip stalls occur, 

but later show the effect of various main memory 
technologies. We use run-length based zero compression as in 
[18] for weights, and fine-grain per group precision as in [60] 

for activations to reduce off-chip bandwidth for all layers. 

A. Frontend Methodology 

 
Figure 8: Speedup of bit Tactical Configurations over the 

baseline design. 
 

We compare the performance of a variety of front-end designs 
against the baseline DaDianNao++ architecture across our 
benchmark suite in Figure 8. The lower portion of each 

stacked bar in the figure is the performance achieved by 
lookahead alone.  
We also explore the effect of filter shuffling on front-end 

performance, and find that this optimization can result in up to 
a 18% performance increase (Bi-LSTM) on the studied 
networks, at no extra hardware cost. Figure 9 shows the 

performance results due to filter shuffling across  networks. 
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For the best performing network, AlexNet-ES, filter shuffling 
boosts performance by nearly 10%, increasing its speedup to 

2.62×. This optimization always provides a performance 
increase, even if modest (2.2% for GoogleNet-ES). The 
speedups suggest that in most sparse network layers, sparsity 

is reasonably uniformly distributed, as there isn’t a large 

disparity between the slowest and the fastest filters to process. 
Figure 10 explores the execution time breakdown for 

representative layers of each neural network, and for the total 
network. Multiplier cycles are normalized to dense execution 
time for each network and layer, and are categorized into four 

classes: ineffectual multiplier cycles due to processing 
ineffectual weights, effectual weights that were promoted 
using lookahead or lookaside, and effectual weights that 

remained unpromoted - i.e., weights that remain in their 
original position as in the dense schedule. 

 
Figure 9: Speedup of the T8h2,5i configuration over the 

baseline, with and without filter shuffling. 
 

Related to the execution time breakdown is the amount of 

sparsity that the TCT scheduler is able to effectively remove 
from execution. Though this information is derivable from 
Figure 10, it is explicitly listed per-network in Table 4. TCT 

manages to remove approximately of the ineffectual work due 
to zero weights and padding for all of our benchmarks, leaving 
at most 35.4% of ineffectual work on the table (GoogleNet-

ES).  
 

 
 

Figure 10: Breakdown of execution time normalized to dense 
time for representative layers of each network. 

 
Network Alex

Net-

ES 

Alex

Net-

SS 

Google

Net-ES 

Google

Net-SS 

Resne

t-50-

SS 

Bi-

LST

M 

Mobile

Net 

Proportio
n of  Zeros 
Removed 

67.5% 67.4% 64.6% 70.8% 68.3% 68.3% 68.5% 

 
Figure 11 shows the relative performance using the heuristic 
scheduler outlined and a greedy algorithm. The heuristic 

scheduler never performs worse than the greedy scheduler, but 
on the hard-pruned networks (MobileNet and Bi-LSTM), the 

structure in the induced sparsity means both algorithms 
produce equivalent schedules most of the time. The low level 

of sparsity in ResNet-50-SS also offers little opportunity for 
the heuristic scheduler to excel, as the greedy algorithm 
already extracts nearly all of the potential performance from 

the network. On the sparser networks, however, the heuristic 
scheduler offers significant improvements, outperforming the 
greedy approach by up to 28% on GoogleNet-SS. On average, 

the heuristic algorithm achieves a modest 8% performance 
improvement on the networks studied. This increases to 14% 
if we consider only the networks for which the choice of 

scheduler has any impact on performance.  
 

 
Figure 11: Effect of the scheduling algorithm on the networks 

studied. 
Figure 12 shows the speedup of various TCT front-end 

designs, with varying lookahead distance and input 
multiplexer size, as sparsity is swept. All of the studied 
designs use a variant of the Trident connectivity shape. The 

T8h2,5i design is the best performing across all sparsity levels 
below 0.8, after which point the T8h3,4i design, with its 
increased lookahead distance, becomes dominant.  

 
The additional lookahead does, however, make it a more 
expensive design. Given that all but one of the networks 

studied have a sparsity level less than 0.8, this extra hardware 
cost is not justified. On the other end of the design spectrum, 
the cheaper T8h1,6i design is substantially slower across most 

sparsity levels, with the T8h2,5i design being 1.45× faster at a 
sparsity level of 0.8. 
 

Figure 13 illustrates the efficacy of the combination of the 
scheduling algorithm and the co-designed T8h2,5i 
interconnect. The greedy scheduler’s performance will depend 

on the scan order, which in this experiment is set to target 
lookaside first. This explains why it performs slightly better at 
lower levels of sparsity than the heuristic scheduler, which is 

designed to make more globally-optimal scheduling decisions 
across the search window. 
 

One key observation to make from these results is that the 
performance of the front-end is robust to changes in the 
sparsity distribution, with the range of speedups achieved by 

the T8h2,5i design never deviating from the average by more 
than 6%. Additionally, though initially an unremarkable 
observation, it is useful to note that Bit-Tactical never 

decreases performance below the baseline design – even at 0% 
sparsity, it achieves the same performance as DaDianNao++.  
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This is not the case for SCNN, which suffers more than a 20% 
slowdown over their value-agnostic baseline design on dense 

networks, and only achieves speedups when both weight and 
activation sparsity surpass 15% each. This further validates the 
design principal of the Bit-Tactical front-end, which uses 

simple hardware and in doing so avoids potential performance 
overheads. 
 

 
 
 

 
 
 

 
 
 

 
 
Figure 12: Performance of multiple interconnect patterns at 

varying sparsity levels. 
 
 

 
 
 

 
 
 

 
 

 

 
 
Figure 13: Performance variation of the Th2,5i design with 

different scheduling approaches as sparsity level changes, and 
compared against an L-shaped interconnect. 

V. CONCLUSION  

The large computational complexity and memory 
requirements of modern deep neural networks motivates the 
need for algorithmic techniques to reduce both of these 

metrics. One prevalent technique for doing so is weight 
pruning, which sets a large fraction of network weights to 
zero, with the goal of reducing memory footprint and traffic of 

DNN models, whilst giving a large amount of potential for 
speedup during inference. This work has motivated the need 
for more efficient approaches to leveraging weight sparsity in 

DNN inference. The Bit-Tactical front-end architecture is 
presented, and a thorough design space exploration and 
optimizations have been detailed. By designing and 

optimizing a lightweight front-end interconnect, we show how 
to judiciously leverage weight sparsity in hardware. Novel 
algorithmic optimizations which can improve the performance 

and reduce synchronization overheads are shown, including a 
scheduling algorithm which increases the performance of the 
front-end design by up to 28%. Additionally, we present 

further scheduling and hardware improvements which increase 
performance and decrease memory overheads by up to an 

additional 18%, and by up to 82%, respectively. Combining 
both the front-end hardware with the scheduling algorithm and 
optimizations results in a front-end accelerator design which 

can achieve up to a 2.62 times speedup over a similarly 
provisioned value-agnostic baseline design, with just an 8.2% 
logic area overhead. In addition, despite targeting sparse 

neural networks, the design presented suffers no performance 
degradation for dense networks (unlike other sparse 
accelerators, which suffer from decreased performance on 

dense networks), and may even offer slight performance 
improvements due to zero-values from weight padding. 
Equivalently, Bit-Tactical’s performance is robust across all 

sparsity levels, and so encourages weight pruning wherever 
possible, even if very high sparsity levels are not attainable. In 
summary, Bit-Tactical’s novel, pragmatic approach to 

exploiting weight sparsity offers a compelling trade-off 
between hardware complexity and attainable performance that 
we hope motivates similar future efforts in value-aware 

acceleration for ML and other domains.  
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