OPEN ACCESS

Highly Sensitive and Selective $\rm H_2S$ Gas Sensor Fabricated with $\beta\text{-}\,{\rm Ga_2O_3/rGO}$

To cite this article: V. Balasubramani et al 2020 ECS J. Solid State Sci. Technol. 9 055009

View the article online for updates and enhancements.

Highly Sensitive and Selective H_2S Gas Sensor Fabricated with β -Ga₂O₃/rGO

V. Balasubramani,¹ A. Nowshath Ahamed,² S. Chandraleka,³ K. Krishna Kumar,⁴ M. R. Kuppusamy,³ and T. M. Sridhar^{1,z}

¹Department of Analytical Chemistry, University of Madras, Chennai-600025, India
 ²Nanotechnology Division, Department of ECE, Periyar Maniammai Institute of Science and Technology, Thanjavur, India
 ³Department of Chemistry, RV Government Arts College, Chengalpet, TN 603001, India
 ⁴Central Instrumentation Laboratory (CIL), Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India

Hydrogen Sulfide (H₂S) is a common toxic gas released into the environment mainly during the energy production process from coal and crude oil. H₂S causes several neurological damages to the human body which could also be fatal and thus needs to be monitored. Here, we report the incorporation of reduced graphene oxide (rGO) on β -Ga₂O₃ (β -Ga₂O₃/rGO) sensing layers followed by its deposition on alumina substrate by drop casting method for H₂S gas sensing application. The structure and phase purity of the synthesized β -Ga₂O₃, GO and β -Ga₂O₃/rGO samples were characterized using X-ray diffraction (XRD). The gas sensing properties of the coated sensing layers of β -Ga₂O₃ and β -Ga₂O₃/rGO were analyzed by Electrochemical Impedance Spectroscopy (EIS) at 100 °C. The gas sensing results revealed superior sensitivity and selectivity of β -Ga₂O₃/rGO towards H₂S detection when compared with different interfering gases (NH₃, SO₂, CO₂ and CO). Nyquist plots and equivalent circuit fitting values clearly indicate that the grain boundary resistance was highly affected in H₂S gas environment (3 ppm) compared to other interfering gases. Based on the findings the gas sensing mechanism is proposed.

© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/ 2162-8777/ab9a18]

Manuscript submitted April 9, 2020; revised manuscript received May 14, 2020. Published June 16, 2020. This paper is part of the JSS Focus Issue on Gallium Oxide Based Materials and Devices II.

Hydrogen Sulfide (H_2S) is a toxic gas, released into environment mainly during the processing of coal, crude oil, natural gas and sewage pits. It is also one of the processing gases in a variety of industrial sectors.¹ The sudden inhalation of H_2S damages the nervous systems in humans that could lead to death within a few minutes of exposure. This underlines the need to design sensors that could monitor the level of H_2S continuously in the environment along with other gases.^{2,3} Semiconducting metal oxide based materials have been commonly used for gas sensing application due to their significant physical and chemical properties, but their lack of selectivity and poor response makes it difficult to employ them for real time applications.⁴

Gallium oxide (Ga₂O₃) is a wide band gap semiconducting metal oxide. Both pristine and doped Ga₂O₃ are extensively utilized for the development of conducting electrodes for various applications. Ga₂O₃ processes an admirable stable structural strength and is stable at higher temperatures and hence severs as an ideal candidate for development of gas sensors in callous environments. Further, doping with additives and using it as a composite increases the conducting property and gas sensing capability of Ga₂O₃.^{5,6}

Reduced graphene oxide (rGO) magnetizes a huge deal of research activity owing to its distinctive physicochemical properties such as high thermal and electrical conductivity, large surface area and high mechanical strength. Combining rGO with the semiconducting metal oxides increases the efficiency of certain functions such as catalytic activity, electrochemical activity and mechanical strength to a certain extent. Graphene based materials can be used to increase the adsorption of gas species on the sensing film to increase the sensing response.^{7–9}

Electrochemical impedance spectroscopy (EIS) is unique technique which can be used to measure the gas sensing applications along with prediction of the mechanism.¹⁰ The RC circuits provide information about grain boundary, grain bulk and electrode contact resistance. These properties have more advantages when compared to other gas sensing techniques like Optical, Quartz Crystal Microbalance (QCM), Potentiometric and Resistance based gas sensors. β -Ga₂O₃/rGO based H₂S gas sensor is measured by EIS which is rarely reported in the literature shown in (Table II).^{11,12}

In this present study, β -Ga₂O₃/rGO was used as an efficient gas sensing material for the detection of H₂S at a temperature of 100 °C and compared with other gases namely NH₃, SO₂, CO₂, and CO. The β -Ga₂O₃/rGO demonstrates high sensitivity, and selectivity towards the detection of H₂S (3 ppm) and its sensing mechanism for H₂S gas detection has been discussed in this paper.

Materials and Methods

Materials.—Gallium nitrate $Ga(NO_3)_3$, Ammonium hydroxide (NH₄OH), Graphite powder, Sodium nitrate (NaNO₃), Potassium permanganate (KMnO₄), Hydrochloric acid (HCl), Sulfuric acid (H₂SO₄), and Hydrogen peroxide (H₂O₂), were purchased from Sigma-Aldrich and SRL (AR grade).

Synthesis of β -Ga₂O₃ and GO.—0.1 M of Gallium (III) nitrate was dissolved in 50 ml of deionized (DI) water and stirred for 40 min at room temperature. Ammonium hydroxide was added drop wise to the resultant solution to increase the pH upto 11. The resulting solution was transferred to RB flask with condenser and stirred for 8 h at 65 °C. The contents were then transferred to an autoclave, sealed and kept in furnace at 180 °C for 12 h in a N₂ atmosphere. After cooling to room temperature, the precipitate were collected and washed several times with DI water and ethanol then dried at 80 °C for overnight. The precipitate (GaOOH) turned into β -Ga₂O₃ after an annealing process at 1000 °C for 5 h in a N₂ atmosphere. Graphene oxide (GO) was synthesized using modified Hummer's method.²¹

Preparation of β -Ga₂O₃/rGO composite.—The β -Ga₂O₃/rGO composite mixture was prepared by mixing aqueous solutions of β -Ga₂O₃ and rGO. Initially, 0.1 g of β -Ga₂O₃ and 0.01 g of GO were dispersed in 20 ml of DI water separately using ultrasonication, then GO was added drop wise to the dispersed β -Ga₂O₃ solution under stirring at room temperature. The resulting mixture was kept under stirring for 4 h and transferred into an autoclave that was kept in furnace at 150 °C for 4 h and then mixture was washed and dried.

Sensor fabrication.—Alumina substrates were cleaned using ethanol and then 5% (w w⁻¹) of β -Ga₂O₃/rGO were mixed with 5% (v w⁻¹) α -terpineol which was used as a binder to form as paste. This mixture was deposited on the surface of alumina substrate using drop casting method and finally the coated substrates were dried at 150 °C for 2 h. The electrode contacts were made on substrate using silver wire and these electrodes were used for the gas sensing application. A known concentration of the gas was injected into the chamber (volume 500 cm³) using micro syringe from standard gas canisters. The change of impedance was monitored in the frequency range from 1 MHz to 1 Hz using impedance analyzer with multichannel electrochemical workstation (PARSTAT MC 2000A).

Results and Discussion

The XRD patterns recorded for (a) β -Ga₂O₃, (b) β -Ga₂O₃/rGO and (c) GO are given in Fig. 1, which provides information about the structure and phase purity of the material. The XRD pattern obtained in Figs. 1a and 1b confirms that β -Ga₂O₃ and β -Ga₂O₃/rGO are present in monoclinic phase and this matches with standard JCPDS No. 43-1012. In Fig. 1b (002) peak for rGO was observed along with the intense peaks of β -Ga₂O₃. This is owing to the reducing of GO through the synthesis of rGO incorporated β -Ga₂O₃. Figure 1c confirms the presence of GO (001) as synthesized by modified Hummer's method.¹⁸ Samples were characterized using X-ay diffraction measurement (Smart Lab X-ray Diffractometer, Rigaku Corporation, Japan).

The Nyquist Impedance plots obtained for Ga_2O_3/rGO sensing layer on exposure to air and different gases (a) NH₃, (b) SO₂, (c) CO₂, (d) CO and (e) H₂S with constant gas concentration (3 ppm) at 100 °C is given in Fig. 2. It plots indicate that the intensity and diameter of the semicircle decreased with different gases. The impedance graphs are fitted with simulated values and the equivalent circuit is shown in Fig. 2f.

Table I summarizes the equivalent circuit fitted values which indicate that R_1 (grain bulk resistance) values decrease for different gases at concentration in 3 ppm range. The R_2 (grain boundary resistance) values decreased significantly than R_1 and this signifies that the grain boundary resistance plays a major role in gas sensing. The R_2 is significantly affected by H_2S gas concentration (3 ppm) compared with other gases at 100 °C. No significant changes in fitted values of the CPE values (Q_2) were observed.

Figure 3 shows the proposed gas sensing mechanism based on the experimental values obtained from the interaction between sensing film and gas molecules. β -Ga₂O₃/rGO has major contribution compared to pure β -Ga₂O₃, since the presence of β -Ga₂O₃/rGO ensures the admirable adsorption of H₂S gas molecules. The rGO plays a major role on the excellent electron transfer property which increases the adsorption of H₂S gas molecules and response of sensing materials.

In air, adsorbed oxygen molecules capture free electrons from the conduction band of β -Ga₂O₃/rGO, resulting in the formation of a depletion layer which is responsible for the sensing film resistance. In H₂S gas environment, the adsorbed oxygen ions release the earlier trapped electrons which return to the β -Ga₂O₃/rGO conduction band, resulting in an increase in electron concentration. This results in a decrease in the potential barrier height and also an increase in conductance. These changes further confirm that H₂S gas significantly affects the grain boundary resistance.^{21,22} The following chemical reactions given in Eq. 1 shows the H₂S gas sensing reaction mechanism.

$$H_2S + 3O^{2-} \rightarrow H_2O + SO_2 + 6e^-$$
 [1]

The selectivity of β -Ga₂O₃ and β -Ga₂O₃/rGO coated substrate upon exposure to different gases (NH₃, SO₂, CO₂, CO, and H₂S) with a concentration of 3 ppm at 100 °C, as shown in Fig. 4. β -Ga₂O₃/rGO sensor has superior response (R_S 84.1013) towards H₂S when compared to other gases which confirms the superior selectivity of β -Ga₂O₃/rGO sensor towards H₂S detection compared with β -Ga₂O₃. This gas sensing response (Rs) is calculated from impedance data using the following Eq. 2. The comparison of gas sensing performance on β -Ga₂O₃ based gas sensors is shown in Table II.

$$\operatorname{Rs} = \frac{|Z| \ a - |Z| \ g}{|Z| \ a} \times 100$$
[2]

|Z| a – Total impedance of Air

|Z| g – Total impedance of Gas

Conclusion

GO, β -Ga₂O₃, and β -Ga₂O₃/rGO were successfully synthesized using modified Hummer's method and hydrothermal method respectively. The XRD patterns of β -Ga₂O₃ and β -Ga₂O₃/rGO were indexed on the basis of monoclinic phase and presence of rGO and GO were confirmed. The gas sensor was fabricated after coating β -Ga₂O₃/rGO on alumina substrates and it was exposed to different gases (3 ppm). Based on the response, it was found that the sensing electrode was highly selective towards H₂S when compared with other gases (NH₃, SO₂, CO₂, and CO). Nyquist impedance and equivalent circuit values further confirms the sensitivity. The grain boundary resistance was drastically affected in H₂S environment and potential barrier height was decreased when conductivity of the sensor increased. Based on these results it can conclude that β -Ga₂O₃/rGO can act as a stable H₂S gas sensor at 100 °C.

Figure 1. XRD patterns of (a) β -Ga₂O₃, (b) β -Ga₂O₃/rGO and (c) GO.

Figure 2. Nyquist Impedance shows β -Ga₂O₃/rGO exposed to air and different gases (a) NH₃, (b) SO₂, (c) CO₂, (d) CO, (e) H₂S with constant gas concentration (3 ppm) at 100 °C and (f) equivalent circuit.

Table I. β -Ga₂O₃/rGO gas sensor equivalent circuit fitted values for various gases (3 ppm) at 100 °C.

Elements	Air	NH ₃	SO_2	CO_2	СО	H_2S
$R_1 \text{ Ohm} \\ Q_2 e^{-12} \text{ F.s}^{(a-1)} \\ R_2 \text{ Ohm}^* e^6$	1441	1387	1363	1348	1320	1293
	13.79	13.37	13.12	13.06	12.85	12.17
	3.938	2.991	2.695	2.316	1.908	1.128

Acknowledgments

This work was financially supported UGC SAP DRS-I (Ref. No. F.540/16/DRS-I/2016(SAP-I)), Department of Analytical Chemistry, GNR-Central Instrumentation Center (DST-PURSE). One of the authors V. Balasubramani is supported by Council of Scientific & Industrial Research with Senior Research Fellowship (Ref. No. 09/115/0791/2019-EMR-I), New Delhi, India.

ORCID

T. M. Sridhar () https://orcid.org/0000-0002-9492-8322

Figure 3. Schematic representation for gas sensing mechanism.

Figure 4. Selectivity of β-Ga₂O₃ and β-Ga₂O₃/rGO coated substrate upon exposure among different gases at 100 °C.

Table II.	The	comparison	of g	as sensing	performance	of	β-Ga ₂ O ₃	based	gas	sensors.
-----------	-----	------------	------	------------	-------------	----	----------------------------------	-------	-----	----------

Sensing Material	Analyte Gases	Temperature (°C)	Concentration (ppm)	References
Ga ₂ O ₃ /WO ₃	C ₂ H ₅ OH	200	200	13
Ga ₂ O ₃ /ZnO	NO_2	300	10-200	14
Ga ₂ O ₃ -WO ₃	C ₂ H ₅ OH	275	14–100	15
Ga ₂ O ₃	H ₂	400	100	16
GaOOH and β -Ga ₂ O ₃	CO_2	Room Temperature	2000-10000	17
Ga ₂ O ₃	O ₂ and CO ₂	100-500	200	18
Ga ₂ O ₃	СО	150	10-200	19
β -Ga ₂ O ₃	СО	100	1–5	20
β -Ga ₂ O ₃ /rGO	H_2S	100	3	Present Work

References

- 1. E. F. Annanouch, Z. Haddi, S. Vallejos, P. Umek, P. Guttmann, C. Bittencourt, and E. Llobet, ACS Appl. Mater. Interfaces, 7, 6842 (2015).
- 2. S. Ghosh, D. Adak, R. Bhattacharyya, and N. Mukherjee, ACS Sens., 2, 1831 (2017).
- 3. E. Espid and F. Taghipour, ECS J. Solid State Sci. Technol., 7, Q3089 (2018).
- 4. S. K. Pandey, K. H. Kim, and K. T. Tang, Trends Anal. Chem, 32, 87 (2012).
- 5. S. Jang, S. Jung, J. Kim, F. Ren, S. J. Pearton, and K. H. Baik, ECS J. Solid State *Sci. Technol.*, 7, Q3180 (2018).
- 6. A. Afzal, Journal of Materiomics, 5, 542e557 (2019).
- 7. Z. Ye, Y. Chen, B. Liu, Y. Su, Z. Chen, H. Tai, and Y. Jiang, ECS J. Solid State Sci. Technol., 7, Q3148 (2018).
- 8. M. Coroş, S. Pruneanu, and R. I. Stefan-van Staden, J. Electrochem. Soc., 167, 037528 (2019).
- 9. S. G. Chatterjee, Somenath Chatterjee, K. Ajoy Ray, and K. Amit, and Chakrabortya, Sensor Actuat B-Chem., 221, 1170 (2015).
- 10. V. Balasubramani, S. Chandraleka, T. S. Rao, R. Sasikumar, M. R. Kuppusamy, and T. M. Sridhar, J. Electrochem. Soc., 167, 037572 (2020).

- 11. N. H. Al-Hardan, A. A. Aziz, M. J. Abdullah, and N. M. Ahmed, ECS J. Solid State Sci. Technol., 7, P487 (2018).
- 12. S. Suresh Kumar, B. Venkatachalapathy, L. Sujatha, T. Subba Rao, and T. M. Sridhar, Sensor Letters, 14, 949 (2016).
- 13. S. Park, S. Kim, G. J. Sun, and C. Lee, Thin Solid Films, 591, 341 (2015).
- 14. C. Jin, S. Park, H. Kim, and C. Lee, Sensor Actuat B-Chem., 161, 223 (2012).
- 15. Z. Wei, M. K. Akbari, Z. Hai, R. K. Ramachandran, C. Detavernier, F. Verpoort, E. Kats, H. Xu, J. Hu, and S. Zhuiykov, *Sensor Actuat B-Chem.*, 287, 147 (2019).
- 16. S. Nakagomi, T. Sai, and Y. Kokubun, *Sensor Actual B-Chem.*, **187**, 413 (2013).
- R. Pilliadugula and N. G. Krishnan, *Mater. Res. Express*, 6, 025027 (2018).
 Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and Y. Li, *Sensor Actual B*-Chem., 129, 666 (2008).
- 19. S. H. Park, S. H. Kim, S. Y. Park, and C. Lee, RSC Adv., 4, 63402 (2014).
- 20. K. Girija, S. Thirumalairajan, V. R. Mastelaro, and D. Mangalaraj, Anal. Methods,
- 8, 3224 (2016). 21. V. Balasubramani, S. Sureshkumar, T. S. Rao, and T. M. Sridhar, ACS Omega, 4,
- 9976 (2019). 22. V. Balasubramani, S. Sureshkumar, T. Subbarao, T. M. Sridhar, and R. Sasikumar, Sensor Letters, 17, 237 (2019).