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In the recent decade, thermal drilling is becoming popular in aerospace and automobile industries
because of its unique advantages over conventional twist drilling process. Surface finish of the thermally
drilled hole along with its bushing, is a major concern in all crucial applications and it is worthy of inves-
tigation. In the present study, the surface roughness of the thermally drilled hole on galvanized steel is
predicted and then optimization is carried out, employing an integrated adaptive network-based fuzzy
inference system (ANFIS) and genetic algorithm (GA) approach. Experimentation is based on Taguchi
L27 orthogonal array and significant parameters such as spindle speed, angle of tool and workpiece thick-
ness are varied in different levels keeping feed rate as constant. Using the experimental results, an ANFIS
model is developed for prediction of surface roughness. An objective function is then formulated on min-
imization of surface roughness with the help of predicted results of the ANFIS model. Then this objective
function was imported into GA toolbox of MATLAB software to optimum values of surface roughness of
thermally drilled hole. High degree of closeness is observed between the experimental and predicted
results. It is also found that the spindle speed and angle of tool play a significant role on the surface
roughness of drilled holes in galvanized steel.
� 2019 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Thermal drilling is a non-conventional hole making process in
which frictional heat produced between the drill and workpiece
is utilized to produce a hole in the sheet metal or thin-walled com-
ponent at a single processing step and it eventually forms a bush or
sleeve-like shape at the backside of the workpiece without gener-
ating chip material [1]. The portion of the bushing can be used for
forming threads and offers secure support to join the sheet metal
components [2]. The length of the bushing is approximately 2 to
3 times the original sheet thickness [3]. This process is also named
the friction drilling [4], flow drilling [5], and friction stir drilling [6].

The difficulties in the traditional drilling process such as the
production of more amount of unwanted chip, adhesion of hot chip
with the twist drill and the possibility of making threads only on
the workpiece with considerable thickness [7]. Besides, joining of
any two sheet metals by traditional approach needs some method-
ologies such as inserting of threaded rivets or welding of a nut at
the back of sheet metal. The discrepancy in the strength of such
joints leads to difficulty in handling of heavy loads. Above men-
tioned problems could be rectified by the implementation of ther-
mal drilling process for drilling of sheet metal and it has
remarkable applications in the manufacturing industries.

The thermal drilling process is completed with the subsequent
stages. In the first stage, the drilling tooltip makes in contact with
the surface of the workpiece and accordingly, it starts to pierces
the workpiece. In the second stage, due to the frictional contact
at the interface, a high temperature is produced which leads to
achieve a smooth piercing. Then in the third stage, softening of
workpiece takes place and then drilling tool pierces downward to
form the bush like shape which surrounds the drilled hole. At the
final stage, the drilling tool moves upward and attains the starting
position.

Some investigators have reported the experimental and numer-
ical simulation of thermal drilling process which is discussed
below.

Miller et al. [8] proposed an investigation of tool wear in the
thermal drilling of 1.5 mm thickness AISI 1015 carbon steel. It
was found that the characteristic of tool wear by weight loss mea-
surement and also changes in its shape were measured by coordi-
nate measuring machine. Results were confirmed that the carbide
and GA
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thermal drill was durable with minimum tool wear even after
11,000 holes and also by the microstructural investigation severe
abrasive grooves were noticed on the tip of the drill.

Ozler et al. [9] studied the thermal drilling on square shaped
cross-sectional AISI 1010 steel tube with a thickness of 2 mm by
using a tungsten carbide tool. They have examined the responses
such as washer geometry, petal geometry and bushing length
under the different parametric settings. It was reported that at a
high spindle speed, the improvement of bushing length was
noticed but at a high feed rate, the distortion of bushing length
has occurred.

Miller et al. [10] investigated the thermal drilling experiments
on AISI 1020 steel sheet and finite element simulation of the pro-
cess using ANSYS 7.0 software under the processing conditions of
constant feed rate and spindle speed of the thermal drill. Also,
the mathematical models for torque and axial force were occurred
based on the criteria of surface contact in between the workpiece
and drill. It was reported that the good relationship is exhibited
between the results of experimental and simulation.

Bilgin et al. [11] developed a 3D numerical model for thermal
drilling on austenitic stainless steel and computed the torque
and axial force occurred. DEFORM-3D software tool was used for
finite element analysis of this process. It has been reported that
the values of torque and axial force decreased and the temperature
of workpiece increased with an increase in spindle speed.

Some optimization methods have been proposed by investiga-
tors to optimize the process parameters in the thermal drilling pro-
cess. Table 1 lists the optimization of thermal drilling process using
different methods. Pantawane et al. [12] explored that the applica-
tion of tungsten carbide tool on AISI 1015 steel and examined the
effects of process parameters such as feed rate, workpiece thick-
ness to tool diameter ratio, and spindle speed on the response fac-
tors of surface roughness, axial force, and torque. Optimal process
parameters were obtained by Taguchi method and significance of
each parameter was analyzed by Analysis of Variance (ANOVA)
method.

Ku et al. [13] optimized that the thermal drilling process param-
eter using the Taguchi method, during drilling of 2 mm thickness
SUS 304 stainless steel. It was studied that the effect of process
Table 1
Comprehensive look of previous works in optimization.

Previous works Material used Methodology used for
optimization

Parameters measur

Pantawane et al. [12] AISI 1015
steel

Taguchi method surface roughness,
torque

Ku et al. [13] SUS 304
stainless steel

Taguchi method Surface roughness,
length

Chow et al. [14] AISI 304
stainless steel

Taguchi method Surface roughness

Krishna et al. [15] AA 6351 Taguchi method Axial force, torque

Somasundaram et al. [16] Aluminium
metal matrix
composite

Response surface
methodology

Roundness error

El-Bahloul et al. [17] AISI 304
stainless steel

Taguchi Method and
Fuzzy Logic

Hole diameter erro
error, axial force, ra
and bushing length

Hynes et al. [19] Galvanized
steel

Artificial Neural
network and simulated
annealing algorithm

Bushing length

Hynes et al. [23] Galvanized
steel

Artificial Neural
network and genetic
algorithm

Bushing length

Bustillo et al. [44] AISI 1045
steel and Al
5754

Artificial intelligence
techniques

Axial force and torq
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parameters of thermal drilling on the output characteristics such
as surface roughness and bushing length. ANOVA was used to
examine the significance of spindle speed, friction contact area
ratio, feed rate, and friction angle on the responses considered
for this work. They reported that the spindle speed and friction
angle were the important parameters which affect the roughness.
Friction contact area ratio was identified as an only significant fac-
tor which affects the bushing length.

Chow et al. [14] studied that the behaviour of sintered carbide
thermal drill for drilling of AISI 304 steel and investigation was
conducted based on Taguchi L18 orthogonal array. Surface rough-
ness for all thermal drilled holes was measured and studied the
optimal conditions of input process parameters such as drilling
speed, friction contact area ratio, friction angle and feed rate to
achieve least surface roughness. Microstructure investigation was
employed to demonstrate the surface finishing occurred during
the process. Also, the micro-hardness test was revealed that the
higher hardness with fine grain structure was found in the sur-
rounding area of the drilled hole.

Krishna et al. [15] conducted the thermal drilling experiments
based on Taguchi L8 orthogonal array on AA 6351 sheet with
1 mm thickness using high-speed steel tool. They have examined
the effect of spindle speed, conical angle and feed rate on the out-
puts of thermal drilling such as axial force and torque. The results
of this experiment demonstrated that the thermal drilling at low
and medium spindle speed, a high polished surface was found.
However, at high spindle speed, discolour surface was observed
in the drilled hole.

Somasundaram et al. [16] fabricated the aluminium matrix
composite sheets using stir casting process and then it was thermal
drilled using high speed steel. In this study, the roundness errors of
thermal drilled holes were measured under the different condi-
tions of process parameters such as spindle speed, workpiece
thickness, feed rate, and weight percentage of reinforcement parti-
cles. They also created a regression model equation for roundness
error by using response surface methodology. This study revealed
that the roundness error decreased with an increase in the percent-
age of reinforcement in aluminium matrix composites. However, it
was increased with increasing of remaining process parameters.
ed Inferences

axial force, Surface roughness improves when the spindle speed increases, but
the axial force and torque decreases

bushing Friction angle and spindle speed were the significant parameters
that affect surface roughness while friction contact area ratio was
the only significant parameter for bushing length
Higher feed rate produced a poor surface finish

At high spindle speed, discolour surface was detected in the drilled
hole.
Roundness error decreased with an increase in the percentage of
reinforcement in aluminium matrix composites

r, roundness
dial force,

Spindle speed and workpiece thickness are highly influenced the
responses characteristics.

Significance of workpiece thickness is very high for getting higher
bushing length.

Luders bands were formed inside the bushing length

ue When the rotational speed is increased, the thrust forces and the
torque decrease.
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El-Bahloul et al. [17] utilized the Taguchi method and fuzzy
logic approach for the optimization of thermal drilling process in
AISI 304 stainless steel. They obtained the optimal processing con-
dition by the developed approach. Also, this study confirms that
this approach is very simple and competent for multi-objective
optimization in this process.

The adaptive neuro fuzzy inference system (ANFIS) is an attrac-
tive and powerful soft computing approach which combines two
well-established machine learning techniques such as an artificial
neural network (ANN) and fuzzy logic theory [18]. The ANFIS
approach has the ability to learn from training data just as an
ANN and then the solutions mapped out onto a fuzzy inference sys-
tem (FIS) [19]. Therefore, the hidden layers are determined exactly
by a FIS in the network of ANFIS. This eliminates the renowned
challenge in the ANN model of determining the hidden layer and
together improving its capability of prediction [20]. For that rea-
son, ANFIS is considered since it does not need a complex mathe-
matical model, it is a quick and adaptive approach for developing
the prediction model of surface roughness. Previously ANFIS
approach has applied to various manufacturing applications such
as modeling of surface roughness and cutting zone temperature
in dry turning processes [21], modeling of surface roughness in ball
end milling process [22].

Genetic algorithm (GA) is a search method used in computing to
determine exact or approximate solutions to the problem of opti-
mization [23]. The advantages of GA method are that it has the
ability to build explicit models for complex systems and adapt to
non-linear equations based on only the data [24]. This model can
then be used offline or can be integrated with system for real-
time monitoring of system [25,26]. The hybrid approach of GA uti-
lized with ANFIS prolongs its capability of prediction. The proposed
approach of ANFIS with GA was already used by the investigators
for other applications. Abhishek et al [27] proposed a hybrid
technique of ANFIS-GA for predicting axial force and surface rough-
ness in the conventional drilling of glass reinforced polymer com-
posite. The input process parameters used for that developed
model were spindle speed, workpiece thickness, drill bit diameter
and feed rate which predicted the axial force and surface rough-
ness. Admuthe et al. [28] used this hybrid approach of ANFIS-GA
to model and optimize the spinning process parameters in the tex-
tile industry. The combined artificial intelligence (AI) techniques
such as fuzzy logic and genetic algorithms [29], neural networks
and genetic algorithms [30] and fuzzy logic and neural networks
[31] are used for prediction and optimization of different problems
process parameters. The proposed approach has various advan-
tages such as an ability to capture the nonlinear structure of a pro-
cess, adaptation ability, fast learning capacity and accurate
prediction. Therefore, the hybrid model of ANFIS-GA typically
show better performances than the individual technique of AI
and display faster adaptation of the structure to the problem.
Therefore, the combined ANFIS-GA was utilized in this research
work.

The aim of the present work is to examine on a strategy for opti-
mizing machining parameters in the thermal drilling process and
the majority of researchers focused on optimization techniques
such as Taguchi method, response surface methodology and fuzzy
logic technique only. In this study, the combined method of ANFIS
and GA has been proposed to optimize the surface roughness of the
thermal drilled holes based on the different variables such as spin-
dle speed, tool angle and workpiece thickness. Considering the
variables on the surface roughness and finding the optimum state
of these variables by the combination of ANFIS and GA for success-
ful thermal drilling in the galvanized steel sheet metal has not been
studied yet. To get good surface quality, a well-established predic-
tive model has been required for the manufacturing industry.
Therefore, in this present work, a combined ANFIS–GA soft com-
Please cite this article as: R. Kumar and N. R. J. Hynes, Prediction and optimizat
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puting technique is established to assess the possibility of predic-
tion and optimization of the surface roughness.
2. Theoretical foundation of surface roughness

After the drilling process, the topography structure of work-
piece material is altered at the micro stage. With the purpose of
characterizing the parameter of surface roughness in machining
areas; the different measures are normally available such as aver-
age, root-mean-square and peak-to-valley. However, the most gen-
erally used method is the average surface roughness (S) [22]. Fig. 1
shows the general pattern of surface roughness. The parameters
such as Sl, Su, and St represent the lower deviation of surface
roughness, upper deviation of surface roughness, and total surface
roughness.

In any machined part, their surface represents a complex shape
made of a series of peaks and troughs of varying heights, depths,
and spacing. Surface roughness is defined as the shorter frequency
of real surfaces relative to the troughs. The differences in appear-
ance in a product’s exterior cover, a vehicle’s dashboard or a
machined panel, whether something is shiny and smooth or rough,
are due to the difference in surface roughness. Appearance and tex-
ture can influence a product’s added value such as class and cus-
tomer satisfaction. If a part makes contact with something, it’s
surface roughness affects the amount of wear or the ability to form
a seal and the rate of corrosion as well. It has therefore been
required in recent years to quantify the asperity of a surface.

Stylus type SJ-210 Mitutoyo instrument is used to measure the
surface roughness inside the bushing of thermal-drilled galvanized
steel holes. Before that, the specimen is positioned in the fixture.
The stylus is allowed to move on a straight line of sampling length
2 mm along the axis of the hole. Surface roughness is calculated as
the Roughness Average of a surface measured microscopic peaks
and valleys. The average surface roughness is expressed in Eq. (1)
[22]

S ¼ 1=L
Z L

0
Y xð Þdxj j ð1Þ

where S is the average of peak heights and valleys calculated arith-
metically, measured with the sampling length of 2 mm and L repre-
sents sampling length.
3. Experimentation

Thermal drilling process conducted on DP 600 grade type galva-
nized steel material using developed drilling machine along with
0.1–11 kW 3 Phase Variable Frequency Drive. Thermal drilling
setup is done by retrofitting the existing drilling setup. The motor
power is altered as it requires huge power as compared with the
existing drilling process. Since the thermal drilling is a thermo-
mechanical process which initially involves an axial force and later
the heat generated using the friction is utilized to soften the work-
piece to be drilled. The motor of 1.5 HP is fitted into the drilling set
up. Belt with the specification of A 1102 V-belt is utilized to trans-
mit the power from the motor shaft to drill assembly. Table 2
shows the three levels of process parameters for experimentation.
Spindle speed (N) is varied from 1600 to 2400 rpm, angle of tool is
varied from 30 to 45 degree and workpiece thickness is varied from
1 to 2 mm. The feed rate is kept constant at 100 mm/min. Galva-
nized steel is chosen as workpiece material with the dimension
of 150 � 100 mm and thickness of 1, 1.5, and 2 mm. In this inves-
tigation, the Taguchi orthogonal array adopted is L27 for three
parameter three level conditions and measure output values are
shown in Table 3.
ion of surface roughness in thermal drilling using integrated ANFIS and GA
://doi.org/10.1016/j.jestch.2019.04.011

https://doi.org/10.1016/j.jestch.2019.04.011


Fig. 1. General pattern of surface roughness [32].

Table 2
Thermal drilling parameters and their levels.

Factors Symbol Levels

�1 0 +1

Spindle speed (rpm) N 1600 2000 2400
Angle of tool (degree) A 30 37.5 45
Workpiece thickness (mm) H 1 1.5 2

Table 3
Taguchi L27 Orthogonal Array and measured responses.

Run N A H Surface roughness (mm)

1 �1 �1 �1 2.529
2 �1 �1 0 2.613
3 �1 �1 1 2.686
4 �1 0 �1 2.789
5 �1 0 0 2.863
6 �1 0 1 2.951
7 �1 1 �1 3.029
8 �1 1 0 3.143
9 �1 1 1 3.197
10 0 �1 �1 1.998
11 0 �1 0 2.093
12 0 �1 1 2.106
13 0 0 �1 2.152
14 0 0 0 2.224
15 0 0 1 2.258
16 0 1 �1 2.324
17 0 1 0 2.478
18 0 1 1 2.433
19 1 �1 �1 1.052
20 1 �1 0 1.085
21 1 �1 1 1.156
22 1 0 �1 1.211
23 1 0 0 1.336
24 1 0 1 1.399
25 1 1 �1 1.421
26 1 1 0 1.495
27 1 1 1 1.524
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Fig. 2(a) & (b) shows the experimental setup arrangement and
samples produced by the thermal drilling process respectively.
The average surface roughness (S) for each drilled holes are mea-
sured using Mitutoyo SJ-210 Portable Surface Roughness Tester.
In this study, the influences of controlled drilling process parame-
ters such as spindle speed, angle of tool and workpiece thickness
on surface roughness are studied. Totally, 27 datasets were
employed based on experimental design. Eighteen datasets of
Please cite this article as: R. Kumar and N. R. J. Hynes, Prediction and optimizat
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experimentation were selected randomly [33] entitled training
data (Table 4), for the purposes of the training process of ANFIS
model, while the remaining nine datasets, named testing data
(Table 5) were assigned to the trained ANFIS model in order to ver-
ify the accuracy of prediction of the system.
4. Methodology

4.1. Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS has been effectively applied to classification tasks, rule-
based process controls, pattern recognition problems and the func-
tion approximation problems [34]. In ANFIS architecture, both arti-
ficial neural network and fuzzy logic are combined and the
mapping relation between the input and output data defines the
optimal distribution of membership functions. It integrates the
adaptive neural network (ANN) rules and fuzzy logic (FL) theory
inside the adaptive network frameworks. From FL theory, the fuzzy
interference system (FIS) application has been derived and the
membership functions (MF) in FIS improved through trial and
error. In the ANFIS technique, ANN procedure is engaged to
develop the FIS model and through which it permits to learn the
neural network training data form the given data. At the same
time, the results have been mapped by the factors in the arrange-
ment of Sugeno category IF-THEN rules.

The general architecture of the ANFIS structure is shown in
Fig. 3. Fundamentally, five different layers are used to create this
inference system. They are (i) fuzzy layer, (ii) product layer, (iii)
normalized layer, (iv) de-fuzzy layer, and (v) total output layer.
Every single layer consists of different nodes in which squares rep-
resent the adaptive nodes where the factors could be changed.
However, circles represent the fixed nodes, where the factors are
fixed.

The inputs of present layers are attained from the nodes in the
earlier layers. In order to demonstrate the ANFIS procedures, for
simplicity, it is assumed those two inputs (a; b) and one output
(Si) in this system [35]. The ANFIS rule base contains Sugeno type
IF–THEN fuzzy rules. For a first order Sugeno-fuzzy inference sys-
tem (FIS), the two IF–THEN rules may be expressed as follows

Rule I ! IF a is X1 and b is Y1; THEN c is S1 a; bð Þ ð2Þ

Rule II ! IF a is X2 and b is Y2; THEN c is S2 ða; bÞ ð3Þ
where a and b are the ANFIS inputs, Pi and Q i represent fuzzy sets.
Siða; bÞ is a first order Sugeno- FIS.
ion of surface roughness in thermal drilling using integrated ANFIS and GA
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Fig. 3. General ANFIS architecture [36].

Fig. 2. (a) Experimental setup of the thermal drilling process (b) Samples of thermal drilled holes are produced in galvanized steel.

Table 4
Training datasets for ANFIS model.

Sl.
no

Spindle speed
(rpm)

Angle of tool
(degree)

Workpiece
thickness (mm)

Surface
roughness (mm)

1 1600 30 1 2.529
2 1600 30 2 2.686
3 1600 37.5 1.5 2.863
4 1600 37.5 2 2.951
5 1600 45 1 3.029
6 1600 45 2 3.197
7 2000 30 1.5 2.093
8 2000 30 2 2.106
9 2000 37.5 1 2.152
10 2000 37.5 2 2.258
11 2000 45 1 2.324
12 2000 45 1.5 2.478
13 2400 30 1 1.052
14 2400 30 1.5 1.085
15 2400 37.5 1 1.211
16 2400 37.5 2 1.399
17 2400 45 1.5 1.495
18 2400 45 2 1.524

Table 5
Testing datasets for ANFIS model.

Sl.
no

Spindle speed
(rpm)

Angle of tool
(degree)

Workpiece
thickness (mm)

Surface
roughness (mm)

1 1600 30 1.5 2.613
2 1600 37.5 1 2.789
3 1600 45 1.5 3.143
4 2000 30 1 1.998
5 2000 37.5 1.5 2.224
6 2000 45 2 2.433
7 2400 30 2 1.156
8 2400 37.5 1.5 1.336
9 2400 45 1 1.421
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4.1.1. Fuzzy layer
The fuzzy layer comprises adaptive nodes with node function. It

converts the inputs (a; b) into linguistic labels (X1, X2, Y1 and Y2)
used for separating the membership functions. The output of each
node is determined by the Eqs. (4) and (5) [36]

O1;i ¼ lXi
að Þ for i ¼ 1;2 ð4Þ

O1;i ¼ lYi�2
bð Þ for i ¼ 3;4 ð5Þ
Please cite this article as: R. Kumar and N. R. J. Hynes, Prediction and optimizat
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where O1;i represents the output function; lXi
and lYi�2

represent
the membership functions. Typically, the various membership
functions are available such as triangular shaped membership
function (trimf), trapezoidal shaped membership function
(trapmf), generalized bell shaped membership function (gbellmf),
gaussian curve membership function (gaussmf), gaussian combi-
nation membership function (gauss2mf), P-shaped membership
function (pimf), difference between two sigmoidal membership
functions (dsigmf), product of two sigmoidal membership func-
tions (psigmf).

In trimf, the triangular curve is a function of a vector, a, and
depends on three scalar parameters p; q; andr as follows [37]

lXi
a; p; q; rð Þ ¼

0; a � p
a�p
q�p ; p � a � q
r�a
r�q ; q � a � r

0; r � a

8>>><
>>>:

9>>>=
>>>;

ð6Þ

The parameters p and r locate the feet of the triangle and the
parameter q locates the peak as shown in Fig. 4 (a).

In trapmf, the trapezoidal curve is a function of a vector,a, and
depends on four scalar parameters p; q; r; ands as shown in follow-
ing expression [37]
ion of surface roughness in thermal drilling using integrated ANFIS and GA
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Fig. 4. (a) Triangular membership function (b) Trapezoidal membership function.
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lXi
a;p; q; r; sð Þ ¼

0; a � p
a�p
q�p ; p � a � q

1; q � a � r
s�a
s�r ; r � a � s

0; s � a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð7Þ

The parameters p and s locate the feet of the trapezoid and the
parameters q and r locate the shoulders as shown in Fig. 4(b).

In gbellmf, the generalized bell shaped curve is a function of a
vector, a, and depends on three parameters p; q; andr are as given
by [37]

lXi
a;p; q; rð Þ ¼ 1

1þ a�r
p

���
���2q

ð8Þ

The parameters p and r locate the feet of the generalized bell
shaped curve in which the parameter q is generally positive. The
parameter r represents the center of the curve.

In gaussmf and gauss2mf, curves is a function of a vector, a, and
depends on two parameters randr as shown in following expres-
sion [37],

lXi
a;r; cð Þ ¼ e�

a�cð Þ2
2r2 ð9Þ

The spline based curve is also known as P-shaped curve (pimf),
it is a function of a vector, a, and depends on four parameters
p; q; r; and s as shown in following expression [37],

lXi
a;p; q; r; sð Þ ¼

0; a � p

2 a�p
q�r

� �2
; p � a � pþq

2

1� 2 a�q
q�p

� �2
; pþq

2 � a � q

1; q � a � r

1� 2 a�r
s�r

� �2
; r � a � rþs

2

2 a�s
s�r

� �2
; rþs

2 � a � s

0; a � s

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð10Þ

The parameters p and s represent the feet of the curve, while q
and r represent its shoulders.

In dsigmf, the difference between two sigmoidal curves is a
function of a vector, a, and depends on two parameters pandr as
shown in the following expression [37],

lXi
a;p; rð Þ ¼ 1

1þ e�pða�rÞ ð11Þ
Please cite this article as: R. Kumar and N. R. J. Hynes, Prediction and optimizat
approach, Engineering Science and Technology, an International Journal, https
This dsigmf membership function is the difference between two
sigmoidal curves [37],

¼ lX1
a; p1; r1ð Þ � lX2

a;p2; r2ð Þ ð12Þ
In psigmf, the product of two sigmoidal curves is simply the

product of two such curves and depends on two parameters
pandr [37],

¼ lX1
a; p1; r1ð Þ � lX2

a;p2; r2ð Þ ð13Þ
4.1.2. Product layer
The fixed nodes are used in this layer and it is marked by a circle

and labeled as P. The output of each node is the product of all the
received signals from the previous layer. The following expression
shows the output of this layer [38]

O2;i ¼ Zi ¼ lXi
að Þ:lYi

bð Þ for i ¼ 1; 2 ð14Þ
The output Zi of each node denotes the firing strength of a rule.
4.1.3. Normalized layer
Every node in a normalized layer is represented by a fixed node

which is marked by a circle and labeled by N. It is defined as the
ratio of the ith node firing strength (Zi) to the sum of all rules firing
strengths as shown in Eq. (15) [38]

O3;i ¼ Z
�
¼ Zi

Z1 þ Z2
for i ¼ 1; 2 ð15Þ

where O3;i and Z
�
denote the output of the normalized layer and nor-

malized firing strength respectively. The output of the normalized
layer and normalized firing strength is only acceptable within a
range of 0 to 1.
4.1.4. Defuzzy layer
The fourth layer is the defuzzification layer which consists of

adaptive nature nodes and it is marked by the square and labeled
by D. It computes the multiplication of normalized firing strength
and first order polynomial. Therefore, the output of this defuzzy
layer is specified by the expression [38]

O4;i ¼ Z
�
:Si ¼ Z

�
eiaþ f ibþ gið Þ for i ¼ 1;2 ð16Þ

where ei, f i and gi are the consequent parameters.
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4.1.5. Output layer
The fifth layer is the output layer which has one fixed node,

marked by a circle. Here the node function is to compute the over-
all output as given in the following equation [38]
O5;i ¼
X2
i

Z
�

Si ¼
X2
i

Z
�

eiaþ f ibþ gið Þ

¼ Overall output for i ¼ 1; 2 ð17Þ
To increase the convergence rate, an algorithm used for this

present work is a hybrid learning algorithm. This algorithm is used
to integrate the least square and gradient descent method in order
to update the premise parameters. The least square method is uti-
lized to optimize the consequent parameters. After getting the
optimal consequent parameters, the gradient descent method is
employed to regulate optimally the premise parameters. The out-
put of ANFIS is determined by using consequent parameters. The
total output is given by the following equation [38],
Total output ¼ Z
�
S1 þ Z

�
S2 ¼ Z1

Z1 þ Z2
S1 þ Z2

Z1 þ Z2
S2

¼ Z1

Z1 þ Z2
e1F1 þ f 1F2 þ g1ð Þ

þ Z1

Z1 þ Z2
e2F1 þ f 2F2 þ g2ð Þ ð18Þ
4.2. Genetic algorithm

Genetic algorithm (GA) is a recognized technique to optimize an
objective function along with linear or non-linear boundaries. GA is
a stochastic global searching technique based on the principles of
natural selection and genetics in which the error function deriva-
tive assessment is not necessary. Also, it is a well-organized to be
tremendously efficient in dealing with non-linear as well as poor
complex optimization problems [39]. Nowadays, GA is one of the
most attractive techniques for optimization of problems in the var-
ious fields of industrial application since it has robustness in deter-
mining an optimal solution which is the nearly global minimum.
GA activates according to the principle of survival of the fitness
on a population of potential solutions to create better approxima-
tions towards a solution. At each solution generation, new approx-
imations set is produced by the procedure of selecting individuals
based on the fitness level in the domain of the problem. This prac-
tice leads to the growth of well-suited populations. A candidate
solution in GA technique is represented by means of genes
sequence which is called chromosome. The chromosome potential
is named its fitness function, which is assessed through objective
function. Population means a set of selected chromosomes which
is subjected to the number of iterations (generations). For each
generation, a new population is created by the operators of GA
such as selection, crossover, and mutation. Greatly fitness individ-
uals are given chances to replicate through exchanging of their
genetic statistics. This creates a new offspring solution, which
would share the good characteristics acquired from parents. Muta-
tion operation is employed subsequently crossover by shifting cer-
tain genes in the strings. The offspring can either replace a smaller
amount of fitness individuals or replace the whole population. This
assessment and selection of reproduction sequence are continu-
ously performed until an acceptable solution is obtained.
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5. Results and discussion

5.1. Prediction of surface roughness by ANFIS

The ANFIS structure and network model are used for this work
to predict surface roughness of the thermal drilled hole which is
shown in Fig. 5(a) & (b). It performs the systems of Sugeno type
FIS and membership function are employed to do the training pro-
cess. In this work, the FIS considers the three inputs of thermal
drilling parameters like spindle speed (N), angle of tool (A) and
workpiece thickness (H).

Grid partition technique is used to generate the optimized rules
of a given dataset. The dataset in Table 4 is employed to train the
ANFIS model and the predictive competence of the corresponding
model is tested on the dataset in Table 5. Fig. 6 shows the loading
of training data into the ANFIS model.

The ANFIS model has performed the training process on the
training dataset and finally test the results with testing data. While
the training process of the ANFIS model, the input dataset is plot-
ted several times to reduce the prediction error. The required num-
ber of iterations in order to mapping is stated as epochs. From
Fig. 6 it is noticed the 100 epochs (no. of iterations) are essential
to accomplishing the training process on 18 datasets. Fig. 7 shows
the loading of testing data into the ANFIS model. It can be seen
from Fig. 7 after the training process, and then it is tested on 9
datasets, with the aim of validation of the model.

Table 6 displays the results of the training and testing process of
the ANFIS model with the different type of membership functions.
From the results in Table 6, gbell membership function in compar-
ison with the other membership functions which have low predic-
tion error i.e. RMSE for training is 2.4418 � 10�6 and for testing is
1.8533. It can result that the best optimal ANFIS structure with 3 3
3 membership function for this process. Fig. 8 shows the training
error curve for the experimental values of thermal drilled work-
piece surface roughness. Fig. 9 shows experimental outcomes of
surface roughness under the same processing conditions as the
training and testing datasets are utilized to compare the predicted
surface roughness results by the ANFIS model.
5.2. Optimization of surface roughness by GA

Generally, a requirement of optimization for solving several
manufacturing problems in which surface roughness (S) function
has to be minimized. Table 7 shows the setting parameters in GA
toolbox. Initially, the optimization problem of surface roughness
in the thermal drilling of galvanized steel should be defined in
terms of a mathematical model equation or fitness function. This
equation is given as the functional dependence of measured value
and the drilling parameters [40]. Due to the complexity of models,
more accurate mathematical models contain linear and non-linear
components. But in actual practice, second-order polynomials are
sufficient to develop a mathematical model for the description of
the manufacturing process.

This research work was performed with the three input (inde-
pendent) variables such as rotational speed (N), angle of tool (A)
and workpiece thickness (H). In order to determine a suitable
parameter range, preliminary tests were conducted effectively.
The spindle speed (N) was varied between 1600 rpm and
2400 rpm, angle of tool (A) was varied between 30 degree to 45
degree, workpiece thickness (H) was varied between 1 mm and
2 mm. The influence over the surface roughness of thermal drilling
parameters was determined based on the experimental results
using the equation given below:
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Fig. 5. Developed ANFIS structure and (b) neural network model for surface roughness.
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Surface roughnessðSÞ ¼ 0:0593796þ 0:00217889� N

þ 0:0511963� Aþ 0:521389�H

� 9:31597�10�7 � N2

� 3:35802�10�5�A2

� 0:105556�H2 � 1:01111�10�5

� N� A� 2:58333�10�5 � N�H

� 4:22222�10�4 � A�H ð19Þ
Selection of optimal thermal drilling parameters should

enhance not only the economical utilization of drilling machine
but also the quality of the product to become a better appearance
by reducing the value of surface roughness. A fitness function (Eq.
(19)) to be minimized is essential to describe the standard opti-
mization problem [41]. In thermal drilling process, the optimiza-
tion problem can be stated in the following:

Minimize: S (N, A, H)
S (model) � S (min) (lm)
Within ranges of thermal drilling process parameters:
Spindle speed: 1600 rpm � N � 2400 rpm
Angle of tool: 30 degree � A � 45 degree
Workpiece thickness: 1 mm � H � 3 mm
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The GA toolbox of MATLAB R2010a software used to determine
the minimum of the fitness function [42]. This function could be
expressed in the MATLAB file (M-file) and permits it is an argu-
ment to the main GA function. The M-file used for optimization
in GA toolbox that computes the fitness function must proceeds
a row vector ‘y’ of length 3, corresponding to the independent vari-
ables y1, y2 and y3, and return a scalar equivalent to the value of
the function at y. The M-file can be expressed as follows:

function z = surface roughness (y)
z ¼ 0:0593796þ 0:00217889� y 1ð Þ þ 0:0511963� y 2ð Þ
þ 0:521389� y 3ð Þ � 9:31597�10�7 � ðy 1ð ÞÞ2

� 3:35802�10�5�ðy 2ð ÞÞ2 � 0:105556�ðy 3ð ÞÞ2

� 1:01111�10�5 � y 1ð Þ � y 2ð Þ � 2:58333�10�5 � y 1ð Þ
� y 3ð Þ � 4:22222�10�4 � y 2ð Þ � yð3Þ ð20Þ
Then, save the M-file of Eq. (20) in a directory on the path of

MATLAB [42]. The population type (double vector) states the input
data type to the fitness function. The size of the population (1 0 0)
defines how many individuals are there in each generation.
ion of surface roughness in thermal drilling using integrated ANFIS and GA
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Fig. 6. Initial loading of training dataset.

Fig. 7. Initial loading of testing dataset.
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Table 6
Comparing of the result of different membership functions.

Sl.
no

No. of
Membership
function

Function
type

Output
Function

Error (RMSE)

Training Error Testing
Error

1 3 3 3 trimf Constant 2.88500 � 10�6 4.2124
2 Linear 4.36780 � 10�4 4.1537
3 trapmf Constant 2.83860 � 10�6 2.2232
4 Linear 4.36780 � 10�4 2.8253
5 gbellmf Constant 2.44180 � 10�6 1.8533
6 Linear 1.70290 � 10�3 3.2931
7 gaussmf Constant 2.47330 � 10�6 3.8251
8 Linear 1.86600 � 10�3 3.2597
9 gauss2mf Constant 2.53980 � 10�6 2.2208
10 Linear 1.51280 � 10�3 2.2199
11 Pimf Constant 2.63860 � 10�6 2.4122
12 Linear 4.36780 � 10�4 2.6832
13 dsigmf Constant 2.53910 � 10�6 2.1957
14 Linear 1.73630 � 10�3 2.2142
15 psigmf Constant 2.83770 � 10�6 2.1004
16 Linear 1.64030 � 10�3 2.2134

Fig. 9. Comparison of Experimental and Predicted Values (a) training process (b)
testing process.
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According to the size of the population, the GA has to search point
which leads to obtaining a required result. While population size is
increasing, causes the GA to execute more slowly.

Based on their scaled values from the fitness function, the selec-
tion function selects parents for the next level generation. The pre-
sent work selects stochastic uniform [43] as a selection function, in
which each parent corresponds to a section of the line of length
proportional to its scaled value. GA moves along the line in steps
of same equal size. At every step, the GA assigns a parent from
the section it lands on. The recommendation is to apply different
seed numbers for the same parameters to reach results that are
more refined. As for crossover rate, it is recommended use a guid-
ing value from 0.7 to 0.9. meanwhile, as for mutation rate it was
noticed that reaching optimal solution could occur using both
ascending or descending mutation techniques depending on popu-
lation diversity as it is noticed that increasing the diversity of pop-
ulation along with using a suitable fitness scaling technique that
does not allow a gene to dominate the population is best, while
in case of decreasing mutation rate it is advised to use a fitness
scaling scale that identifies the small differences between individ-
uals. In crossover functions, It is clearly advised that when using a
real representation to use crossover function that is based on such
representation such as (e.g., arithmetic, heuristic) to obtain opti-
mal values in the least number of evaluations. The crossover frac-
tion and mutation probability of 0.8 and 0.2 specify the population
fraction of crossover children and mutation children respectively.
Fig. 8. Training error curve of ANFIS model for surface roughness.
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Choice of 0.8 crossover fraction represents the offspring thus
formed from 0.8 of the parent 1 and 0.2 of the parent 2. The algo-
rithm creates crossover children by combining pairs of parents in
the current population. At each coordinate of the child vector,
the default crossover function randomly selects an entry, or gene,
at the same coordinate from one of the two parents and assigns
it to the child. For problems with linear constraints, the default
crossover function creates the child as a random weighted average
of the parents. The number of generations denotes the stopping of
GA when it reaches the defined value of 100. Also, the stall gener-
ations denote stopping of GA if there is no improvement in the fit-
ness function for a sequence of consecutive generations to a
defined value of 50. In order to achieve a better result from GA, a
trial and error method has been executed by altering the options
in GA toolbox of MATLAB software [43]. In this study, an attempt
has been made to determine the process parameters for thermal
drilling of galvanized steel to minimize the surface roughness with
the three different processing conditions using GA. The optimiza-
tion technique of GA solved the Eq. (20) gives the minimum surface
roughness. The values determined by this equation have com-
pletely matched with the experimental values. The assessment of
generations and the best fitness values found by GA are shown in
Table 7
GA parameters.

Parameters Values

Number of variables 3
Size of population size 100
Selection function Stochastic uniform
crossover fraction 0.8
Mutation probability 0.2
Number of generations 100
Stall generations 50
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Fig. 10. Fitness plot for surface roughness from genetic algorithm.
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Fig. 10. Table 8 shows the comparison of optimized values with the
experimental values. The optimized value of surface roughness is
obtained from the GA shows a minimum error (0.765%) with the
experimental values.

5.3. Effect of thermal drilling input process parameters

Fig. 11(a) shows the surface plot of surface roughness of drilled
samples values at the different spindle speeds and workpiece
thickness. When spindle speed increased from 1600 to 2400 rpm,
Table 8
Comparison of experimental and predicted value of surface roughness.

Process parameters

Spindle speed (rpm) Angle of tool (degree) Workpiece thick

2400 30 1

Fig. 11. 3D Surface plots of surface roughn
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the amount of heat energy is increased steeply to a high speed fric-
tion between drill and part. The high heat energy would make the
galvanized steel softer and increase the drilling capability. Thus,
the better surface quality of a drilled hole was obtained and it
was similar to the previous studies of Ku et al. [13] and Chow
et al. [14]. However, the surface roughness increases to some
extent with the increasing of workpiece thickness from 1 to
2 mm. It is resulted due to increasing of drilling depth. It is
observed from Fig. 11(b) & (c) while increasing the angle of tool
gradually from 30 to 45 degree, a reduction in contact friction at
the interface is obtained and therefore non-uniform temperature
distribution would be generated during the performance of ther-
mal drilling process. As a consequence, the starched marks have
produced on the surface of the hole during the piercing of work-
piece and enhances with the increase in angle of tool additionally.
Hence, the higher surface roughness would be formed on the sur-
face of the drilled hole.
6. Conclusions

Thermal drilling process is used to produce a bushing hole from
the material of galvanized steel sheet metal that it turns to con-
tribute a supporting portion for producing a number of threads.
Galvanized steel is used in the areas of automobile and aerospace
engineering. Surface roughness is the predominant output charac-
teristics in the thermal drilling process when compared to others.
Surface roughness (mm)

ness (mm) Experimental values Optimized value by GA

1.052 1.0436

ess as a function of input parameters.
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The proposed ANFIS-GA approach has implemented for prediction
and optimization of surface roughness in the drilled holes.

1. The ANFIS model has been attempted for predicting surface
roughness of drilled galvanized steel and to find out the opti-
mum parametric setting using the GAmethod. The thermal dril-
ling parameters were utilized as inputs to the ANFIS model to
predict surface roughness. The essential training and testing
datasets have been acquired from the experimentation of ther-
mal drilling process. An ANFIS model with gbellmf membership
function is selected based on the minimum RSME prediction
error of about 2.44180 � 10�6. It is found that the ANFIS
method can be able to attain a better prediction model of the
experimental values.

2. An ANFIS based regression model of surface roughness was uti-
lized as a fitness function for GA and after tuning the various
parameters, the optimal processing conditions of 2400 rpm
spindle speed, 30 degree angle of tool and 1 mm workpiece
thickness are obtained. A better correlation of 99.235% is
achieved between the predicted and experimental values of
surface roughness.

3. From the experimental work, it is concluded that the spindle
speed and angle of tool have a greater influence on surface
roughness for galvanized steel than the influence of workpiece
thickness.
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