

Data Integration with XML ETL Processing

G.Jayashree Dr.C.Priya,
Research Scholar, Research Supervisor,
Department of Computer Science, Department of Information Technology,
VELS Institute of Science, Technology and Advanced Studies School of Computer Science,

Chennai, India. VELS Institute of Science, Technology and Advanced
Studies,
Jayashreegopalsamy@gmail.com Chennai, India.

 drcpriya.research@gmail.com

Abstract---Data forms the key success enabler for any
business organization. Structured collection and
organized data along with this analytical enablement will
provide more insights to the organization’s existing
operations and ways for better improvement. In order to
do efficient data collection, integration of data from
various sources forms the vital role. Many of the vital

business initiatives for an organization requires the data
to integrate. Such initiatives performed by creating a
customized solution across every data source. In such
given architecture, the complexity to integrate data
source is proportionate to the increase in data sources.
Use of eXtensible Markup Language (XML) for
standardizing the information exchange across several
sources is an industry standard implementation. It is the

technology used to implement and deliver an enterprise-
level data integration solution using heterogeneous data
sources. The transformation capability of XML is
capable of handling very complex and big documents
and can do processing of ~thousands of real-time
transactions using message bus or Web Services
methods. The XML provided solutions are flexible and
easily adaptable, thus enabling them to incorporate into a
broader range of organizational solutions. This paper

discusses in detail, the data integration methods and their
challenges and processing of XML data using Extraction,
Transformation and Load method. The paper also
provides the several ways to parse the XML data as part
of the data processing with the case study for an On Line
Transaction Process (OLTP) system of a manufacturing
company.

Keywords: XML, Data Integration, ETL, Data

Virtualization, XML Parsing, OLTP

I. INTRODUCTION

 Data integration (DI) is an iterative process

consisting of data merging from several

heterogeneous source systems, and stored with the

help of several technologies thus providing a

unified glimpse of data. It is gaining its importance

where we require the merge or integrate systems of

any two companies or requiring application

consolidations within one company to provide a

single view of the company's assets. The later

initiative is the data warehouse. Merging of diverse
data types (tables, data sets and documents, etc.) by

any application, user or by an organization is

possible in data integration. DI does the alignment,

combine and presentation of every dataset of the

internal departments and remote sources of larger

data sets and hence by providing the support for

analytical data processing. The spreadsheet

consolidation/merging in a document in Microsoft
word is a simple example for DI in a small

paradigm.

A. XML – A Glimpse

 XML defined as Extensible Markup Language. It

is a medium for data language exchange, which is

independent on platforms. Though referred as a

data language, XML can also store information. It

was create to describe the data, its content and

structure. An XML file possesses the below general

characteristics:

 Uses the character set

 Uses the tags (for increasing the
complexity with 90%of the

complete size of the XML file)

 Having a Complex structure

 Uses the DTD (Document Type

Definition) and XML schema to

identify the structure and

grammar of documents.

Disparate group of people can provide the XML

DTD’s for in-between data exchanges. It can also

use to validate the document propriety. Structure of

DTD, is designed to be complicated in nature and it
contains: structures for base data elements mixed

content, cardinality, nullable and other allowed

values. The other standard used to define the

structure for XML documents is the XML schema,

which is more effective than DTD. It allows doing

the following:

 Defining the elements for

documents along with their

required attributes

 Defining the elements’ sequence

and hierarchy

 Defining the elements’ values

(empty or has any text)

 Defining extensibility for future

additions

 Namespace Support (To identify

whether the definition for the

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on August 23,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

elements or attributes can be

obtained or not)

B. Advantages of XML

XML, with its self-describing data format,

allows the storage of diverse data (with/without an

XML schema) in a single row or document, and

simultaneously providing the capability to

aggregate or search the data. Applications will be

able to evolve their XML schemas with no changes

to the underlying database schema. Some of the

other key advantages of XML are as follows:

 Easily understandable and readable,

 Easier to code when compared with

HTML coding

 Compatible with Java™ and completely

portable. Applications processing XML

data can use the information across any

platform.

 Extendable. Able to create individual tags

or can use the tags created by others.

 Easily understandable by the interfacing
system.

 Capable of handling Meta data and large

data

 Ability to handle complex structures.

 Use of XML structure (XSD) to import

XML source files. It is widely used in

integrating with standard systems like

ECC ERP, which has a standard and

defined XSD structure data flow.

 XML structures has capabilities to handle

big data set and other fields structure

C. Applications of XML

XML has widely been used for e-business,

portable and Web applications.

Web publishing: With XML, we can create

interactive pages, allowing the page customization

to the customers, and creating intuitive e-commerce

applications. Data can be stored once and retrieved

many times for different devices or viewers or

depending on the style-sheet processed using the

Extensible Style Language (XSL)/XSL

Transformation (XSLT) processor

Automation of Web tasks and web surfing: XML
clearly defines the information type required in a

document, hence-by making easier to render

meaningful results while searching the Web: For

example, fpr searching the books authored by

“Tom Brown” using HTML can possibly return the

instances of the word 'brown' outside the author

context. XML restricts the correct search context

here (the information present in the <author> tag)

and returns only the required information. Web-

based Robots (Program for Web search

automation) and Web agents can provide more

efficient and meaningful results by using the XML.

General applications: A standard method

provided by XML to access data, which makes

easier for devices and applications to store, use,

transmit, and display data.

•E-business applications: Electronic data

interchange (EDI) are widely accessible

for data interchange, business-to-

consumer transactions and business-to-

business transactions, using XML

implementations.

•Metadata applications: With the use of
XML metadata can be represented in a

portable and reusable format.

•Pervasive computing: XML renders

structured and portable data for display

wireless (pervasive) computing devices

like cellular phones, personal digital

assistants (PDAs), etc. Wireless Markup

Language (WML) and VoiceXML are the

current evolving standards for visual and

speech-driven wireless device interfaces.

II. SCHOLARLY REVISIT

Elisa Bertino and Elena Ferrari, discussed in

detail the benefits of XML being used a standard

for data representation. The challenges related to

the XML usage like formal foundation for web

standards, support for metadata and invention of

semantic-based tools for knowledge discovery

explained in detail.

Rashed Salem, Jérôme Darmont & Omar

Boussaid proposed a common metadata-driven and

service oriented event driven approach to integrate
the timely web data using Active XML

(AXML).An incremental XML-based algorithm

was proposed with associated mining rules for

automating and reactivation tasks.

Lucas Zamboulis and Alexandra Poulovassilis

proposed a data-integration framework with two

specific algorithms for XML data integration. The

first algorithm is for the integration of schema and

the second algorithm is for view materialization,

both of them based on the graph restructuring.

Chong-Shan Ran and Ma-Chuan Wang proposed

the data integration based on XML schema

mappings. In this approach, the relation between

global and local schemas represented with XML

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on August 23,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

schemas. In addition, the entertaining manager

present in the schema allows managing the data

models separately. An example focused on the

relationship and role of both local and global

schema and mapping of tables proposed as part of

the implementation.

Yue Guohua and Wang Jingting provided the

new approach to extract and load semi structured

XML data into data warehouse. With an example

of Book Return Data (BokeDataInfo.xml), the

characteristics of the semi-structured content was

analyzed with the DOM (Documents Object

Model) parser and extracted the semi-structured

XML data into Data warehouse ETL and loaded

into the Data warehouse. The paper also addresses

the disadvantages with the commercial ETL tools

in loading the Semi structured data.

Nawfal El Moukhi, Ikram El Azami and

Abdelaaziz Mouloudi proposed the data

integration framework, which integrates the data

from relational databases and developed the

approach to design XML based data warehouse

with the Model Driven Architecture (MDA)

techniques. A list of rules to identify the data

warehouse components from the relational data has

been defined in the paper. The given rules will

form the core components of the transformation
engine of the data model with which the relational

model transformed into the multidimensional

model with MDA strategy.

III. DATA INTEGRATION METHODS

AND CHALLENGES AND XML

SUPPORT

A. Methods of Data Integration

 Several integration methodologies or

approaches that exist currently for implementing a

data integration solution. They are
Data Consolidation – Consolidates data

from many external systems and creates a

single version of the consolidated data in

one data store. ETL (Extract, transform,

and load) technology supports for data

consolidation. It pulls source data, applies

the transformations and make it to use in

an understandable format, and transfers to

another database or data warehouse.

Data Propagation – Used to copy

application data from any location to the

other location. This is primary event-

driven and can be designed either in a

synchronous/ asynchronous way.

Synchronous method of data propagation

can support a bi-way exchange of data

against source and target. Enterprise data

replication (EDR) and Enterprise

application integration (EAI) technologies

can support data propagation.

EAI – Integration of system applications

for the message and transaction exchange.
It is often used for real-time business

transaction processing.

EDR -- Larger volume of data transfer

across databases. Logs and triggers

captures and disseminates the changes in

data.

Data Virtualization – An interface

provides the consolidated data view in

near real-time using various data models

and different data sources. The data view

and data storage are situated in different

locations and not in a single location.
Virtualization does the data retrieval and

interpretation, but need not require any

uniform format or any single point of

access.

Data Federation -- A technical form of

virtualizing data and used as a virtual

database. A common data model is created

and viewing of data from a single point of

access. Enterprise information integration

(EII) technology supports data federation.

Data abstraction is used to perform a
consolidated data view.

Data Warehousing -- Storage repositories

for data. Performs the cleansing, re-

formatting data for storage, nothing but

the data integration.

B. Challenges in Data Integration

 Data integration (DI) process is a tedious

activity requiring data to get reconcile at different

levels like data instance, data schema and data

model. The need for a strong solution for data

organizing into a common syntax plays a vital role

here and XML founds to be the best fit for this
Given below are some of the integration

challenges.

Data model – Data in external sources are

with different structures like tables,

objects, and files to represent data. The

heterogeneity model of data indicates the

necessity for a generic data model that

maps the in-coming data from several

sources.

Data Schema – An entity or property in a
data model can be represent differently

within a schema. Also, data sources can

represent the same information with

variant data structures. The automation

solution should address the given

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on August 23,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

differences while performing the data

integration.

Data Instances – Possible integration

issues at instance-level includes the

determination of whether the distinct

objects from disparate sources represents
the same entity and identification of a

single data source if any contradictory

data is present in data sources, E.g. A

person with varied birth dates.

C. XML to overcome Data Integration Challenges

1. XML organizes the data based on graph-based

and hierarchical representations and facilitates the

representation of structured, semi-structured, and

unstructured information. It provides a flexible,

solid and easy-to-manage common data

model across the Web.

2. XML support extensibility, which means both

the name and meaning of the XML tags are

arbitrary. Hence, there has to be a standard domain-

specific tags and schemas for integrating of data. In

addition, the data integration solution should have
an algorithm that describes the semantics to

understand the data attributes and elements. E.g., A

data element called “money” comes from two data

sources with different currencies, mandates that the

semantics of the data element to be investigated in

detail before providing the solution. This brought

into the ideology of metadata collection and any

metadata be expressed using XML itself.

The process of schema-level reconcile provides

the details about context, like meanings for a given
name or any specific value which depends on the

content where the information can occur. Hence,

the interchanging and integrating of contextual

information becomes the critical for any data

integration technique/tool to implement.

IV. XML ETL PROCESSING

A. XML Data Processing methods

 XML defined to be user-defined, platform

independent and text based which can be easily

understandable.

The most common and well-known version of

XML is HTML (markup language designed for

web). In the data integration world, XML standard

primarily applied for communication across

applications. Majority of the commercial ETL tools

in market have their own dedicated XML

components to handle the processing. Every ETL

process for the XML processing task has its

challenges and needs techniques to overcome it.

Some ETL tools provides several approaches to

process and do transformation on XML data.

Majority of the XML based ETL processing tasks

likes to adopt to any one of the below given ways

in which data interpreted and represented:

Event-based XML model:- A unique way of

interpreting a series of events as XML. Every data

string of XML, which is coming, represented as a

separate entity – called an event. In this approach,

all the events converted in the data flow as a

record, with a dedicated filed used to store every

attribute and tag. This model can work with all

kinds of XML documents with the flexibility to

adjust elements as required. This model will not

provide the similar level of support for XML

Schema, at some instances the model ignores

several portions of the document resulting in

incomplete data. It is an easy way to interpret XML

strings.

Full-XML parsing model:– While reading a XML

document, the ETL tool component which is being

used, is aware of the proper structure of the

document and parses it as appropriate. This needs

additional effort to set up during the preliminary

phase, but can increase the performance and makes

sure the proper field mapping of all required values

and empty fields. The other outcome of this

approach is a reduction in time to populate the

downstream components, as it is a more error

proof. This model representation is the useful

choice and most powerful, while working on

complex XML schemas.

B. Data Processing – Case Study

A hypothetical manufacturing company is using

two operational systems:

An On Line Transaction Processing (OLTP)

system, for managing the daily operational data.

This includes the daily details about orders,

customers, invoices, products, etc. Data entered

manually by the customer service executives.

A web-based application in which, customers place

their purchase orders. Currently no integration

between the given systems. When a user places an

order, the details captured in an XML file, which is

present in the web server. For every new order, a

separate XML file is generated which has the data

present in the internet form.

The orders are stored in a separate directory of the

web server and the entire collection processed on a

daily basis (overnight). The requirement is to load

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on August 23,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

the purchase orders data from the multiple XML

files into an operational table.

Proposed solution

The high-level solution data flow for the given

scenario depicted below in Fig 4.1.

Fig. 4.1 Data flow for XML Processing

Given below are the steps to follow for any XML

ETL Processing:

1. Movement of XML source files to ETL server

from web server (to the unprocessed_files folder)

2. For every individual XML files,

 a. Parsing to be done on XML file based on

event XML approach

 b. Additional data to get passed through the

processing flow. E.g. file name containing dates

and timestamps

 c. Validation of records (E.g. check whether a

customer exists in the system and the data is correct

is or not)

 d. Assignment of order numbers for every

purchase order

 e. OLTP table to get fed with open orders

 f. OLTP table to get fed with load history with

a corresponding status

3. Movement the file to the processed_files folder

after the completion of XML processing.

C. Implementing Data Parsing Approaches for

XML Data

 For parsing the XML input file, we can do it in

the below two different ways.

Approach 1: Reading from source in a single

column

In this approach, the entire source data extracted as
a single column in the ETL Transformation editor

and taken for processing. The below steps needs to

be taken care for the implementation that needs to

be applied into the Transformation Editor as given

in the figures Fig 4.2, Fig 4.3 and Fig. 4.4.

1. Select the Source Program type as
“Specific Program (s)”

2. Add Source Program

3. Enter the final delimiter string

4. Define the column name as “Filename”

STEP-1, 2

Fig 4.2 Program type selection

STEP-3

Fig 4.3 Delimiter String Selection

STEP-4

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on August 23,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

Fig 4.4 Definition of Column name

SAMPLE DATA

<xml>

<VerificationServiceResponse> <VerificationId>5

800000000</VerificationId> <HasEligibleVerifier

>true</HasEligibleVerifier> <VerifierList> <Verifi

er><VerifyType>PHONE</VerifyType><InEligibl

e>false</InEligible><PhoneList><Phone> <Countr

yCode>1</CountryCode> <AreaCode>480</Area

Code><Number>8200000</Number><Voice>false

</Voice> <InEligible>true</InEligible><InEligible

Reason>RISK_RESTRICT</InEligibleReason><R

iskScore>0</RiskScore><fullPhone>14808200000

</fullPhone> </Phone> <Phone> <CountryCode>1

</CountryCode><AreaCode>480</AreaCode><Nu

mber>7300000</Number><Voice>false</Voice><

InEligible>true</InEligible><InEligibleReason>RI

SK_RESTRICT</InEligibleReason><RiskScore>0

</RiskScore> <fullPhone>14807300000</fullPhon

e></Phone> <Phone><CountryCode>1</CountryC

ode> <AreaCode>480</AreaCode><Number>200

0000</Number> <Voice>false</Voice><Text>true

</Text><InEligible>false</InEligible> <RiskScore

>0</RiskScore><fullPhone>14802000000</fullPh

one></Phone></PhoneList></Verifier></VerifierL

ist></VerificationServiceResponse><ValidatePhon

eId>10000000</ValidatePhoneId></xml>{|}

RESULT

Filename = 5800000000 true PHONE false 1 480

8200000 false true RISK_RESTRICT 0

14808200000 1 480 7300000 false true

RISK_RESTRICT 0 14807300000 1 480 2000000

false true false 0 14802000000

APPROACH 2: Reading XML content from single

column and deriving multiple row

 In this approach, the source data will be extracted

and split into multiple columns in the ETL
Transformation editor and will be taken for

processing. The below steps needs to be taken care

for the implementation that needs to be applied into

the Transformation Editor as defined in Fig 4.5, Fig

4.6, Fig. 4.7 and Fig. 4.8.

1. Enable “grammar caching” in the Stage
tab

2. Select the XML source column as

“Filename” and column content as “XML

document” in the Input tab

3. Enable the option “Inherit stage

properties”

4. Define the column names in the Column

tab

STEP-1

Fig 4.5 Grammar Caching Enablement

STEP-2

Fig 4.6 Selection of Column name

STEP-3

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on August 23,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

Fig 4.7 Inherit ion of Stage Properties

STEP-4

Fig 4.8 Definition of Column name

SAMPLE DATA

<xml>

<VerificationServiceResponse><VerificationId>58

00000001</VerificationId><HasEligibleVerifier>tr

ue</HasEligibleVerifier><VerifierList><Verifier>

<VerifyType>DSID</VerifyType><InEligible>tru

e</InEligible><InEligibleReason>DSID_NO_DAT

A_FOUND</InEligibleReason></Verifier><Verifi

er><VerifyType>SEC_QUESTIONS</VerifyType

><InEligible>true</InEligible><InEligibleReason>

SEC_QUESTIONS_NOTENROLLED</InEligible

Reason></Verifier><Verifier><VerifyType>PHO

NE</VerifyType><InEligible>false</InEligible><

PhoneList><Phone><CountryCode>90</CountryC

ode><AreaCode>216</AreaCode><Number>5700

000</Number><Voice>false</Voice><InEligible>

true</InEligible><InEligibleReason>RISK_REST

RICT</InEligibleReason><RiskScore>0</RiskSco

re><fullPhone>902165700000</fullPhone></Phon

e><Phone><CountryCode>90</CountryCode><Ar

eaCode>549</AreaCode><Number>2700000</Nu

mber><Voice>false</Voice><Text>true</Text><I

nEligible>false</InEligible><RiskScore>0</RiskS

core><fullPhone>905492700000</fullPhone></Ph

one></PhoneList></Verifier><Verifier><VerifyTy

pe>EMPID</VerifyType><InEligible>false</InEli

gible></Verifier></VerifierList>

</VerificationServiceResponse>

<ValidatePhoneId>9900000</ValidatePhoneId>

</xml>{|}

RESULT

VerificationId – 5800000001

HasEligibleVerifier – true VerifyType - DSID

InEligible – true CountryCode - 1

AreaCode – 480 Number - 8200000

Voice – false InEligible - true

InEligibleReason - DSID_NO_DATA_FOUND

RiskScore – 0 fullPhone – 14808200000

CountryCode – 1 AreaCode - 480

 Number – 7300000 Voice - false

InEligible – true InEligibleReason -

RISK_RESTRICT

RiskScore – 0 fullPhone - 14807300000

CountryCode – 1 AreaCode - 480

Number – 2000000 Voice - false

Text – true InEligible - false

RiskScore – 0 fullPhone – 14802000000

V. CONCLUSION

 In this paper, the different kind of data

integration approaches and their challenges

discussed in detail. In addition, the application of

XML to overcome the data integration challenges

elaborated. A case study for the operational unit of

an organization taken into consideration for which

the different ways to apply data parsing using XML

ETL elaborated. The detailed steps for all three

approaches along with the sample data and

validation of output data was carried out in the

paper. XML is a widely used and powerful data

integration tool. Due to its extra ordinary

capabilities, almost all commercial ETL tools have

created their dedicated services packs for XML

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on August 23,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

used for data integration. The implementation can

further extend to other data integration techniques

like Data virtualization & Data Federation.

REFERENCES

[1] Elisa Bertino Elena Ferrari, XML and data

integration Article in IEEE Internet Computing

5(6):75 - 76, December 2001 OI:

10.1109/4236.968835

[2] Rashed Salem, Jérôme Darmont & Omar

Boussaid, Active XML-based Web data integration

Article (in Information Systems Frontiers

15(3):371-398 · July 2013 with 619 Reads

DOI: 10.1007/s10796-012-9405-6

[3] Lucas Zamboulis and Alexandra Poulovassilis,

XML Data Integration By Graph Restructuring

School of Computer Science and Information

Systems

Birkbeck College, University of London

[uamin Wang ; Zhiwei Ye

An ETL Services Framework Based on Metadata

 2010 2nd International Workshop on Intelligent

Systems and Applications

DOI: 10.1109/IWISA.2010.5473575

uamin Wang ; Zhiwei Ye

[4] An ETL Services Framework Based on

Metadata

 2010 2nd International Workshop on Intelligent

 [5] Systems and Applications

DOI: 10.1109/IWISA.2010.5473575

Towards a Semantic Extract-Transform-Load

(ETL) Framework for Big Data Integration

Srividya K. Bansal 2014 IEEE International

Congress on Big Data

DOI: 10.1109/BigData.Congress.2014.82

[6] Huamin Wang ; Zhiwei Ye

An ETL Services Framework Based on Metadata

 2010 2nd International Workshop on Intelligent

Systems and Applications

DOI: 10.1109/IWISA.2010.5473575

[6] Yue Guohua Wang Jingting

The Design and Implementation of XML Semi-

structured Data Extraction and Loading into the

Data Warehouse 2010 International Forum on

Information Technology and Applications

10.1109/IFITA.2010.265

[7] G. Jayashree and Dr.C. Priya Design of

Visibility for Order Lifecycle using Datawarehouse

DOI: 10.35940/ijeat.F9171.088619

[8] G. Jayashree and Dr.C. Priya Comprehensive

Guide to Implementation of Datawarehouse in

Education – Proceedings of ICTIDS 2019

[9] Chong-Shan and Ran Ma-Chuan Wang An

XML Schema-Based Data Integration Proceedings

of the 2010 IEEE Conference 978-1-4244-5540-

9/10

[10] Yue Guohua, Wang Jingting The Design and

Implementation of XML Semi-structured Data

Extraction and Loading into the Data Warehouse

2010 International Forum on Information

Technology and Applications

[11] Nawfal El Moukhi, Ikram El Azami and

Abdelaaziz Mouloudi X-ETL: a New Method for

Designing Multidimensional Models 2017 IEEE

Conference 978-1-5386-1115-9/17

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on August 23,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

