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A B S T R A C T

With an advent of Underwater sensor networks, underwater communication has reached its new dimension
of research. These networks are characterized by the elongated end to end delay, high energy utility and
most importantly dynamic network topologies. By incorporating these characteristics, numerous automated
routing algorithms has been proposed to achieve the energy efficient and low latency data transmission. But
still, short-comings still exists due to the above mentioned characteristics and the most comprehensive routing
algorithms are badly desired. In this article, a novel routing scheme based on Q-learning framework and Deep
Extreme Learning Machines aided with Adaptive Firefly Routing algorithm to address the above mentioned
research constraints including energy efficiency and network unsteadiness in underwater communication , that
practices the hybrid combination of reward function and adaptive fireflies to determine the optimal routing
mechanism. In this algorithm, traditional q-learning mechanism has been replaced by the powerful q-deep
extreme learning mechanism which uses the adaptive reward function for the varying underwater environment
and to boost the packet-delivery ratio (PDR) and throughputs. Also the paper uses the powerful firefly aided
routing mechanism to achieve the energy efficient data transmission and to avoid the void dilemma problems.
The extensive experimentations has been conducted on the proposed algorithm and compared with other state
of art schemes such as Q deep q-Learning energy aware routing protocol (DQLER), DELR Protocols and VBF
protocols in which the proposed algorithm has outperformed than the compared existing algorithms in terms
of complexity, energy consumption , packet delivery ratio and end to end delay.
. Introduction

Underwater wireless sensor networks (UWSNs) have gained more
nterest due to the rapid scientific development and advancements
n defense needs in underwater environment [1]. Not like terrestrial
ireless sensor networks, UWSN stands for Underwater Wireless Sensor
etwork which gathers the data from sensor nodes deployed in the
nderwater environments. There are multiple applications of UWSN
ystems in various fields including military, technology and other in-
ustrial needs. The UWSN mainly concerns with communication es-
ablished in acoustic nature. Acoustic signals are affected generally
y noise in the underwater environment, path loss in communication
nd other delay in networks. Also the terrestrial protocol of WSNs
urn irrelevant in certain cases as they are deployed in underwater
nvironments. This is because of the properties exhibited by the signals.
sually the terrestrial WSNs are built to transmit radio or optical

ignals and such signal behavior are entirely different from acoustic
ignals [2–5].

Additionally, uncertain factors in underwater environments has
uge impact in the communication which leads to the drastic changes
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in the network topology and also affects the link connectivity [6].
Moreover, factors such as larger area implementation, high power
consumption, complex replacement also plays the important role in
affecting the underwater networks. [7,8].

To overcome these above drawbacks, many researchers has been
concentrated on designing intelligent protocol suitable for underwa-
ter communication. Traditional routing algorithms fit to most of the
distance oriented algorithms to generate best path, in turn reduces
energy consumption and the end-to-end latency. Still few frequently
used can hinder the performance resulting in limited network lifetime.
The algorithms such as directional flooding-based routing protocol [9],
vector based directional protocols [10], depth based protocols [11]
provides the good routing mechanism but still proves to have poor
packet delivery ratio.

For improvising the lifetime of network and to increase the per-
formance, considerable number of algorithms have been developed so
far. These routing algorithms estimate the path based on the residual
energy of nodes. The subsequent nodes with higher residual energy is
queued for the next hop. These routing schemes mainly concentrate on
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energy utility and these models often compromise the latency and life
expectancy of network.

The interaction of messages within the network consume consid-
erable amount of energy in path estimation. Few algorithms mainly
concentrate only on distance related path estimation and does not
concentrate on dynamic nature of nodes. To add brighter light in
research challenge, Q-learning based Ant-Colony Optimization routing
algorithm was proposed by Zhengru Fang et al. [12]. This intelligent
learning algorithm provides the good network performance such as
packet delivery ratio, low energy consumption and so on. Although the
QACOL algorithm provides the good performances such as packet de-
livery ratio and low energy consumption, convergence time complexity
of ant-colonies and lack of depth knowledge leads to the degradation
in underwater routing mechanism.

To overcome this aforementioned problems, this paper proposes the
new kind of Deep Extreme Q-learning and Adaptive Fire fly algorithms
which comprehensively considers all the parameters which are men-
tioned above to prolong the life time of network. The Contribution of
the paper is as follows

1. The Deep Extreme Q-learning aided Adaptive Firefly is designed
for underwater sensor network, which includes both the reward
function and fireflies nature to arrive at a global optimal routing
selection. According to the adaptive reward function, the pro-
posed routing algorithm holds good for the dynamic nature of
sensor nodes with low energy consumption.

2. The proposed algorithm can extend the network lifetime by esti-
mating the routes related to various parameters such as Energy
Distance and depth under the premise of strictly limiting to low
latencies.(End to End Delay).

3. For the sake of evaluating the proposed algorithm, extensive
experimentations are carried out with the parameters such as
network life time, energy utilization and delay of end to end
nodes.

The reminder of this paper is as follows as: Section 2 discusses
about the related works by more than one authors. The system model
and preliminary views of the Deep Q-Learning, Extreme Learning ma-
chines and Firefly optimization algorithms are presented in Section 3.
Section 4 discusses about the proposed Q-AFEEL techniques with its
working mechanism. The experimentations, results along with compar-
ative analysis are discussed in Section 5. Finally the paper is concluded
in Section 6.

2. Related works

Syed Hassan Ahmed et al. (2017) proposed a routing model based
on the Qos aware directional flooding based routing with and without
threshold. These adaptive threshold scheme helps in fixing dynamic
changes exhibited in the established network. This two schemes helps
in improving the current directional flooding protocol by reducing the
hold time for each established link. The limitation is no overhead over
lost packets and this introduces additional delay in the network. Also
redundancy in packet increases the holding time [13].

Zhengru Fang et al. (2020) introduced a new learning assisted
routing protocol for underwater acoustic models. The optimization in
finding the best routing path is established using a Q-learning based
ant colony method. By inspiring the artificial ant path finding strategy,
the reward for all possible routing paths are estimated. Based on the Q-
learning scheme the best solution is fixed for efficient UWSNs. Energy
consumption is moderate due to increased node points [14].

Bo-Min Seo et al. (2019) developed a CDMA based underwater
signaling model which controls communication among node based
on their individual requirement. The energy necessity is estimated
by the corresponding sensor node depending on the distance of the
neighbor node to which communication need to be established. The
energy value is estimated by setting a threshold value to avoid wrong
144
link establishment. As the communication in underwater sensor nodes
are established in node level the congestion is high because of the
one-to-one serving basis network [15].

Mohammad Faheen et al. (2017) proposed a routing protocol con-
sidering the QoS of underwater sensor network. As the quality of
communication is limited with delays, excess noise, reduced band-
width, environmental interference by considering the QoS desired, a
routing protocol is proposed. Energy in the network is fluctuating
creating void issues in transmission. The increase in distance between
source node and the destination node leads to delay in the network.
The model works based on shortest path selection protocol. If any node
failure appear, the routing table will be updated with new shortest
path [16].

Salmah Fattah et al. (2020) studied the behavior of underwater
wireless sensor networks and their underlying challenges. The study
is compiled based on the routing architectures in past five years in
terms of providing secure and stable transmission. The study provides
detailed investigation of platforms needed for UWSNs and the various
taxonomy of routing policies. The research highlights the gaps in
research including mobility of nodes, better coverage, energy consump-
tion and the latency of network. The throughput for efficient UWSN
models can be improved with redesigning in the architectures still
open for improvement. Ocean environmental condition favored models
are highly preferred with more renewable energy source impartment
applications [17].

Shuxiang Cuo et al. (2009) designed a QPSK based CDMA model
for UAVs. This is designed to establish communication between more
than one underwater vehicles. The model uses spread spectrum effect,
channel CDMA scheme and Rake receiver module for transmission of
data between vehicles. In practical implementation a moderate bit error
rate and SNR with -10 dB alone is acceptable for communication. The
model cannot withstand increased bit rate data [18].

Yishan Su et al. (2018) developed a routing protocol with latency
awareness and Q-based energy awareness model. The Q-values are up-
dated based on the on-policy training mechanism to go for new routing
paths. The network life expectancy is improved up to 36% in UWSNs.
Due to increased path selection, packet collision can occur leading to
failure in communication. This collision reduces the throughput of the
network [19].

Aqeb Yahya et al. (2019) introduced a cooperative routing model
for efficient energy management. The proposed routing protocol is
introduced at the network layer of UWSNs. The region based link
establishment is practiced in choosing the routing path. After a path
selection, incrementing the node slots provides the upcoming paths for
link establishment. The proposed routing algorithm provides nature
of ocean environment often dislocates the node leading to failure in
incrementally updating the routing paths [20].

3. Preliminary overview

This Section discusses about the System Model, Q-Learning tech-
niques, Extreme Learning Machines and working of Adaptive Firefly
algorithms.

3.1. System model

The UWSN schemes are modeled based on the sensors deployed in
underwater environments. As the behavior of UWSN are different from
the terrestrial WSN, the system model of UWSN are modeled as follows.

Fig. 1 illustrates the architecture of UWSN models. The topology
illustrated in the model shows the existence of numerous sensor nodes.
The autonomous underwater vehicles (AUV) collects information from
the sensors deployed. The top layer in the UWSN topology is complex
as it comprises both acoustic and radio signals. The acoustic signals are
exchanged to communicate within water medium and the radio waves
exchange information to on-shore systems.
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Fig. 1. Overview of underwater wireless sensor network.
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3.2. Acoustic comuunication analysis

Consider the underwater acoustic system model developed in [21].
The acoustic signal is attenuated with respect to distance and frequency
involved. The acoustic attenuation is expressed as

𝐴 (𝑑, 𝑓 ) = 𝐴0𝑑
𝑙𝑎 (𝑓 )𝑑 (1)

where 𝑑 is the distance of transmission, 𝑓 is the frequency of acoustic
signal, 𝐴0 is the normalization factor, 𝑙 be the spread function and 𝑎(𝑓 )
be the absorption coefficient. In terms of dB range of frequency, the
above equation can be expressed as

10 log
𝐴(𝑑, 𝑓 )
𝐴0

= 𝑙.10 log 𝑑 + 𝑑.10 log 𝑎(𝑓 ) (2)

The r.h.s of the above expression holds both the propagation loss
of the signal and the absorption loss. The term 𝑙.10 log 𝑑 corresponds to
the propagation loss of signal. The term 𝑑.10 log 𝑎(𝑓 ) corresponds to the
loss due to absorption.

The spread function 𝑙 ranges to a maximum of 2 to 4 with 𝑙 = 2
or spherical spread function, 𝑙 = 1 for cylindrical spread function and
= 1.5 for other non-regular spread function. Considering the acoustic
ignal frequency in kHz range Eq. (2) is rewritten as

0 log 𝑎 (𝑓 ) = 0.11
𝑓 2

1 + 𝑓 2
+ 44

𝑓 2

4100 + 𝑓 2
+ 2.75 × 10−4𝑓 2 + 0.003 (3)

For low range acoustic signals expression (3) becomes

0 log 𝑎 (𝑓 ) = 0.002 + 0.11
𝑓 2

1 + 𝑓 2
+ 0.011𝑓 2 (4)

In general, along with the attenuation factor, three noise functions
coexist in acoustic communication. The noise due to turbulence, wave
movement and thermal noise also exist in the channel given as

10 log𝑁 (𝑓 ) = 𝑁𝑖 − 𝜂 log 𝑓 (5)

The loss occurs due to directional gain are ignored and the SNR of
the acoustic channel is confined as

𝑆𝑁𝑅 (𝑑, 𝑓 ) =
𝑃∕𝐴(𝑑, 𝑓 )
𝑁(𝑓 )𝛥𝑓

(6)

here 𝛥𝑓 corresponds to the noise at receiver end. 𝑃 the transmitted
ignal power. The fading effect is modeled with Rayleigh fading effect
nd the bit error rate (BER) is evaluated for single bit transmission for
articular distance as

𝑒 (𝑑) =
1
2

⎛

⎜

⎜

⎝

1 −

√

𝑆𝑁𝑅(𝑑, 𝑓 )
1 + 𝑆𝑁𝑅(𝑑, 𝑓 )

⎞

⎟

⎟

⎠

(7)
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3.3. Q-learning process

The routing protocol is mainly built with the Q-learning mechanism.
Due to the various limitations of existing routing algorithm, the Q-
learning is chosen. The Q-learning model helps in learning features
corresponding to dynamic environments. Thus Q-learning as a rein-
forcement learning strategy is currently derived as Markov Decision
Process (MDP). This MDP sets the parameters such as states action,
reward and the probability of its occurrence as (𝑆,𝐴, 𝑃 ,𝑅) and 𝑃 𝑎

𝑧𝑧′ .
et 𝑧 is current state and 𝑧′ is the next state with action value 𝑎.
𝑎
𝑧𝑧′ = 𝑃𝑟𝑜𝑏

{

𝑧𝑖+1 = 𝑧′|𝑧𝑡 = 𝑧, 𝑎𝑡 = 𝑎
}

(8)

The reward function for state 𝑧 and 𝑧′ is given as 𝑅𝑎
𝑧𝑡𝑧𝑡+1

.𝑡. The
verall reward function of current state is

𝑡 =
∑

𝑧𝑡+1∈𝑍
𝑃 𝑎𝑡
𝑠𝑡𝑠𝑡+1𝑅

𝑎𝑡
𝑧𝑡𝑧𝑡+1|𝑧𝑡=𝑧,𝑎𝑡=𝑎

(9)

Let 𝑄𝜔(𝑧, 𝑎) be the utility function with a policy variable 𝜔.

𝜔 (𝑧, 𝑎) =

{

𝑅𝑡 + 𝛾
∑

𝑧𝑡+1𝜖𝑍
𝑃 𝑎𝑡
𝑧𝑧𝑡+1𝑄𝜔(𝑧𝑡, 𝑎)

}

(10)

𝛾 be the reduction factor ranging from [0,1] and practically 𝛾 values
re mostly [0.5,0.99].
∗ (𝑧, 𝑎) = 𝑚𝑎𝑥

{

𝑄𝜔(𝑧, 𝑎)
}

=

{

𝑅𝑡 + 𝛾
∑

𝑧𝑡+1𝜖𝑍
𝑃 𝑎𝑡
𝑧𝑡𝑧𝑡+1𝑚𝑎𝑥

{

𝑄𝜔(𝑧𝑡+1, 𝑎)
}

}

|𝑧𝑡 = 𝑧, 𝑎𝑡 = 𝑎

=

{

𝑅𝑡 + 𝛾
∑

𝑧𝑡+1𝜖𝑍
𝑃 𝑎𝑡
𝑧𝑡𝑧𝑡+1𝑄

∗(𝑧𝑡+1, 𝑎)

}

|𝑧𝑡 = 𝑧, 𝑎𝑡 = 𝑎 (11)

.4. Extreme learning machines

The features of data are extracted and now the proposed BORN uses
xtreme learning machines developed by G.B. Huang [22], which com-
rises of a hidden layer, speed, velocity and accuracy with great spec-
lation/exactness, and universal function approximation abilities [23,
4].

According to this mechanism, the’ L’ neurons of the hidden layer are
ssociated with an activation function which is consistent (for instance,
he sigmoid function), even when the output layer is equated to be in
ine. It is not necessary to tune the hidden layer individually in ELMs.
he weights of the hidden layer are fixed randomly (counting the bias

oads).
Prior to consideration of training data the model is equated. For a

ingle-hidden layer ELM, the system yield is given by Eq. (12)

𝐿 (𝑥) =
𝐿
∑

𝛽𝑖ℎ𝑖 (𝑥) = ℎ(𝑥)𝛽 (12)

𝑖=1
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where x → input
𝛽 → output weight vector which is expressed as

𝛽 = [𝛽1, 𝛽2,………… .𝛽𝐿]𝑇 (13)

H(x)→ hidden layer output defined as

ℎ (𝑥) = [ℎ1 (𝑥) , ℎ2 (𝑥) ,………… ..ℎ𝐿 (𝑥)] (14)

For estimation of Output vector O which is the target vector, and
the hidden layers are defined by Eq. (15)

𝐻 =

⎡

⎢

⎢

⎢

⎢

⎣

ℎ(𝑥1)
ℎ(𝑥2)
⋮

ℎ(𝑥𝑁 )

⎤

⎥

⎥

⎥

⎥

⎦

(15)

The ELM are implemented based on the marginal non-linear feature
of least square model and is expressed as

𝛽′ = 𝐻∗𝑂 = 𝐻𝑇 (𝐻𝐻𝑇 )−1𝑂 (16)

where H∗ → inverse of H known as Moore–Penrose generalized inverse.
Eq. (16) can be reformulated as

𝛽′ = 𝐻𝑇 ( 1
𝐶
𝐻𝐻𝑇 )−1𝑂 (17)

The output function is thus estimated as

𝑓𝐿 (𝑥) = ℎ (𝑥) 𝛽 = ℎ(𝑥)𝐻𝑇 ( 1
𝐶
𝐻𝐻𝑇 )−1𝑂 (18)

ELM uses the kernel function to yield good accuracy for the better
performance. The major advantages of the ELM are minimal training
error and better approximation. Since ELM uses the auto-tuning of the
weight biases and non-zero activation functions, ELM finds its applica-
tions in classification and prediction values. The detailed description of
ELM ‘s equations can be found in [22,23] The pseudo code for the ELM
is shown in Algorithm 1

Step 1: Training Sets of ‘N’ data with an Activation Function and
n Hidden neurons
Step 2: Input weights are assigned and biases are assigned.
Step 3: Calculate the hidden matrix H
Step 4: Calculate the Output weight Matrix 𝛽
Step 5: Classify /Predict the values

3.5. Firefly algorithms

Yang [25] developed the Firefly algorithm which is considered to be
the family of swarm intelligence algorithms. The lighting bugs called
fireflies for the most part observed blazing their glittering lights in
the sky of summer evenings. The essentialness of the blazing conduct
of fireflies moreover draws the consideration of a mating accomplice
or to get protected from the exploiters. Another significant attribute
of fireflies is that not just the force of the light I get diminishes
when the firefly is not presentable in front of another more brilliant
one yet the air additionally influences the light power by retaining it
when the separation increments. Therefore, the worth power of light
is legitimately relating to the wellness esteem. Be that as it may, the
difficulties of the common practices of fireflies persuade to create three
presumptions for building up a working rule of the calculation. The
speculations are as per the following:

(i) All fireflies thought to be unisex and fascination occurred among
them paying little heed to their sex.

(ii) Engaging quality is moderately corresponding to the brilliance
of fireflies and it decreases as the separation increments amongst
them.

(iii) The splendor or the light force is registered by the doable

arrangements of the goal work.

146
It is obvious from the assumptions that the force of light I(r) of
fireflies is conversely identified with the separation r as it diminishes
when separation increments and again light additionally gets ingested
when goes over the air. The documentation y is utilized as a coefficient
of light ingestion. Therefore, condition (4) shows the variety of power
of light I(r) of fireflies regarding separation r

𝐼(𝑟) = 𝐼0𝑒 − 𝑦𝑟2 (19)

where I0 is the underlying estimation of power at the source end and
the engaging quality parameter 𝛽 can be characterized in two distinct
manners as appeared in 𝛽

𝛽(𝑟) = 𝛽0𝑒 − 𝑦𝑟2 (20)

At the underlying separation of zero, appealing parameters are
eant as 𝛽0. The social guideline for processing firefly positions are

iven in the condition underneath

𝑖 + 1 = 𝑥𝑖 + 𝛽(𝑟(𝑖, 𝑗))(𝑥𝑗 − 𝑥𝑖) + 𝐴𝐸 (21)

here An is the randomization factor and E is the arbitrary number
ector and both the elements are gotten from the Gaussian dissemina-
ion. xI is the 𝑖th position of the firefly and xi+1 s term speaks to the
stimation of fascination.

. Proposed protocol

The detailed explanation of the proposed Deep Extreme Q-Learning
ided hybrid firefly algorithm is elaborated in this section. We also
articularized the significance of reward function in deep extreme
-learning and fireflies to decide a global optimal routing selection.
he proposed algorithm depends on the three phases of working such
s initialization phase, training network models, firefly based route
iscovery and route maintenance strategy. The complete architecture
f the proposed algorithm is given in Fig. 2.

.1. Protocol overview

According to the proposed mechanism, the routing scheme applied
n underwater communication is described as follows. In the under-
ater communication, each source nodes are positioned underwater

o transmit the collected data packets to sink nodes on the shallow
rea with the help of relay nodes. Thus each packet includes featuring
f network comprises an agent, and current data of the sensor nodes
ncluding residual energy, depth, distance and signal strength and
orwarding to the neighboring nodes are considered as the action. In
he proposed algorithm, all the nodes together gather information to
ompute the different Q-values over the broadcast communication with
ts nearby node circle, which makes the agent to uses the firefly algo-
ithm to decide the optimum path selection to establish communication
o send the packets, which ultimately conserves energy.

.2. Initialization phase

As the first step, nodes status and the network topology are expected
o be recognized, with the residual energy, depth rates, distance and
he neighbors of noes with the similar information. At this stage,
roposed algorithm uses the off-line training to train the deep extreme
earning machines to make routing decisions and also no optimization
s incorporated. These known nodes are positioned underwater based
n the assumed states and its topology.
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Fig. 2. Architecture for the proposed protocol.
4.3. Training the network

The proposed model has been incorporated in the sink and uses the
unicast communication to collecting the data packets from the other
nodes. Fig. 3 shows the data packets received from the different nodes.

These variable packet size are used for training the network in rein-
forcement manner. Fig. 4 shows the architecture of the proposed deep
extreme Q-learning machines which are the trained by the dynamic
data from the sensor nodes.

In this Model, input layer comprises of five nodes containing the
residual energy, depth of the nodes, distance between the nodes, and
nodes’ signal strength respectively. The output layer is the Q-value.
Table 1 illustrates the parameters used for the training the proposed
model.
147
Table 1
Parameters used for the training the proposed model.

Sl.no Parameters used in the networks Specifications

01 No of input layers 05
02 No of output layers n–Q values
03 No of hidden layers 05
04 No of hidden nodes in layers - 1 250
05 No of hidden nodes in layers - 2 100
06 No of hidden nodes in layers - 3 100
07 Bias weights Auto-Tuned
08 Activations functions - layer1 RELU
09 Activations functions - layer2 Sigmoidal
10 Activations functions - layer3 Sigmoidal
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Fig. 3. Packet information used for the data transmission.
Fig. 4. Architecture diagram for the proposed model.
Fig. 5. Convergence analysis for the proposed deep learning algorithms during testing and training phases.
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Since finding all the possible optimal paths consumes larger time
nd also leads to computational complexity of the networks, which may
ffect the networks’ parameters. Hence the proposed algorithm incor-
orates the adaptive firefly algorithms to find the optimized routing
echanism of the nodes based on the different Q-values obtained from

he neural networks.

.4. Reward and loss function

The mathematical expression () represents the loss function of the
roposed Extreme Learning machines. The reward function R(𝑆i, 𝑁i) is
enerated at each set comprising of a state and an action. The reward
unction for the proposed network is given as follows as

(𝑆i, 𝑁i) = 𝑏 + 𝛼𝑅𝑒 + 𝛽𝐷 (𝑖) + 𝜃𝑑 (𝑡) + 𝜇𝑆 (22)

here 𝛼 is the residual Energy, 𝛽 is the Depth of the nodes, 𝜃 is the
istance and 𝜇 is the signal strength between the nodes. B is the sum
f 𝛼, 𝛽, 𝜃 and 𝜇 respectively. Then based on Eq. (22), the proposed deep
xtreme machines are iterated and convergences through the training
o get the multiple Q-Values for each and every nodes. Initially reward
f sink is set to 100 which is greater than those of the other nodes
etween 0 and B. The routing decision by the fireflies takes this reward
unction of the other nodes which are very close to the sink. Thus
he detour rate is reduced in which the fireflies optimizes the path
y selecting the nodes with increased residual energy, high depth and

loser to the sink for every routing iteration. e
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.5. Route discovery using fireflies

The different Q-values are obtained from deep extreme learning
achines and based on the Q-values, adaptive firefly optimization

s adopted for the best routing decision. The multi-objective fitness
unction are used for the selecting the energy efficient path among the
odes. The fitness function for the selecting the best routing decision is
iven by the working mechanism of the proposed algorithm is depicted
n the algorithm-

. Results and discussion

In our simulation environment, 100 sensor nodes are homoge-
eously deployed in the area of 500 × 400 × 450 cubic.meters with one
ink being positioned on the middle of the water surface (250 × 200 ×
50). Each node in the network itself replicate as source node for
nformation generation which follows Poisson distribution to aid trans-
ission of packets to the sink node. The other simulation parameter

alues are listed in Table 2.

.1. Convergence analysis

Figs. 5 and 6 shows the convergence analysis as the amount of
raining rounds increases. Before deployment, proposed learning mod-

ls takes approximately 12000 training rounds to make the loss value
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Table 2
Specification of simulation parameters used in experimentation.

Sl.no Experimentation parameters Values

01 Transmission range 2000 m
02 Initial energy 10 000 J
03 Transmission power 10 W
04 Receiving power 1 W
05 Idle power 30 mwW
06 Transmission packet size 100 kbps
07 Number of iterations 100

converge since still in the learning rate to produce the different optimal
Q-values. Once the sensor nodes are positioned under water, it takes
around 478 training rounds to make the loss value convergence when
the data updating assignment is accomplished through the broadcast.
Thus the up-dation is related to the complete practice stored previously
during the initial stage, which leads to the computational overhead of
the sensor nodes. Fig. 7 shows the comparative analysis between the
proposed learning with the existing deep Q-neural networks.

It has been found that, implementation of the extreme learning
machines for constructing the deep Q-networks has taken the less time
for training in which it reduces the computational complexity in the
networks and also reduction of computational overhead of the sensor
nodes when compared to the existing algorithm.

5.2. Performance analysis

In this section, we have analyzed the impact of 𝛼, 𝛽, 𝜃, 𝜇 on the
energy consumption, end to end delay, and packet delivery ratio using
the proposed algorithms deployed over the underwater.

Fig. 8 shows the relationship between the variance of energy con-
sumption and the residual energy 𝛼 for delivering 1000 packets. It was
bserved from the Fig. 8, when 𝛼 and no of rounds increases, variance
f the energy consumption reduces slowly. It is because as the number
f the rounds increases, proposed model will select the forwarder with
mple energy instead of selecting the lower energy. Moreover, the
lgorithm has been adaptively selects the node with the highest energy
hich results in the nodes in the networks are used more uniformly
hich makes the variance of energy consumption decreased. Fig. 9

hows the relationship between the variance of energy consumption
nd the depth of the nodes 𝛽 for delivering 1000 packets. Again the
roposed model selects forwarder based on the highest energy at each
nd every rounds, which makes the variance of energy consumption
149
decreases as the depth of the nodes decreases. The similar fashion has
been observed in Fig. 10 and it clearly shows that variance of energy
consumption decreases as the signal strength decreases and distance
increases.

Fig. 11 shows the relationship between the network life time and the
residual energy along with depth parameter at constant distance and
signal strength. It can be observed from the Fig. 11, as the 𝛼 increases
and 𝛽 decreases, the network lifetime increases. In the initial stage,
etwork can send most of the 6000 packets. This is because, proposed
odel will select the next forwarded with the more energy and replace

he forwarded nodes adaptively to an environment which maximize the
etwork life time. Moreover it consumes only 20% of its maximum life-
ime when sending the 2000 packets. The selection of adaptive shortest
ath by the proposed models which makes the topology based on the
ore energy nodes. Fig. 12 shows the relationship between the end

o end delay analysis and the residual energy and depth parameters.
t has been observed that the end to end delay varies some where
etween the 3.4 to 3.6 s because optimized algorithm shows only the
igh energy forwarders for transmitting the data in the network. In this
ase, highest reward function plays an important role for promoting the
ata packets in the networks. Hence the nodes with more energy will
e participating as the forwarders and consumes the energy uniformly.
his removes the nodes with low energy and makes the protocol more
uitable to prolong the network life time and decrease in latency.

.2.1. Comparative analysis
In this section, we have compared the performance of the proposed

earning models with the other existing models such as VBF, QELR, and
QELR algorithms in which the different parameters such as packet
elivery ratio, energy consumption, latency and network life time were
ompared. QELR integrates the Q-learning and DQELR uses the deep
-learning algorithm for routing mechanism.

Fig. 13 presents the energy consumption of different protocols for
he 1600 round of iteration in which the both proposed and DQELR
rotocols consumes only 15% of energy after the 400 rounds where
s other algorithms consumes 20%–30% of the total energy. The pro-
osed protocol consumes 35% energy, DQELR consumes 45%, and
ther algorithms consumes 60% to 75% energy after 1600 rounds
f iteration. Both the proposed protocol and DQELR consumes the
nergy consumption as equal to 20% to 30% after 1000 rounds but
s the rounds increases, DQELR has shown degraded performance in
nergy consumption. The reason is adoption of firefly optimization
ver the different Q-values and integration of Extreme Learning ma-
hines in the proposed protocol has taken an edge over the DQELR
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Fig. 6. Comparative analysis between the convergence analysis for the proposed deep learning algorithms and existing algorithms during the training phases.
Fig. 7. Comparative analysis between the convergence analysis for the proposed deep learning algorithms and existing algorithms during the testing phases.
Fig. 8. Energy consumption analysis for the proposed models with the impact of different scenarios of residual energy.
Fig. 9. Energy consumption analysis for the proposed models with the impact of different depth of the nodes.
hich incorporates only the Deep Q-learning networks. Figs. 14 and 15
resents the network life time analysis and end to end delay analysis
or the different algorithms. Both the network life time is maintained
150
constantly at each and every rounds, DQELR comes second whereas
the VBF as the least network life time. The adoption of selecting the
best optimal path based on Q-firefly methods has shown 40%–45%
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Fig. 10. Energy consumption analysis for the proposed models with the impact of different radius.

Fig. 11. Network life time analysis for the proposed model with the impact of residual energy and depth of the nodes.

Fig. 12. End to end delay analysis for the proposed model with the impact of residual energy and depth of the nodes.

Fig. 13. Comparative analysis of the energy consumption between the different algorithms at radius = 100 m.
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Fig. 14. Comparative analysis for the delay analysis between the different algorithms at radius = 100 m.
Fig. 15. Comparative analysis for network life time analysis between the different algorithms at radius = 100 m.
Fig. 16. Comparative analysis for packet delivery ratio between the different algorithms at radius = 100 m.
increased life time when compared to DQELR, 50% than DELR and
60% than VBF protocols. Yet, the QELR and the VBF adopt a broadcast
communication method with increased energy consumption though the
nodes are empty with null packets leading to energy wastage. The
QELR also has no detour short comes while choosing forwarding nodes
with high residual energy, and the energy of the nodes in the VBF can
be drained quickly because of the repeated utility. Fig. 15 shows the
similar fashion of performance as in Fig. 14 in which the proposed
protocol has outperformed the other existing algorithm in achieving
the less time for the data transmission. Fig. 16 shows the comparative
analysis between the different algorithms in which the packets delivery
ratio of the proposed algorithm has maintained constantly though
there is an rapid change in the topologies and outperforms the other
algorithms which makes it suitable for the underwater communication.
152
6. Conclusion

In this paper, energy aware, depth and distance aware deep extreme
Q- Firefly Learning Routing protocol has been proposed. This algo-
rithm adopts the deep extreme learning models along with Q-learned
Fireflies are adopted to prolong the network lifetime and efficiency
of the networks. In addition, the proposed algorithm incorporates the
online training policy which can play an important role when the
topology changes and also to make the best routing decisions with an
adaptive topology. The extensive experimentations has been conducted
to compared the performance of the proposed algorithm in terms of
energy consumption, network life time, end to end delay and packet
delivery ratio. Also the proposed protocol has consumed less of 40%–
45% energy consumption than existing algorithms such as DQELR, 50%
less than DELR and as high 60% than VBF protocols. Also the proposed
protocol has better network life time, low end to end delay than the
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DQELR, DELR and VBF protocols. In conclusion, the proposed protocol
has achieved the better network life time and less latency which makes
its more suitable for the underwater communication.
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