
978-1-7281-9180-5/20/$31.00 ©2020 IEEE

Proposed Techniques to Optimize the DW and ETL
Query for Enhancing data warehouse efficiency

Abhishek Gupta[1], Arun Sahayadhas[2]

PhD Scholar[1], Application Development Senior Analyst[1], Professor[2]

Dept of Computer Science and Engineering[1,2]
Vels Institute of Science, Technology and Advanced Studies, [1,2], Accenture Services Pvt Ltd[1]

Chennai, India[1,2]
abhishekresearchsecrets@gmail.com[1] , arun.se@velsuniv.ac.in[2]

Abstract— To improve time-bound decision capability of any
business corporates, they have to perform data-analysis based
on historical and current data. For handling this data, data
warehouse (DWH) plays a crucial role. Further-more as time
passes, the data also grows exponentially, because in data
warehouse historical data also needs to be maintained. If we
further drill now-a-days Extract Transform and Load (ETL)
tools are being used to perform extract, transform and loading
of data. These ETL tools are based on any specific language like
in case of Informatica ETL tool, which is based on Structured
Query Language (SQL) language. So, it’s imperative to enhance
the efficiency of these languages to enhance the capacity of ETL
tools and this will significantly impact the performance of data
warehouse ETL work, and by this data can also be provided in
faster manner for analysis and reporting purposes.
Additionally, data quality is also an important factor, as data-
analysis will be performed on the same data supplied by data
warehouse. So, it’s highly concerned to improve the data quality
by applying data-quality checks before supplying for data-
analysis purpose. So, we have worked in this direction and gone
through various research papers which are mainly focused on
query optimization and data quality improvements. After going
through all research papers, we have not only summarized the
performance tuning tips given in these papers but also worked
and experimented various things, and then we have proposed
some unique techniques for query optimization and improved
data quality techniques. After which we have incorporated it in
data warehouse to enhance overall performance of data
warehouse. These proposed techniques can be applied in any
place wherever queries are being used to extract/transform
and/or load the data to enhance the performance.

Keywords—Data Warehouse, Incremental Load, Indexing
Techniques, Query Optimization, Slowly Changing Dimensions,
Statistics generation.

I. INTRODUCTION
 Today in the world of data-science, whole business
data either its current or historical data is handled by data
warehouse. So, data warehouse plays a very crucial role in
data-handling. Data warehouse is a central repository which
contains business current as well as historical data, which it
sourced from heterogeneous data-sources and after
cleansing/transforming it is moves for the reporting and
analytics purpose. To maintain this whole process data
warehouse architectures are designed. In [1] a comprehensive
survey has been performed to enhance efficiency of data
warehouse. This paper has formalized steps to design data
warehouse and has performed survey on the techniques that
can be used to optimize efficiency of data warehouse. In the
figure 1, the basic enterprise data warehouse architecture has
been showcased:

Figure 1. Enterprise Data Warehouse

In data warehouse whole data needs to move from
heterogeneous data sources to heterogeneous targets after
proper scrubbing or transformation of data. This whole
process of Extraction, Scrubbing and Loading is called as
ETL process. Data gets extracted from the targets using
various business analytics tools, which are used for various
purposes like to generate reports, for data mining and other
works.

There are so many ETL tools available now-a-days in the
market for performing ETL operations efficiently. Out of
these tools the most used ETL tool is Informatica. It has been
observed that all ETL tools are built on some specific
language which can interact with the database and would be
able to extract the data like Informatica ETL tool is designed
based on SQL. By optimizing these languages on which these
ETL tools are dependent, the operational speed of the tools
can be greatly improved. As this is a very vast area and we
can’t showcase optimization tips for all languages, we have
limited this paper to showcase SQL optimization tips.

The optimization of queries, can be performed using below
steps:
1. Check for the execution plan cost of the query, for which
the optimization needs to be performed.
2. Work on the optimization of execution plan cost, as much
as the execution plan cost is optimized that much the query
will also be optimized.

There are so many researches have been performed by
various researchers to optimize of execution plan cost. We
have performed a deep study and observed that Indexing can
be used to enhance the query performance, but there are so
many indexing algorithms are available. It’s required to
choose a proper indexing algorithm, which will be helpful to
increase the performance. In [2,11] comparative study on
these indexing algorithms have been performed. But these
papers are biased on the indexing algorithms only and by only
optimizing indexing it can not be assured that query is fully
optimized, sometimes it happens that even after applying
indexing queries does not become optimized a little. So, it is
required to work on other performance tuning tips, which are

Authorized licensed use limited to: University of Canberra. Downloaded on May 22,2021 at 08:20:37 UTC from IEEE Xplore. Restrictions apply.

defined in these papers. Apart from indexing algorithms there
are some other query performance tuning tips that have been
explained in [3,5,6,7,8,9,12]. These papers have summarized
various tips through which the query optimization can be
performed. But excessively/ aggressively usage of
performance tuning tips can also generate overhead on the
query and the query will become more complex to handle and
difficult to understand sometimes. Which makes maintenance
of query a difficult task. Rather than that it is better to follow
the steps of optimization which have been explained above
(optimize the execution plan cost). As after experimenting we
have observed that without even using any performance
tuning tips and by just changing the sequence of tables in join
(table having less data can be placed first followed by table
having more data), performance can be improved at greater
extent. Like this example other things can be performed
which should aim to optimize the execution plan cost, and the
tuning tips that have been explained in these papers can be
used as an add-on to further optimize the execution plan cost.

Query optimization is one of aspects for which we should
work, but still there are other aspects also which should not
be ignored. Out of those aspects, one aspect is writing
accurate query. A tiny mistake in query can generate wrong
output. These mistakes generally occur when NULL or Blank
data is present in the storage tables. It’s highly imperative to
use NULL and Blanks properly, else this can generate
erroneous data. By proper handling of this data accuracy can
be enhanced greatly. Second aspect is data security to make
sure that data warehouse/target which contains business
sensitive data, should not be accessible by all. Third aspect is
maintaining the historical data using data warehouse, where
it is maintained with the help of slowly changing dimensions
(SCD) concepts. The implementation concept for slowly
changing dimensions has been explained in [4,10,13]. These
papers can be referred while implementing SCD types in data
warehouse design. These papers are biased on SCD types but
have not accompanied the concept that how to use these SCD
types wisely. There is still requirement to work on
formalization of a generalized concept that can be used on
universal basis.

II. PROPOSED TECHNIQUES
1. For maintaining historical data in data warehouse, slowly
changing dimensions are used. Out of these slowly changing
dimensions most frequently used dimensions are SCD Type
1/2 and 3. Which have been elaborated in figure 2,3:

Figure 2.Data in DWH and Modified data from Source

Figure 3. Slowly Changing Dimensions Type 1/2/3

Each SCD types have their own pros and cons. So, we have
proposed to use 3 data warehouses that will be segregated
based on SCD types and as per the data requirements, queries
can be applied to the specific data warehouse for analysis and
debugging purpose and significant results can be obtained
with less time. As query needs to handle less or significant
amount of data.
2. We have proposed to use the Incremental load in the data
warehouse. So that only limited amount of data needs to be
taken from the source itself, as it will be filtered based on
specific parameters/columns like date at the source level
itself.
3. We Should always use the Indexed data warehouse as well
as indexed data marts. Along with this we also need to decide
that which kind of and volume of data we will be going to
use, so accordingly we should choose the appropriate
indexing algorithm. A sample example of Indexing is shown
in figure 4:

Figure 4. Indexed Data Warehouse

Data warehouse architecture for the point 4,5 and 6 have been
illustrated in figure 5:

Figure 5. Proposed Data Warehouse Design

Authorized licensed use limited to: University of Canberra. Downloaded on May 22,2021 at 08:20:37 UTC from IEEE Xplore. Restrictions apply.

4. We should always use the parameterized queries wherever
necessary. Which not only gives freedom of user-interaction
ease in the complex queries handling but also helps in data-
security concerns. For example, the parameterized values can
be passed to triggers and can be checked that what necessary
actions needs to be taken. It has been showcased using an
example in figure 6:

Figure 6. Parameterized Query

5. In some-places it’s imperative to have the columns as
unique values to treat it as the primary key but these columns
are not the primary keys at physical level, so, this rules get
broken when we have to use the that table as driving table and
another table as secondary table being used as left join and
having more than one values for those columns for which we
were looking it as unique. On that time, we can handle it by
concatenating the columns given in the secondary table and
can make the driving table columns unique. This concept has
been illustrated with an example in figure 7:

Figure 7. Example of Concatenation of data

But after that some-times we have the requirements like to
take the specific value from column 4 based on column 3.
Which makes the task difficult as first we need to check for
the exact place where the data is situated in column 3 and then

we need to check respective value in the column 4. To handle
this issue, we have implemented the universal rule for the
same, at this time we are handling this at informatica
expression level, that can be easily converted to SQL or any
other language. The expression has been showcased in figure
8:

Figure 8. De-concatenation algorithm

6. Always try to retrieve data from the views wherever there
is possibility that data can be changed based on time or rules.
So, for example if a specific view say view1 is being used at
more than 10 places. So, it’s not practical approach to reload
or modify data in all places, rather than that it would be
preferable to use the views that will be refreshed
automatically, when the main table gets modified. This
concept works more effectively where the view is being
generated based on more than 1 table, as it places the data at
one place like a table, and we don’t have to work on join
queries to extract data from more than 1 table as the view will
automatically handle it.
7. Whenever the query is written, we must ensure that NULLs
and Blanks are being handled properly. For example if we are
doing join on two tables and we want to make sure that
NULLs and Blanks should be treated as the same then we
should not write data directly it can be re-written as
“NVL(column,’’)”, so NULL will also be converted to blanks
and can be treated as same. Apart from that SQL does not
allow make condition as “NULL = NULL”, so practically
when we put join on tables based on columns having NULL
values SQL filter out the data and doesn’t show those values
as output of query. So, this concept of NVL can also handle
this issue by putting columns having NULLs with NVL,
which will replace NULLs with specified values and match
the records and show those records also as a output. So, this
concept also supports data loss prevention techniques.
8. We have proposed a technique which can reduce the snow-
flake schema to star schema, using a coded value, in which
the binary-coded values will have a fixed length as per the
requirements, and connected to the dimension table in the
form of star schema. We have showcased it using an example,
in figure 9 and 10:

Authorized licensed use limited to: University of Canberra. Downloaded on May 22,2021 at 08:20:37 UTC from IEEE Xplore. Restrictions apply.

Figure 9. Proposed Snowflake to Star schema conversion

Figure 10. Example of Binary-coded data

Here the BTIMEID column has been coded as below for
2008.4.12, which is the combination of Byear = 2008,
Bquarter=4, Bmonth=12 columns: -

Binary code for year: 2008 – 2000 + 1 = 9; Binary code for 9
= 1001
Binary code for quarter: Binary code for 4 = 100;
Binary code for month: Binary code for 12 = 1100
The combined binary-coded value of 2008.4.12 is
10011001100
9. After analysis we have found that if statistics/stats are
applied on the tables being used in the data warehouse then
the efficiency of query can be enhance drastically as stats
directly impact the execution plans, which are used to
optimize the queries effectively. So, it’s imperative to always
have the stats updated. After that analysis we have found that
there are no specific algorithms are available to or derived for
updating the Stats on the table. Furthermore, we also have
analyzed that only writing stats update on table is not a good
practice, while working on stats update on any table it is
required to consider other required factors too. So, after
taking those factors into consideration, we have proposed an
algorithm to update stats on specific tables whenever the
queries are fired on that using algorithmic steps given in
figure 11:

Figure 11. Statistics update algorithm

10. We should always try to execute the queries parallelly,
whenever and wherever it’s possible. We have proposed an
algorithmic way to do this, illustrated below as an example:

Say the query, which we want to execute is as below:
SELECT empid, deptid, AVG (Salary) FROM Employee
GROUP BY empid, deptid HAVING AVG (Salary) <
(SELECT MAX (AVG (salary)) FROM dept WHERE empid
IN (SELECT empid FROM emp-history WHERE Dept-id
BETWEEN 100 AND 200) GROUP BY empid, deptid);
So, the tables which are being used in this are: Employee,
dept, emp-history. Then We have written an algorithm which
will segregate the queries during the pre-processing stage. So,
this query will also be segregated into three subqueries based
on the presence of commas, brackets, key words, relational
expressions mentioned and functions, which are as follows: -

Sub query 1: SELECT empid, deptid, AVG (Salary) FROM
Employee GROUP BY empid, deptid HAVING AVG
(Salary) <
Sub query 2: SELECT MAX (AVG (salary)) FROM dept
WHERE empid IN
Sub query 3: SELECT empid FROM emp-history WHERE
Dept-id BETWEEN 100 AND 200 GROUP BY empid,
deptid
After pre-processed sub-query set generation, we need to
identify the objects and attributes of each sub query which are
as follows:
Sub query1: Base table -1; Base table name - Employee;
Attributes used-2; Attribute names- empid, Salary; Functions
used- 1
Sub query2: Base table -1; Base table name - dept; Attributes
used-1; Attribute names-salary; Functions used-1
Sub query3: Base table -1; Base table name - emp-history;
Attributes used-1; Attribute name-dept-id;

After this we need to make the query-tree, and remove the un-
necessary clauses, by which all three queries can run

Authorized licensed use limited to: University of Canberra. Downloaded on May 22,2021 at 08:20:37 UTC from IEEE Xplore. Restrictions apply.

independently and can generate the results independently.
After generating the results, we again have to re-check and
re-arrange the queries based the dependency-rules, as below:

SELECT empid FROM emp-history WHERE Dept-id
BETWEEN 100 AND 200;
SELECT MAX (AVG (salary)) FROM dept WHERE empid
IN (sub query3) GROUP BY empid, deptid;
SELECT empid, deptid, AVG (Salary) FROM Employee
GROUP BY empid, deptid HAVING AVG (Salary) < (sub
query1);

III. ANALYTICAL RESULTS
This paper has been designed after thorough study and
analysis of various research papers. In this paper we have not
only discussed about the performance tuning tips proposed by
these papers can be used to tune the query but also, we have
proposed some new and unique techniques through which
queries be tuned more efficiently. In this paper we have
proposed a data warehouse architecture which uses the
incremental load as well this architecture has incorporated
SCD type 1/2 and 3. We have used SCD type 1/2 and 3, to
make data entries possible in three ways and as per the
requirements queries can be fired on specific DW to grab the
required data from specific DWH. So, this operation will
limit the handling of datasets and performance can be
increased. Further-more we have proposed to use indexing
algorithms and stats on tables efficiently as per the
requirements in data warehouse. Further-more we have
proposed to use the parameterized queries, which will
enhance data-security as well as makes the human interaction
possible and ease the process to handle big and complex
queries. Additionally, we have proposed to use the views on
the top of main tables, so if data varies with time then views
will be refreshed automatically and will require less
operations need to be performed. We also have introduced
that how to convert snow-flake schema to star schema, which
will reduce the number of joins and so, the query will become
less complex. Along with this we have also introduced that
NULLs and Blanks should be handled effectively along with
an example else the query can draw the wrong results. We
also have proposed concatenation and de-concatenation
operations to maintain uniqueness of any specific column.
We have also proposed an algorithm to run the query
parallelly, which significantly boost the query performance
due to parallelism.

IV. CONCLUSION
In this paper we have showcased the significance of Data
warehouse for business corporates. After which we have
introduced about various terminologies used in data science,
which is imperative to understand the paper in more
meaningful way. After which we have showcased importance
of languages like SQL, which are used as back-bone to
perform various operations in data warehouse. By optimizing
these languages ex. SQL, the efficiency of data warehouse
operations can be greatly enhanced. So, for this purpose we
have studied various papers and literatures and discussed
about the performance tuning tips presented/ Proposed by
various researchers. Apart from that we also have proposed
some techniques through which we can get favorable results.
The techniques which are being demonstrated here can also

be less or more can be applied to other languages also to
achieve performance tuning.

V. FUTURE SCOPE
In this paper we proposed some new techniques to enhance
query optimization. Using these tips and techniques the future
data warehouse designs can become more efficient. Further-
more there is still future-scope to work on real-time data
aspects, to make real-time data-based designs more efficient.

REFERENCES
[1] Gupta, Abhishek. (2020). A Comprehensive Survey to Design Efficient

Data Warehouse for Betterment of Decision Support Systems for
Management and Business Corporates. International Journal of
Management (IJM), IAEME Publication, Volume 11, Issue 7, July
2020, pp. 463-471.

[2] Hashim, R.T. (2019). A Comparative Study of Indexing using Oracle
and MS-SQL Server for Relational Database Management Systems.

[3] Pooja Wankhade , Dr. Vaishali Deshmukh. (2019). Comparative
Analysis of Query Optimization Techniques in Database Systems.
International Journal of Science & Engineering Development Research
(www.ijsdr.org), ISSN:2455-2631, Vol.4, Issue 3, page no.515 - 519,
March-2019

[4] Bhide et al. (2016). SLOWLY CHANGING DMENSION
ATTRIBUTES IN EXTRACT, TRANSFORM, LOAD PROCESSES.
United States Patent, (10) Patent No.: US 9,311,368 B2, Date of Patent:
Apr. 12, 2016

[5] Thangam, A.R., & Peter, D.S. (2016). An Extensive Survey on Various
Query Optimization Techniques.

[6] Habimana, J.D. (2015). Query Optimization Techniques - Tips For
Writing Efficient And Faster SQL Queries. International Journal of
Scientific & Technology Research, 4, 22-26.

[7] Gupta, S., Tandel, G.S., & Pandey, U. (2015). A Survey on Query
Processing and Optimization in Relational Database Management
System.

[8] Johnson, T. (2013). A Study on the Role of Equivalence Rules in the
Enhancement of Query Performance.

[9] Navita Kumari, 2012, Sql Server Query Optimization Techniques –
Tips For Writing Efficient and Faster Queries, International Journal Of
Scientific and Research Publications, Volume 2, Issue 6.

[10] Braden et al. (2012). SYSTEMS AND METHODS FOR STORING
AND QUERYING SLOWLY CHANGING DIMIENSIONS. United
States Patent, Patent No.: US 8,260,822 B1, Date of Patent: Sep. 4,
2012

[11] Gupta, Manoj & Badal, Dharmendra. (2012). COMPARATIVE
STUDY OF INDEXING TECHNIQUES IN DBMS.

[12] Ziani, B., & Ouinten, Y. (2011). Improving Star Join Queries
Performance: A Maximal Frequent Pattern Based Approach for
Automatic Selection of Indexes in Relational Data Warehouses. 2011
International Conference on Internet Computing and Information
Services, 119-122.

[13] Griffin et al. (2005). METHOD OF MANAGING SLOWLY
CHANGING DIMENSIONS. United States Patent, Patent No.: US
6,847,973 B2, Date of Patent: Jan. 25, 2005.

Authorized licensed use limited to: University of Canberra. Downloaded on May 22,2021 at 08:20:37 UTC from IEEE Xplore. Restrictions apply.

