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Excessive Index of Certain Carbon Based Nanotubes

S. Maria Jesu Rajaa,b and A. Gracybabya

aDepartment of Mathematics, Loyola College, Chennai, India; bSchool of Basic Science, VISTAS, Chennai, India

ABSTRACT
Chemical graph theory models have been extensively used as predictors of
the properties of chemical compounds. Nanotechnology is the study of
manipulating matter on an atomic and molecular scale. There are many
applications of nanotechnology in the area of medicine, chemistry, energy,
agriculture, information and communication, heavy industry, and consumer
goods. A Kekule structure in a molecular graph is nothing but a perfect
matching in the graph. The minimum number of Kekule structures that
cover the edge set of a molecular graph G is known as the excessive index
of G. In this article, we determine the excessive index for TUC4C8ðSÞ½p, q�
nanosheet, NPHX½m, n� nanotube, TUC4C8ðRÞ½p, q� nanotube, H-anthracenic
nanotube, and H-tetracenic nanotube.
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Introduction

The structure of benzene as a six-membered ring of carbon atoms was introduced by the German
chemist F. A. Kekule in 1865. To make the structure compatible with the quadriyalence of car-
bon, he introduced alternating single and double bonds in the ring. The usual structural represen-
tation for benzene is a six carbon ring (represented by a hexagon) which includes three double
bonds. Each of the carbons represented by a corner is also bonded to one other atom. In benzene
the double bonds are separated by single bonds so we recognize the arrangement as involving
conjugated double bonds. In 1991, Iijima discovered a complex, elongated type of fullerene: the
carbon nanotube (CNT) it can be imagined as a C70 fullerene with many thousands of carbon
rings inserted across its equator, giving a tiny tube with about 1.5 nm of diameter and a length of
several microns. Like graphite, CNTs are also composed of sp2 carbons, meaning that each carbon
is engaged in a single double ðC–CÞ bond and two single ðC–CÞ bonds. Therefore CNTs, like
graphite, pyrene, coronene, and many other hexagonal systems immersed in the “sea” of p-elec-
trons, are also benzenoid systems. The stability of benzenoids may be approximated by determin-
ing the Kekule’ structure count (K) that is the number of ways the double bonds can be placed in
the chemical graph consisting of hexagons. A dominant role is played by three sciences: mathem-
atics, chemistry, and computer science. Models presented here give an insight into the nature of
some chemical compounds. The most interesting feature of these models is the possibility to pre-
dict the properties of chemical compounds that have never existed nor been synthesized. Hence,
Kekule theory gives us a glimpse beyond our real world, a glimpse into the world of almost infin-
ite possibilities. Nanotube structures have many applications in the general field of nanotechnol-
ogy, which is a relatively recent field with much potential, as well as some significant liabilities.
The engineering of molecular products needs to be carried out by robotic devices, which have
been termed nanorobots.1 Nanorobotics is a field which calls for collaborative efforts between
physicists, chemists, biologists, computer scientists, engineers, and other specialists.2–6 Currently
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this field is still evolving, but several substantial steps have been taken by great researchers all
over the world contributing to this ever challenging and exciting field. The field of nanorobotics
studies the design, manufacturing, programming, and control of the nanoscale robots. Controlling
nanoscale robot is obtained by proper scheduling. Scheduling is the process of deciding how to
commit resources between a variety of possible tasks. Carbon nanotubes consist of carbon atoms
bonded into a tube shape where carbon atoms are located at apexes of regular hexagons on two-
dimensional surfaces. Carbon nanotubes are extremely strong, probably one of the strongest
materials that is even theoretically possible. Determining excessive index has important applica-
tions in scheduling.7 Structures realized by arrangements of regular hexagons in the plane are of
interest in the chemistry of benzenoid hydrocarbons, where perfect matchings correspond to
kekule structures which feature in the calculation of molecular energies associated with benzenoid
hydrocarbon molecules.8 Chemical graph theory is a subdivision of mathematical chemistry in
which we apply tools of graph theory to represent the chemical phenomenon mathematically.
Chemical graphs are models of molecules in which atoms are represented by vertices and chem-
ical bonds by edges of a graph. For a graph G let V(G) denotes the set of vertices in G, E(G)
denotes the set of edges in G, jVðGÞj and jEðGÞj denote the respective cardinalities of these sets.
The degree or valency dGðvÞ of a vertex v in G is the number of edges of G incident with v, each
loop counted as two edges. The maximum degree of G denoted by DðGÞ, is the degree of the ver-
tex with the greatest number of edges incident to it. The minimum degree of G denoted by dðGÞ,
is the degree of the vertex with the least number of edges incident to it. For each vertex v 2 V,
the open neighborhood of v is the set N(v) containing all the vertices u adjacent to v and the
closed neighborhood of v is the set N(v) ¼ N(v) [ fvg: A matching in a graph G ¼ (V, E) is a
subset M of edges, no two of which have a vertex in common. A matching M is said to be perfect
if every vertex in G is an endpoint of one of the edges in M. Thus a perfect matching in G is a
1-regular spanning subgraph of G. An almost perfect matching or near 1-factor matching covers
all but exactly one vertex. A graph G is 1-extendable if every edge of G belongs to at least one 1-
factor of G. A 1-factor cover of G is a set F of 1-factors of G such that [F2F F ¼ E(G). A 1-fac-
tor cover of minimum cardinality is called an excessive factorization.9,10 The excessive index of
G, denoted v0eðGÞ is the size of an excessive factorization of G and defined v0eðGÞ ¼ 1 if G is not
1-extendable. A graph G is 1-factorizable if its edge set E(G) can be partitioned into edge-disjoint
1-factors. An excessive near 1-factorization of a graph G is a minimum set of near 1-factors
whose union contains all the edges of G.11,12 Excessive index has a number of applications par-
ticularly in scheduling theory to complete the process in minimum possible time.12 In the litera-
ture the problem of determining whether a regular graph G is 1-factorizable is NP-complete.13

The objective and basic concept of the manuscript is to determine the excessive index for
TUC4C8ðSÞ½p, q� nanosheet, NPHX½m, n� nanotube, TUC4C8ðRÞ½p, q� nanotube, H-anthracenic
nanotube and H-tetracenic nanotube.

Theorem 1.1. 14 Let G be a graph. Then v0eðGÞ � D.

Theorem 1.2. 14 Let G be a regular graph with even order. Then v0eðGÞ ¼ D if and only if G is 1-
factorizable.

Theorem 1.3. 15 Let G be a graph of order n with d ¼ 2. Let v1, v2,… ,vm, m< n, be the vertices
of degree 2 in G. Suppose NðviÞ ¼ f v1i , v

2
i g, 1 � i � m, degðv1i Þ ¼ k1i þ 1 and degðv2i Þ ¼ k2i þ 1,

then v0eðGÞ � maxifk1i þ k2i g, 1 � i � m.

Lemma 1.4. Let G be a graph which is connected, jGj ¼ n with d ¼ 2. Let v1, v2,… ,vm, m< n, be
the vertices of degree 2 in G. Suppose Nðv1Þ ¼ f v11, v

2
1 g,Nðv2Þ ¼ f v12, v

2
2 g,… ,NðviÞ ¼ f v1i , v

2
i g,

1 � i � m and Nðv1 \ v2Þ ¼ r1, Nðv2 \ v3Þ ¼ r2,… , Nðvi�1 \ viÞ ¼ rj, 1 � i � m, 1 � j � m –
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1. degðv11Þ ¼ k1i þ 1, degðr1Þ ¼ x1 þ 2, degðr2Þ ¼ x2 þ 2,… , degðrjÞ ¼ xj þ 2, degðv2i Þ ¼ k2i þ 1
then v0eðGÞ � maxfk1i þ k2i g þ [j

p¼1 xp, 1 � i � m, 1 � j � m – 1.

Proof. Consider the 2 degree vertex v1. Let M1, M2,… ,Mk1i
be the perfect matchings that cover all

the edges incident at v11 other than v11v1 and let M1, M2,… ,Mk2i
be the perfect matchings that

cover all the edges incident at v2i other than v2i vi: Then the edge v1v
1
1 is in every Ms, 1 � s � k1i

and the edge viv
2
i is in every Ms, 1 � s � k2i : Clearly xj number of distinct perfect matchings

other than M1, M2,… ,Mk1i
and M1, M2,… ,Mk2i

are necessary to cover the edges incident at rj, 1
� j � m – 1. See Figure 1. This implies v0eðGÞ � maxfk1i þ k2i g þ [j

p¼1 xp, where the maximum
is taken over all i, j, 1 � i � m, 1 � j � m – 1. w

Excessive index of TUC4C8ðSÞ½p, q� nanosheet
Carbon nanosheets are a new kind of two-dimensional polymeric material that is fabricated by
cross-linking aromatic self-assembled monolayers with electrons. Due to their uniform thickness
of only about one nanometer, as well as their high chemical, mechanical, and thermal stability,
such materials are of high interest for a wide variety of applications. Because of their stability and
flexibility, carbon nanosheets will likely find a multitude of applications, including potential use
as sensors, filtration membranes, sample supports, and even conductive coatings.16 Consider the
molecular graph of an TUC4C8ðSÞ½p, q� nanosheets. Let G ¼ TUC4C8ðSÞ½p, q� where p is the num-
ber of rows and q is the number of columns. TUC4C8ðSÞ nanosheets is bi-regular graph. See
Figure 2.

Theorem 2.1. Let G be the TUC4C8ðSÞ½p, q� nanosheet, then v0eðGÞ ¼ 3:
Proof. By Theorem 1.1 v0eðGÞ � 3: We now proceed to prove that the lower bound is sharp. Let
us construct three perfect matchings M1, M2 and M3 covering all the edges of TUC4C8ðSÞ½p, q�
nanosheet. Perfect matchings M1, M2 and M3 are selected as follows: Let M1 be the perfect
matching consists of acute and obtuse edges in octagons. Let M2 be the perfect matching consists
of all vertical edges in both octagon and squares together with the horizontal edges on the
boundary. Let M3 be the perfect matching consists of all horizontal edges in both octagon and
squares together with the vertical edges on the boundary. Clearly the edges in M1, M2 and M3 are
selected in such a way that each Mi, 1 � i � 3 is perfect. This implies that M1 [M2 [M3 cover
all the edges of G. Thus v0eðGÞ ¼ 3: w

Excessive index of TUC4C8ðRÞ½p,q� nanotube
In this section, we compute the excessive index for TUC4C8ðRÞ½p, q� nanotube. Consider the
molecular graph of an TUC4C8ðRÞ nanotube. T½p, q� denotes a TUC4C8ðRÞ nanotube parameter-
ized by the number of octagons in a fixed row (p) and column (q) of a 2-dimensional lattice such
as shown in Figure 3. The nanotube is obtained from the lattice by wrapping it up so that each

Figure 1. The graph G.
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dangling edges from the left hand side connects to the rightmost vertex of the same row. The
number of both squares and octagons in one layer of the nanotube is equal to pþ 1. As each ver-
tex of TUC4C8ðRÞ nanotube is contained in exactly one square, the structure TUC4C8ðRÞ½p; q� has
ð4þ 1Þðqþ 1Þ vertices and ðpþ 1Þð6qþ 5Þ edges. The TUC4C8ðRÞ nanotube is bi-regu-
lar graph.17

Theorem 3.1. Let G be the TUC4C8ðRÞ nanotube, then v0eðGÞ ¼ 4:

Proof. By Lemma 1.3, v0eðGÞ � 4: We now proceed to prove that the lower bound is sharp.
Case 1: p- even(odd), q- even

Perfect matchings M1,M2,M3 and M4 are selected as follows:

Figure 2. TUC4C8ðSÞ½p, q� nanosheet.

Figure 3. TUC4C8ðRÞ½p, q� nanotube.

4 S. MARIA JESU RAJA AND A. GRACYBABY



Step 1: (Selection of edges in M1)

a. From C4
1, j select the upper acute edges where j-odd and select the upper obtuse edges where

j-even. From C4
p, j select the lower acute edges where j-even (odd) and lower obtuse edges

where j- odd (even).
b. Select all the horizontal and vertical edges of C8

i, j where i, j-odd and i, j-even.

Step 2: (Selection of edges in M2)

a. From C4
1, j select the upper acute edges where j-even and select the upper obtuse edges where

j-odd. From C4
p, j select the lower acute edges where j-odd (even) and lower obtuse edges

where j- even (odd).
b. Select all the horizontal and vertical edges of C8

i, j where i-odd, j-even and i-even, j-odd.

Step 3: (Selection of edges in M3)
From C4

i, j where i ¼ 1, 2, :::p, j ¼ 1, 2, :::q select all the upper and lower acute edges.
Step 4: (Selection of edges in M4)

From C4
i, j where i ¼ 1, 2, :::p, j ¼ 1, 2, :::q select all the upper and lower obtuse edges.

Clearly the edges in M1,M2,M3 and M4 are selected in such a way that each Mi, 1 � i � 4 is
perfect. Further steps 1 (b) and 2 (b) cover all the horizontal and vertical edges while steps 3 and
4 cover all the acute and obtuse edges.
Case 2: p- even(odd), q- odd

Perfect matchings M1,M2,M3 and M4 are selected as follows:
Step 1: (Selection of edges in M1)

a. From C4
1, j select the upper acute edges where j-odd and the upper obtuse edges where j-even.

From C4
i, 1 select the upper acute edges where i-odd and the lower obtuse edges where i-even.

From C4
i, q select the lower acute edges where i-odd and the upper obtuse edges where i-even.

From C4
p, j select the lower obtuse(acute) edges where j-odd and the lower acute(obtuse) edges

where j-even.
b. Select all the horizontal and vertical edges of C8

i, j where i, j-odd, i, j-even, i ¼ 1, 2, :::p
and j ¼ 1, 2, :::ðq� 1Þ:

Step 2: (Selection of edges in M2)

a. From C4
1, j select the upper obtuse edges where j-odd and the upper acute edges where j-even.

From C4
i, 1 select the lower obtuse edges where i-odd and the upper acute edges where i-even.

From C4
i, q select the upper obtuse edges where i-odd and the lower acute edges where i-even.

From C4
p, j select the lower acute(obtuse) edges where j-odd and the lower obtuse(acute) edges

where j-even.
b. Select all the horizontal and vertical edges of C8

i, j where i, j-odd, even and i, j-even, odd i ¼
1, 2, :::p and j ¼ 1, 2, :::ðq� 1Þ:

Step 3: (Selection of edges in M3)

a. From C4
i, j select all the upper and lower acute edges where i ¼ 1, 2, :::p, j ¼ 2, 3, :::ðq� 1Þ:

From C4
i, 1 select the upper obtuse edges where i-odd and the lower acute edges where i-even.

From C4
i, q select the upper acute edges where i-odd and the lower obtuse edges where i-even.

(From C4
p, 1ðC4

p, qÞ select the upper and lower obtuse(acute) edges.

POLYCYCLIC AROMATIC COMPOUNDS 5



b. From C8
i, q select all the horizontal and vertical edges where i-odd.

Step 4: (Selection of edges in M4 for p-even)
From C4

i, j select all the upper and lower obtuse edges where i ¼ 1, 2, :::p, j ¼ 2, 3, :::ðq� 1Þ:
From C4

i, 1 select the upper and lower acute edges for i-odd and the upper and lower obtuse edges
for i� even. From C4

i, q select the upper and lower obtuse edges for i-odd and the upper and
lower acute edged for i-even.

(Selection of edges in M4 for p-odd)

a. From C4
i, j select all the upper and lower obtuse edges where i ¼ 1, 2, :::p, j ¼ 2, 3, :::ðq� 1Þ:

From C4
i, 1ðC4

i, qÞ select the upper acute(obtuse) edges for i-odd and the lower obtuse(acute)
edges for i� even. From C4

1, 1ðC4
1, qÞ select the upper and lower acute(obtuse) edges.

b. From C8
i, q select all the horizontal and vertical edges where i-even.

Clearly the edges in M1,M2,M3 and M4 are selected in such a way that each Mi, 1 � i � 4
is perfect.

Further steps 1 (b), 2 (b), 3 (b), and 4 (b) cover all the horizontal and vertical edges while
steps 1 (a), 2 (a), 3 (a), and 4 (a) cover all the acute and obtuse edges. Thus v0eðGÞ ¼ 4: w

Excessive index of NPHX[m,n] nanotube

In this section, we compute the excessive index for H-naphtalenic nanotubes. This nanotube is a
trivalent decoration having sequence of C6, C6, C4, C6, C6, C4,… in first row and a sequence of
C6, C8, C6, C8,… in other row. In other words, the whole lattice is a plane tiling of C6,C4 and C8

and this type of tiling can either cover a cylinder or a torus.18,19 These nanotubes usually symbol-
ized as NPHX[m,n], in which m is the number of pairs of hexagons in first row and n is the
number of alternative hexagons in a column as depicted in Figure 4.

Theorem 4.1. Let G be the NPHX½m, n� nanotube, then v0eðGÞ ¼ 5:

Figure 4. NPHX[m,n] nanotube.
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Proof . By Lemma 1.4, v0eðGÞ � 5: We now proceed to prove that the lower bound is sharp. Case
1: (n-odd)

Perfect matchings M1,M2,M3,M4 and M5 are selected as follows:
Step 1: (Selection of edges in M1)

a. From C1
1, select the acute edges of column j, j odd and obtuse edges of column j, j even and

from C2
1, select the acute edges of column j, j even and obtuse edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j odd, together with

the vertical edges of column n with one end incident at an obtuse edge of C1
i and the other

end incident at an acute edge of C2
i , 1 � i � m:

Step 2: (Selection of edges in M2)

a. From C1
1, select the obtuse edges of column j, j odd and acute edges of column j, j even and

from C2
1, select the obtuse edges of column j, j even and acute edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j even, together with

the vertical edges of column 1 with one end incident at an acute edge of C1
i and the other

end incident at an obtuse edge of C2
i , 1 � i � m:

Step 3: (Selection of edges in M3)

a. From C1
1 select the acute and obtuse edges of column j, 1 � j � n and from C2

m, select the
obtuse and acute edges of column j, 1 � j � n:

b. Select the vertical edges from column j, 1 � j � n with one end incident at an acute and an
obtuse edge of C1

i ðC2
i Þ with other end incident at an acute and an obtuse edge of C2

i ðC1
iþ1Þ

together with the vertical edges of squares in row i, 1 < i < m, induced by the columns j, jþ
1, 1 � j � n and the horizontal edges of squares incident with the acute and obtuse edges of
C2
1 and C2

n:

Step 4: (Selection of edges in M4)

a. From C1
1, select the obtuse edges of column 1 and the acute edges of column j, 1 < j � n

and from C1
2, select the acute edges of column 1 and the obtuse edges of column j, 1 < j �

n: Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of the squares induced by column 1 and column n, and the verti-

cal edges of the squares induced by column j and jþ 1, 1 < j < n with one end incident at
an obtuse edge in C1

i and the other end incident at an acute edge in C2
i , 1 � i � m:

Step 5: (Selection of edges in M5)

a. From C1
1, select the acute edges of column 1 and the obtuse edges of column j, 1 < j � n

and from C1
2, select the obtuse edges of column 1 and the acute edges of column j, 1 < j �

n: Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the vertical edges of the squares induced by column 1 and 2, the vertical edges of the

squares induced by column j and jþ 1, 1 < j < n with one end incident at an acute edge in
C1
i and the other end incident at an obtuse edge in C2

i , 1 � i � m:

POLYCYCLIC AROMATIC COMPOUNDS 7



Clearly the edges in M1,M2,M3,M4 and M5 are selected in such a way that each Mi, 1 � i � 5
is perfect. Further steps 1 (a), 2 (a) cover all acute and obtuse edges, steps 1 (b), 2 (b), and 4 (b)
cover all horizontal edges, steps 1 (b), 2 (b), 3 (b), 4 (b), and 5 (b) cover all vertical edges.
Thus v0eðGÞ ¼ 5:
Case 2: (n-even)

Perfect matchings M1,M2,M3,M4 and M5 are selected as follows:
Step 1: (Selection of edges in M1)

a. From C1
1, select the acute edges of column j, j odd and obtuse edges of column j, j even and

from C2
1, select the acute edges of column j, j even and obtuse edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j odd.

Step 2: (Selection of edges in M2)

a. From C1
1, select the obtuse edges of column j, j odd and acute edges of column j, j even and

from C2
1, select the obtuse edges of column j, j even and acute edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j even.

Step 3: (Selection of edges in M3)

a. From C1
1 select the acute and obtuse edges of column j, 1 � j � n and from C2

m, select the
obtuse and acute edges of column j, 1 � j � n:

b. Select the vertical edges from column j, 1 � j � n with one end incident at an acute and an
obtuse edge of C1

i ðC2
i Þ with other end incident at an acute and an obtuse edge of C2

i ðC1
iþ1Þ

together with the vertical edges of squares in row i, 1 < i < m, induced by the columns j, jþ
1, 1 � j � n and the horizontal edges of squares incident with the acute and obtuse edges of
C2
1 and C2

n:

Step 4: (Selection of edges in M4)

a. From C1
1, select the obtuse edges of column j for 1 � j � n and from C1

2, select the acute
edges of column j for 1 � j � n: Repeat this process for all C1

i and C2
i , 1 � i � m:

b. Select the vertical edges of the squares induced by column j and jþ 1, 1 � j � n with one
end incident at an acute edge in C1

i and the other end incident at an obtuse edge
in C2

i , 1 � i � m:

Step 5: (Selection of edges in M5)

a. From C1
1, select the acute edges of column j, 1 � j � n and from C1

2, select the obtuse edges
of column j, 1 � j � n: Repeat this process for all C1

i and C2
i , 1 � i � m:

b. Select the vertical edges of the squares induced by column j and jþ 1, 1 � j � n with one
end incident at an obtuse edge in C1

i and the other end incident at an acute edge
in C2

i , 1 � i � m:

Clearly the edges in M1,M2,M3,M4 and M5 are selected in such a way that each Mi, 1 � i � 5 is
perfect. Further steps 1 (a), 2 (a) cover all the acute and obtuse edges, steps 1 (b)and 2 (b) cover all
the horizontal edges, steps 3 (b), 4 (b), and 5 (b) cover all the vertical edges. Thus v0eðGÞ ¼ 5: w
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Excessive index of H-anthracenic nanotube

In this section, we compute the excessive index for H-anthracenic nanotube. Anthracene is a solid
polycyclic aromatic hydrocarbon of formula C14H10, consisting of three fused benzene rings. It is
a component of coal tar. Anthracene is used in the production of the red dye alizarin and other
dyes. The H-anthracenic nanotube is a sequence of C6, C6, C6, C4, C6, C6, C6, C4,… in first row
and a sequence of C6, C6, C8, C6, C6, C8,… in other row. These nanotubes can be symbolized as
HANT½p, q� in which p is the number of triple hexagons in first row and q is the number of alter-
native hexagons in the column as described in Figure 5. The number of vertices of H-
Anthracenic nanotube is 14pq, and the edges are 21pq� 2q:8

Theorem 5.1. Let G be a H-Anthraceric HANT ½m, n� nanotube, then v0eðGÞ ¼ 6:

Proof. By Lemma 1.4, v0eðGÞ � 6: We now proceed to prove that the lower bound is sharp. Case
1: n-odd

Perfect matchings M1,M2,M3,M4,M5 and M6 are selected as follows:
Step 1: (Selection of edges in M1)

a. From C1
1, select the acute edges of column j, j odd and obtuse edges of column j, j even and

from C2
1, select the acute edges of column j, j even and obtuse edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j odd, together with

the vertical edge of column n, with one end incident at an obtuse edge of C1
i and the other

end incident at an acute edge of C2
i , 1 � i � m: See Figure 6.

Step 2: (Selection of edges in M2)

a. From C1
1, select the obtuse edges of column j, j odd and acute edges of column j, j even and

from C2
1, select the obtuse edges of column j, j even and acute edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:

Figure 5. H-anthracenic nanotube.

POLYCYCLIC AROMATIC COMPOUNDS 9



b. Select the horizontal edges of squares induced by column j and jþ 1, j-even, together with
the vertical edges of column 1 with one end incident at an acute edge of C1

i and the other
end incident at an obtuse edge of C2

i , 1 � i � m: See Figure 7.

Step 3: (Selection of edges in M3)

a. From C1
1, select the acute and obtuse edges of 6C1

11 and 6C2
11 and from C1

1 and C2
1,

select the obtuse edges of 6C3
11: From C1

i and C2
i , select the acute and obtuse edges of

6C3
i1, 1 < i < m: From C2

m, select the obtuse and acute edges of 6C1
m1 and 6C2

m1 and from
C1
m and C2

m, select the acute edges of 6C3
m1: Repeat this process for all col-

umns j, 1 � j � n:

Figure 6. Selection of edges in M1, when n is odd.

C1
1

C1
2

C2
1

C2
2

C3
1

C3
2

column 1 column 2 column 3 column 4

Figure 7. Selection of edges in M3, when n is odd.
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b. Select the common vertical edges between 6C1
i1 and 6C2

i1, 1 � i � m and the vertical edges
induced by 6C1

i1 and 6C1
ðiþ1Þ1,

6C2
i1 and 6C2

ðiþ1Þ1, 1 � i < m: Repeat this process for all col-
umns j, 1 � j � n:

c. Select all the horizontal edges of squares induced by column j and jþ 1, 1 � j � n except
those horizontal edges of C1

1 and C2
m:

Step 4: (Selection of edges in M4)

a. From C1
1, select the acute and obtuse edges of 6C2

11 and 6C3
11 and from C1

1 and C2
1, select the

acute edges of 6C1
11: From C1

i and C2
i , select the obtuse and acute edges of 6C1

i1, 1 < i < m:
From C2

m, select the obtuse and acute edges of 6C2
m1 and 6C3

m1 and from C1
m and C2

m, select
the obtuse edges of 6C1

m1: Repeat this process for all columns j, 1 � j � n:
b. Select the common vertical edge between 6C2

i1 and 6C3
i1, 1 � i � m and the vertical edges

induced by 6C2
i1 and 6C2

ðiþ1Þ1,
6C3

i1 and 6C3
ðiþ1Þ1, 1 � i < m: Repeat this process for all col-

umns j, 1 � j � n:
c. Select all the horizontal edges of squares induced by column j and jþ 1, 1 � j � n, except

the horizontal edges of C1
1 and C2

m: See Figure 8.

Step 5: (Selection of edges in M5)

a. From C1
i , select the acute and from C2

i , select the obtuse edges where 1 � i � m and for col-
umns j, 1 � j < n: In column n, from C1

i select the obtuse edges and from C2
i select the acute

edges for 1 � i � m:
b. Select the both vertical edges of square induced by column ðn� 1Þ and n together with the

vertical edges of squares induced by column j and jþ 1, 1 � j < n, with one end incident at
an obtuse edges of C1

i and the other end incident at an acute edge of C2
i , 1 � i � m: See

Figure 9.

Step 6: (Selection of edges in M6)

Figure 8. Selection of edges in M4, when n is odd.
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a. From C1
i , select the obtuse edges and from C2

i , select the acute edges where 1 � i � m and
for columns j, 1 � j < n: In column n, from C1

i select the acute edges from C2
i select the

obtuse edges for 1 � i � m:
b. Select both the horizontal edges of squares induced by column 1 and n, together with the

vertical edges of squares induced by column j and jþ 1, 1 � j < n with one end incident at
an acute edge of C1

i and the other end incident at an obtuse edge of C2
i , 1 � i � m: See

Figure 10.

Clearly the edges in M1,M2,M3,M4,M5 and M6 are selected in such a way that each Mi, 1 �
i � 6 is perfect. Further, Steps 1(a) and 2(a) cover all acute and obtuse edges, Steps 1(b), 2(b),
3(c), 4(c), and 6(b) cover all horizontal edges and Steps 1(b), 2(b), 3(b), 4(b), 5(b), and 6(b) cover
all vertical edges. Thus v0eðGÞ ¼ 6:
Case 2: n-even

Perfect matchings M1,M2,M3,M4,M5 and M6 are selected as follows:
Step 1: (Selection of edges in M1)

a. From C1
1, select the acute edges of column j, j odd and obtuse edges of column j, j even and

from C2
1 select the acute edges of column j, j even and obtuse edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j odd.

Step 2: (Selection of edges in M2)

a. From C1
1, select the obtuse edges of column j, j odd and acute edges of column j, j even and

from C2
1, select the obtuse edges of column j, j even and acute edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j even together with

both the vertical edges of squares induced by columns 1 and n.

Step 3:
The selection of edges in M3,M4,M5 and M6 are as in Case (1). See Figure 11. Clearly the

edges in M1,M2,M3,M4,M5 and M6 are selected in such a way that each Mi, 1 � i � 6 is perfect.
Further, they cover all the acute, obtuse, horizontal and vertical edges of G. Thus, v0eðGÞ ¼ 6: w

Excessive index of H-tetracenic nanotube

In this section, we compute the excessive index for H-tetracenic nanotube. Tetracenic is the four
ringed member of the series of acenes, it is also called 4-polyacenic. Let G ¼ G½p, q� be the H-tet-
racenic nanotube, with 18pq vertices. The H-tetracenic nanotubes is a sequence of C6, C6, C6, C6,

Figure 9. Selection of edges in M5, when n is odd.
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C4, C6, C6, C6, C6, C4,… in first row and a sequence of C6, C6, C6, C8, C4, C6, C6, C8,… in other
row.8 See Figure 12.

Theorem 6.1. Let G be a H-tetracenic nanotube ½m, n� . Then v0eðGÞ ¼ 7

Proof. By Lemma 1.4, v0eðGÞ � 7: We now proceed to prove that the lower bound is sharp.

Case 1: n-odd Perfect matchings M1,M2,M3,M4,M5,M6 and M7 are selected as follows.
Step 1: (Selection of edges in M1)

Figure 10. Selection of edges in M6, when n is odd.

Figure 11. Selection of edges in M3, when n is even.

Figure 12. H-tetracenic nanotube.
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a. From C1
1, select the acute edges of column j, j odd and obtuse edges of column j, j even and

from C2
1, select the acute edges of column j, j even and obtuse edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j odd, together with

the vertical edge of column n, with one end incident at an obtuse edge of C1
i and the other

end incident at an acute edge of C2
i , 1 � i � m:

Step 2: (Selection of edges in M2)

a. From C1
1, select the obtuse edges of column j, j odd and acute edges of column j, j even and

from C2
1, select the obtuse edges of column j, j even and acute edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j-even, together with

the vertical edges of column 1 with one end incident at an acute edge of C1
i and the other

end incident at an obtuse edge of C2
i , 1 � i � m:

Step 3: (Selection of edges in M3)

a. From C1
1, select the acute edges of 6C1

11 and the obtuse edges of 6C2
11 and from C1

1 and C2
1,

select the obtuse edges of 6C3
11 and 6C4

11: From C1
i , select the acute edges of 6C3

i1 and
6C4

i1, 1 < i < m and from C2
i , select the obtuse edges of 6C3

i1 and 6C4
i1, 1 < i < m: From C2

m,
select the obtuse edges of 6C1

m1 and the acute edge of 6C2
m1 and from C1

m and C2
m, select the

acute edges of 6C3
m1 and 6C4

m1: Repeat the above processes for all column j, 1 � j � n:
b. Select the common vertical edges between 6C1

i1 and 6C2
i1, 1 � i � m and the vertical edges

induced by 6C1
i1 and 6C1

ðiþ1Þ1,
6C2

i1 and 6C2
ðiþ1Þ1, 1 � i � m: Repeat this process for all col-

umns j, 1 � j � n:

(c) Select all the horizontal edges of squares induced by column j and jþ 1, 1 � j � n, except
those horizontal edges of C1

1 and C2
m:

Step 4: (Selection of edges in M4)

a. From C1
1, select the acute edges of 6C1

11 and 6C2
11 and select the obtuse edges of 6C3

11 and
6C4

11: From C2
1 select the acute edges of 6C1

11 and the obtuse edge of 6C4
11: From C1

i , select
the obtuse edges of 6C1

i1, and the acute edge of 6C4
i1, 1 < i � m and from C2

i , select the acute
edge of 6C1

i1 and the obtuse edge of 6C4
i1, 1 < i < m: From C2

m, select the obtuse edges of
6C1

m1 and 6C2
m1 and the acute edges of 6C3

m1 and 6C4
m1: Repeat the above process for all col-

umns j, 1 � j � n:
b. Select the common vertical edge between 6C2

i1 and 6C3
i1, 1 � i � m and the vertical edges

induced by 6C2
i1 and 6C2

ðiþ1Þ1,
6C3

i1 and 6C3
ðiþ1Þ1, 1 � i < m: Repeat this process for all columns

j, 1 � j � n:(c) Select all the horizontal edges of squares induced by column j and jþ 1, 1 �
j � n, except those horizontal edges of C1

1 and C2
m:

Step 5: (Selection of edges in M5)

a. From C1
1, select the acute edges of 6C1

11,
6C2

11 and 6C3
11 and from C2

1, select the acute edges of
6C1

11 and 6C2
11: From C1

i select the obtuse edges of 6C1
i1 and 6C2

i1, 1 < i � m, and from C2
i

select the acute edges of 6C1
i1,

6C2
i1, 1 < i < m: From C2

m, select the obtuse edges of 6C1
m1,

6C2
m1

and 6C3
m1 and the acute edge of 6C4

m1: Repeat the above process for all columns j, 1 � j � n:
b. Select the common vertical edges between 6C3

i1 and 6C4
i1, 1 � i � m and the vertical edges

induced by 6C3
i1 and 6C3

ðiþ1Þ1,
6C4

i1 and 6C4
ðiþ1Þ1, 1 � i < m: Repeat this process for all columns

j, 1 � j � n:
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c. Select all the horizontal edges of squares induced by column j and jþ 1, 1 � j � n, except
those horizontal edges of C1

1 and C2
m

Step 6: (Selection of edges in M6)

a. From C1
i , select the acute edges and from C2

i , select the obtuse edges where 1 � i � m and
for columns j, 1 � j < n: In column n, from C1

i select the obtuse edges from C2
i select the

acute edges for 1 � i � m:
b. Select both the vertical edges of squares induced by column n – 1 and n, together with the

vertical edges of squares induced by column j and jþ 1, 1 � j < n with one end incident at
an obtuse edge of C1

i and the other end incident at an acute edge of C2
i , 1 � i � m:

Step 7: (Selection of edges in M7)

a. From C1
i , select the obtuse edges and from C2

i , select the acute edges where 1 � i � m and
for columns j, 1 � j < n: In column n, from C1

i select the acute edges and from C2
i select the

obtuse edges for 1 � i � m:
b. Select both the horizontal edges of squares induced by columns 1 and n, together with the

vertical edges of squares induced by columns j and jþ 1, 1 � j < n with one end incident
and an acute edge of C1

i and the other end incident at an obtuse edge of C2
i , 1 � i � m:

Clearly the edges in M1,M2,M3,M4,M5,M6 and M7 are selected in such a way that each
Mi, 1 � i � 7 is perfect. Further, Steps 1(a) and 2(a) cover all acute and obtuse edges, Steps 1(b),
2(b), 3(c), 4(c), 5(c), and 7(b) cover all horizontal edges and Steps 1(b), 2(b), 3(b), 4(b), 5(b),
6(b), and 7(b) cover all vertical edges. Thus v0eðGÞ ¼ 7:
Case 2: n-even

Perfect matchings M1,M2,M3,M4,M5,M6 and M7 are selected as follows:
Step 1: (Selection of edges in M1)

a. From C1
1, select the acute edges of column j, j odd and obtuse edges of column j, j even and

from C2
1, select the acute edges of column j, j even and obtuse edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j odd.

Step 2: (Selection of edges in M2)

a. From C1
1, select the obtuse edges of column j, j odd and acute edges of column j, j even and

from C2
1, select the obtuse edges of column j, j even and acute edges of column j, j odd.

Repeat this process for all C1
i and C2

i , 1 � i � m:
b. Select the horizontal edges of squares induced by column j and jþ 1, j even together with

both the vertical edges of squares induced by columns 1 and n. The edges in M3,M4,M5,M6

and M7 are selected as in Case (1). Clearly the edges in M1,M2,M3,M4,M5,M6 and M7 are
selected in such a way that each Mi, 1 � i � 7 is perfect. Further, Mi, 1 � i � 7, cover all the
acute, obtuse, horizontal and vertical edges of G. Thus, v0eðGÞ ¼ 7: w

Conclusion

In this article, we determined the excessive index for TUC4C8ðSÞ½p, q� nanosheet, NPHX½m, n�
nanotube, TUC4C8ðRÞ½p, q� nanotube, H-anthracenic nanotube and H-tetracenic nanotube. It
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would be an interesting line of research to determine the excessive index for other chemical
structures since scheduling theory has gained momentum in biotechnology and even in
nanotechnology.
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